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Abstract. Query optimization is an important functionality of mod-
ern database systems and often based on estimating the selectivity of
queries before actually executing them. Well-known techniques for esti-
mating the result set size of a query are sampling and histogram-based
solutions. Sampling-based approaches heavily depend on the size of the
drawn sample which causes a trade-off between the quality of the esti-
mation and the time in which the estimation can be executed for large
data sets. Histogram-based techniques eliminate this problem but are
limited to low-dimensional data sets. They either assume that all at-
tributes are independent which is rarely true for real-world data or else
get very inefficient for high-dimensional data. In this paper we present
the first multivariate parametric method for estimating the selectivity of
window queries for large and high-dimensional data sets. We use clus-
tering to compress the data by generating a precise model of the data
using multivariate Gaussian distributions. Additionally, we show efficient
techniques to evaluate a window query against the Gaussian distributions
we generated. Our experimental evaluation shows that this approach is
significantly more efficient for multidimensional data than all previous
approaches.

1 Introduction

The storage and management of vectors of a multidimensional feature space has
become an important basic functionality of a database system. Advanced ap-
plications such as multimedia [1], CAD [2], molecular biology [3], etc. require
efficient and effective methods for content based similarity search and data min-
ing. Such methods are typically based on feature vectors of moderate or high
dimensionality. Although a vast number of index structures [4, 5] and access
methods [6] for vector data has been proposed, database management systems
do not yet support the storage and retrieval of vector data in the same way as
relational data from applications such as accounting and billing. In order to give
full support to advanced applications the database system needs efficient and ef-
fective techniques for query optimization. One of the most important challenges
in query optimization is the estimation of the selectivity of a query predicate.
While a number of techniques to model the data distribution and thus to esti-
mate the selectivity are known for one- and low-dimensional data spaces, this is
still an unsolved problem for data spaces of medium to high dimensionality.
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Three different paradigms of data modelling for selectivity estimation in gen-
eral can be distinguished: Histograms, sampling, and parametric techniques. Of
those three, only sampling can be directly applied without modification in higher
dimensional data spaces. Many different sampling methods have been proposed.
They share the common idea to evaluate the predicate on top of a small sub-
set of the actual database objects and to extrapolate the observed selectivity.
The well-known techniques differ in the way how the sample is drawn as well as
in the determination of the suitable size of the sample. The general drawback
of sampling techniques is that the accuracy of the result is strictly limited by
the sample rate. To get an accurate estimation of the selectivity, a large sample
(>10%) of the database is required. To evaluate the query on top of the large
sample is not much cheaper than to evaluate it on the original data set which
limits its usefulness for query optimization.

Histogram techniques, the most prevalent paradigm to model the data dis-
tribution in the one-dimensional case, have a different problem. This concept
is very difficult to be carried over to the multidimensional case, even for low
or moderate dimensional data. One way to adapt one-dimensional histograms
to multidimensional data is to describe the distribution of the individual at-
tributes of the vectors independently by usual histograms. These histograms are
sometimes called marginal distributions. In this case, the selectivity of multi-
dimensional queries can be determined easily provided that the attributes are
statistically independent, i.e. neither correlated nor clustered. Real-world data
sets, however, rarely fulfill this condition. Another approach is to partition the
data space by a multidimensional grid and to assign a histogram bin to each grid
cell. This approach may be possible for two- and three-dimensional spaces. How-
ever, for higher dimensional data this method becomes inefficient and ineffective
since the number of grid cells is exponential in the dimensionality. Techniques
of dimensionality reduction such as Fourier transformation, wavelets, principal
component analysis or space-filling curves (Z-ordering, Hilbert) may reduce this
problem to some extent. The possible problem reduction, however, is limited by
the intrinsic dimensionality of the data set.

The idea of parametric techniques is to describe the data distribution by
curves (functions) which have been fitted into the data set. In most cases Gaus-
sian functions (normal distributions) are used. Instead of using one single Gaus-
sian, a set of multivariate Gaussians can be fitted into the data set which makes
the technique more accurate. Each Gaussian is then described by three param-
eters (mean, variance and the relative weight of the Gaussian in the ensemble).
This approach can be transferred into the multidimensional case by two tech-
niques. Like described above for histograms, the marginal distribution of each
attribute can be modelled independently by a set of Gaussians. The multidimen-
sional query selectivity can be estimated by combining the marginal distribu-
tions. This approach leads to similar problems like marginal histograms.

Therefore, our solution is different. Our technique directly models the multi-
dimensional data distribution by a set of multivariate Gaussian functions. There
are two options to use the Gaussian primitives: The Gaussians can either be used



with a matrix containing both variances and covariances or with a vector of the
multivariate variances only. As we will discuss later, both approaches have their
advantages and disadvantages. When using Gaussians with covariance matrix,
the data distribution can be described more accurately by a single primitive. On
the other side, more storage is needed for the covariance matrices (O(d2) for each
Gaussian) compared to the variance vector approach (O(d) for each Gaussian).
Moreover, the processing cost for reading the parameters and for the determi-
nation of the estimated selectivity is much higher when covariance matrices are
used. Let us note that, unlike the approaches using marginal distributions, our
Gaussian technique with no covariance matrix does not rely on the attribute
independence assumption. This technique assumes attribute independence for
each individual Gaussian primitive only, but places no constraints to the over-
all data distribution. We will discuss this issue in more detail in Section 4, an
experimental validation is given in Section 5.

To obtain a collection of Gaussians distributions we apply a clustering al-
gorithm. Clustering is the task of grouping vectors into different subsets (the
clusters) such that the intra-cluster similarity is maximized and the inter-cluster
similarity is minimized. That means points belonging to the same cluster are
close together whereas points of different clusters are far away from each other.
Many different algorithms have been proposed such as k-means [7], single-link
[8], density-based clustering [9, 10] and many others. Most of these algorithms
use a point as a representative of each cluster. In contrast, the EM clustering
algorithm (expectation maximization) [11] uses a multivariate Gaussian function
as a cluster representative. We will discuss the suitability of different variants of
the EM algorithm for our problem of getting a good approximation of the actual
data distribution.

To summarize our contribution, we propose in this paper a new cost model
for estimating the selectivity of multidimensional queries on top of vector data of
medium to high dimensionality. The data distribution is represented by a set of
multivariate Gaussian functions that have been determined using the EM cluster-
ing algorithm. We develop two methods for estimating the selectivity of window
queries and range queries using the multivariate Gaussians. We demonstrate ex-
perimentally the superiority of our approach over competitive cost models based
on histograms and sampling. The remainder of our paper is organized as follows:
In Section 2 we discuss related work on selectivity estimation and point out our
contribution. Section 3 and 4 describes in detail our proposed methods to find
a representation of the data distribution by an ensemble of multivariate Gaus-
sian functions using EM clustering and to estimate the selectivity on top of this
model. Section 5 contains the experimental evaluation, and section 6 concludes
our paper.

2 Related Work

In this chapter, we review current approaches for selectivity estimation and dis-
cuss their potentials.



(a) One dimensional
histograms

(b) Multi dimensional
histograms

(c) Selectivity estima-
tion via clustering

Fig. 1. Visualization of different concepts for selectivity estimation.

2.1 Review

Recent work on selectivity estimation can be categorized into three classes,
namely histogram-based methods, sampling-based methods, and parametric meth-
ods. In the following, we review and discuss the most important representatives
of each class briefly.
Histogram-based Methods. The most widespread approach for selectivity
estimation in practice is the use of histograms. In general, the data space is parti-
tioned into buckets, and the frequency of points inside each bucket is computed.
We can distinguish between one-dimensional and multi-dimensional histograms.

Selectivity estimation using one-dimensional histograms is based on the as-
sumption that the attributes of the data set are independent, i.e. there is no
correlation between different dimensions of the feature space. For each dimen-
sion, a histogram is built and the selectivity of a window query q is estimated
in each dimension separately. The selectivity of q in the full-dimensional space
is evaluated by multiplying the selectivity estimations for each attribute. Equi-
width histograms [12] compute buckets of fixed size and variable point frequency,
whereas equi-depth histograms [13] compute buckets of variable size and fixed
point frequency.

With growing dimensionality of the feature space, the recombination of one-
dimensional buckets becomes costly. Thus, in recent years, multi-dimensional
histograms have been investigated. Multi-dimensional equi-depth histograms [14]
partition the feature space into multi-dimensional buckets with variable size and
fixed point frequency. In [14] an algorithm to construct multi-dimensional equi-
depth histograms is presented that iteratively partitions the data space along
each attribute into a fixed number of buckets, where the order of attributes
is fixed. The selectivity of a window query q is estimated analogously to one-
dimensional histograms taking the buckets into account that intersect with q.
The algorithm MHIST [15] partitions the data space along the single attributes
in a similar way, but decides in each step which attribute is partitioned rather
than processing the attributes in a fixed order.



STHoles [16] is a recent approach that proposes hierarchically organized
multi-dimensional histograms. A histogram may contain another histogram com-
pletely, or may be completely covered by part of another histogram. The is-part
of hierarchy of the histograms is represented as a tree where each node repre-
sents a bucket. Using this hierarchical concept, a non-uniform distribution inside
a bucket b can be adopted more accurately by several smaller buckets inside (that
are part of) b. STHoles histograms are constructed using a set of sample queries
as reference. Regions in the data space, that are queried more frequently, can
thus be represented in more detail through a larger number of buckets. The his-
tograms are refined after each query. However, the refinement procedure takes
care that no more than a fixed upper bound of buckets is generated. If this upper
bound is violated temporarily during reorganization, some buckets are merged.

In [17] the authors propose another strategy of computing multidimensional
histograms using Wavelet transformation. In particular, the authors show how
to apply a Wavelet transformation to one dimensional data sets. The data space
is split evenly in a recursive fashion. The Wavelet coefficients are computed for
each bucket. The resulting grid can be more fine grained than for traditional
histograms because using the Wavelet coefficients the data is compressed more
efficiently. For higher dimensional data, the authors in [17] suggest to split each
attribute recursively in a given order.
Sampling-based Methods. A second approach for estimating the selectivity
of queries is based on sampling. Usually, the selectivity of a query q is estimated
on a small sample of the database and is then extrapolated onto the entire
database. The simplest way of computing a sample is the well-known random
sampling method. A more data driven variant is adaptive sampling [18, 19].

A similar approach called ’double sampling’ is proposed in [20]. The main
difference to the adaptive sampling method is a different estimation of the sample
size. In fact, the sample size is reduced using a two-way sampling procedure.
However, there is no hint on how to choose the size of the first sample.
Parametric Methods. In [21], a method called Adaptive Selectivity Esti-
mator (ASE) is proposed that tries to approximate the distribution of the data
objects along one attribute using an appropriate polynomial function. This func-
tion is adopted and refined taking predefined queries into account, and minimizes
the squared error between the real and the estimated selectivity. ASE is evalu-
ated in [21] using one- and two-dimensional data sets only.

2.2 Discussion

As noticed above, current approaches for selectivity estimation have severe draw-
backs. Sampling techniques suffer from the fact, that the accuracy of the result
is strictly constrained by the sample rate. High sample rates on the other hand
are quite inefficient and limit the usefulness of sampling techniques for query
optimization. One-dimensional histograms (cf. Figure 1(a)) rely on the attribute
independence assumption, i.e. on the assumption that the attributes are neither
correlated nor clustered. This is quite unrealistic in real-world data sets which



rarely fulfill this condition. Multi-dimensional histograms (cf. 1(b)) become in-
efficient and ineffective for higher dimensionalities since the number of grid cells
is exponential in the dimensionality. Techniques of dimensionality reduction are
(at least) limited by the intrinsic dimensionality of the data set. Similar problems
are prevalent using parametric methods.

In this paper, we propose the use of clustering to get an accurate character-
ization of the data by means of a collection of multivariate Gaussians (cf. 1(c)).
Our two methods are called SEC (Selectivity Estimation via Clustering) and
SEC+ and both use different variants of the EM clustering algorithm to extract
a collection of Gaussian distributions. For SEC each Gaussian is represented by
the mean value, the variances and the covariances and the relative weight of the
Gaussian in the ensemble. SEC+ uses the same representation but leaves out
the covariances. Based on these representations, SEC and SEC+ efficiently and
effectively estimate the selectivity of window queries in spatial data. We empir-
ically show that especially SEC+ yields significantly more accurate results than
comparative methods, especially when applied to higher dimensional data.

3 SEC: Selectivity Estimation Via Clustering

The overall goal of representing a given data set for selectivity estimation is to
find a model of the data that is as compact as possible (low amount of storage
necessary) and as accurate as possible (for accurate selectivity estimations). The
key idea of our new approach is to use a clustering algorithm to gain an accurate
description of the data and then use this description for selectivity estimation.
In this section, we describe both the clustering process and the method for
selectivity estimation in detail.

3.1 Describing the Data Via Clustering

Clustering has gained a lot of attention from the data mining research community
over the past decades. In particular, clustering is the task of grouping objects of
a data set into classes (clusters), while maximizing intra-cluster similarity and
minimizing inter-cluster similarity. An overview over recent work on clustering
can be found e.g. in [22]. Often clustering algorithms can also be used to obtain a
compact representation of a data set. An efficient way to represent a data set for
selectivity estimation, is to use a mixture of different distribution functions. The
most prominent algorithm that tries to describe the data by multiple distribution
functions is the EM algorithm [11]. In the following, we describe a variant of this
algorithm which is used by our selectivity estimation method SEC.

Let D be a set of d-dimensional points, i.e. D ⊆ �d. The general idea of the
EM algorithm is to describe the data by a mixture M of k Gaussian distributions.
Note that the EM algorithm can also be seen as a variant of k-means clustering.
Instead of assigning each object to a cluster as is the case for k-means-based
clustering algorithms, it assigns each object to a cluster according to a weight
representing the probability of membership.

Each cluster C ∈ M is a tuple C = (µC , ΣC), where



– µC is the mean value of all points in C and
– ΣC is the d × d covariance matrix of all points in C.

To compute the probability distributions, we need the following concepts.
The probability with which a point x ∈ D belongs to a Gaussian distribution

C = (µC , ΣC) can be computed by:

P (x|C) =
1√

(2π)d|ΣC |
e−

1
2 (x−µC)T(ΣC)−1(x−µC).

The combined probability for k clusters can then be computed by:

P (x) =
k∑

i=1

wCiP (x|Ci),

where wCi is the fraction of points that belongs to cluster Ci = (µCi , ΣCi), i.e.
wCi is the weight of Ci.

Then the probability that a point x ∈ D belongs to a cluster C can be
computed by the rule of Bayes:

P (C|x) = wC
P (x|Ci)
P (x)

.

The accuracy of a mixture M = (C1, . . . , Ck) of k Gaussian distributions
which describes how good the model approximates the actual data set can be
computed by:

E(M) =
∑
x∈D

log (P (x)).

The higher the value of E(M), the more likely it is that the data set D has
been generated by the mixture M of k Gaussian distributions. Thus, the aim
of the EM algorithm is to optimize the parameters of M , i.e. the parameters of
the k Gaussian distributions C1, . . . , Ck, such that E(M) is maximized. For that
purpose, the algorithm proceeds in four steps:

1. Initialization
Since the clusters, i.e. Gaussian distributions C1, . . . , Ck, are unknown at the
beginning, a set of k initial clusters are built randomly. For that purpose,
each point x ∈ D is randomly assigned to one cluster Ci. An initial model is
produced by computing µC and ΣC for each cluster C ∈ M

2. Expectation
Based on the current model, the parameters µC and ΣC can be computed for
each cluster C ∈ M and the accuracy E(M) of this mixture M is obtained.

3. Maximization
In this step the accuracy of the mixture is improved via a recomputation of
the parameters of each of the k clusters. Given a mixture M of k Gaussians,
the parameters µC , ΣC , and wC of each cluster C ∈ M are recomputed.



The resulting mixture M ′ has an equal or higher accuracy than M , i.e.
E(M) ≤ E(M ′). For improving the mixture, the parameters are recomputed
as follows:

wC =
1
|D|

∑
x∈D

P (C|x),

µC =
∑

x∈D x · P (C|x)∑
x∈D P (C|x)

,

ΣC =
∑

x∈D P (C|x)(x − µC)(x − µC)T∑
x∈D P (C|x)

.

4. Iteration
Step 2 and 3 are iterated until the accuracy of the improved mixture M ′

differs from the accuracy of the previous mixture M by a smaller value than
a user specified threshold ε, i.e. until |E(M) − E(M ′)| < ε.

The result of the EM algorithm is a set of k d-dimensional Gaussian distribu-
tions, each represented by the mean value µ and the covariance matrix Σ. The
assignment of a point x ∈ D to a cluster C is given by the probability P (C|x).
We thus can compute how likely a point is assigned to each of the k clusters.

The accuracy of the result of the EM algorithm, i.e. the accuracy of the
resulting mixture, depends on the initial mixture, i.e. on step 1 of the algorithm,
and on the choice of k. In [23] a method for producing a good initial mixture
is presented which is based on multiple sampling. It is empirically shown that
using this method the EM algorithm achieves accurate clustering results. The
authors further propose a method for determining a suitable number of clusters,
i.e. a suitable value for k.

3.2 Selectivity Estimation of Window Queries

As discussed in the previous subsection, we describe the data distribution using
k Gaussian distributions each represented by a mean value and a covariance
matrix. Let us note that this representation does not rely on the unrealistic
attribute independence assumption nor has it problems in higher dimensions
such as exponential storage cost that must be compensated by less accuracy.

In the following, we assume that M is a mixture of k Gaussian distributions
computed by the EM algorithm applied on the database D as described above.
We will also call M a model that describes the distribution of the objects in D
and we will use the two notions Gaussian distribution and cluster interchangeably
for a given C ∈ M . A window query Q is a list of d pairs (li, ui), where li and ui

are the lower and upper bounds, respectively, of Q in the i-th dimension, where
1 ≤ i ≤ d. The center of Q is denoted by cQ.

Intuitively, a good estimation of the selectivity of a query Q is the integral
I(Q, C) of the intersection of Q and each C ∈ M . A straightforward idea to
estimate the selectivity of a query Q using the model M is the following. For
each cluster C ∈ M we can compute the probability that the center cQ is in
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Fig. 2. The naive approach to selectivity estimation.

C, i.e. P (cQ|C). This probability can then be multiplied with the volume of the
query. The resulting integral of the intersection of Q and cluster C is a first
approximation of the selectivity of Q. If the integral is above a threshold ε, it
may be interesting to further improve the estimation. We can achieve this by
decomposing Q into 2d rectangles Qi of equal size and computing the integrals
of the intersection of C with each resulting rectangle Qi. This can be iteratively
continued until all decomposed Qi have an integral above ε. Then the selectivity
of Q w.r.t. C can be computed by the sum of the integrals of the decomposed
windows Qi having an integral above ε, multiplied by the weight of the cluster
wC . The overall selectivity of Q is then simply the sum over all C ∈ M . This
approach is illustrated in Figure 2(a). The query Q is decomposed into four
smaller windows. One of them (marked in gray) is further decomposed. The
selectivity of Q w.r.t. C is the sum of the integrals of the intersection of each
gray window with C.

We called this approach SEC (Selectivity Estimation via Clustering). The
next chapter will present an approach called SEC+ that proposes certain im-
provements over the basic version SEC.

4 SEC+: Improved Selectivity Estimation via Clustering

Unfortunately, the simple idea of decomposing the query window rises several
problems. First of all, the iterative decomposition of Q into 2d rectangles is quite
inefficient and requires high storage cost. For an accurate estimation, however,
we probably need multiple decompositions, i.e. several iterations of the decom-
position process. Secondly, representing a window query only by its center has
drawbacks, too. Especially in higher dimensional spaces, the center of Q may be
far away from any C ∈ M even if Q contains C. This is illustrated in Figure
2(b). Although query Q contains a large part of C, the center of Q is too far
away from µC and the probability P (cQ|C) is far too small. Thus, multiplication
of P (cQ|C) with the volume of Q will yield a very small value, most likely below
a reasonable threshold ε. A third problem is that the storage cost in SEC for a
single cluster is relatively high (d2 + d values per cluster). Therefore, we modify
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Fig. 3. Visualization of the model created for SEC (a) and SEC+ (b).

in SEC+ our data model, the clustering algorithm, as well as our method of
selectivity estimation.
To reduce the storage cost per cluster our idea is to store only the diagonal
elements of the covariance matrix, i.e. we store only the variance values of single
attributes but no covariances between different attributes. This means that the
Gaussian functions are oriented in an axis-parallel way rather than arbitrarily.
Note that this does not mean we assume attribute independence for the complete
data space (which would be unacceptable as discussed before). We assume only
that the points which are associated to a common cluster observe the attribute in-
dependence assumption. This is much easier to motivate than demanding global
independence for the complete data set because (1) the individual clusters con-
tain data which is locally selected and (2) we can modify the EM algorithm to
determine preferably clusters in which the assumption is fulfilled. (3) Due to
saved storage cost we can maintain considerably more individual clusters in our
model which generally allows a better adaptation to the real data distribution.
In our SEC+-model a cluster is represented by its d-dimensional mean vector
µC and a d-dimensional variance vector varC = (var1

C , ..., vard
C).

To guarantee that the EM-algorithm determines a good approximation of
the real data distribution, we adapt the probability density function P (x|C) for
the clusters in order to use diagonal matrices only:

P (x|C) =
1√

(2π)d
∏

1≤j≤d varj
C

e−
1
2

P
1≤j≤d(xj−µC,j)

2varj
C .

This additionally makes the clustering algorithm more efficient as the vari-
ance vector is easier to determine and to invert (for computing the determinant)
than a quadratic covariance matrix. Moreover, since our new model with axis-
parallel Gaussians is now reflected in the algorithm and in the accuracy measure
E(M) the EM algorithm searches for an optimal model according to the new
demands.
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Fig. 4. Illustration of selectivity estimation using SEC+.

Figure 3 shows that our new model is not constraining the accuracy we
reach for selectivity estimation. In case of strong correlations in the data set,
the algorithm simply assigns more Gaussian functions to the data set. Due to
the dramatically reduced storage cost for an individual Gaussian function, the
overall storage requirement for the complete model is still much lower. Note that
the algorithm may assign up to d times more clusters without any extra storage
cost. We will evaluate this issue experimentally in Section 5 and show that a
higher number of axis-parallel Gaussians can even represent data distributions
exhibiting non axis-parallel clusters more accurate than a lower number of non
axis-parallel Gaussians.

Due to our new model, the method of selectivity estimation given a window
query can also be improved with respect to efficiency and effectiveness in SEC+.
Still, the integrals of the intersections of the query window and the Gaussian dis-
tributions are computed. However, each multi-dimensional Gaussian distribution
C is split into all one-dimensional distributions and the selectivity is determined
using these one-dimensional distributions. This methods avoids the problems of
the first approach. We will highlight the procedure of SEC+ in the following.

Instead of measuring the selectivity of a query Q by the probability P (cQ|C)
of a cluster C ∈ M , we split the d-dimensional Gaussian distribution into d corre-
sponding one-dimensional Gaussian distributions Ci. This is visualized in Figure
4(a). The integral I(Q, C) is the product of the integrals of all one-dimensional
distributions, i.e. I(Q, C) =

∏d
i=1 I(Q, Ci). Let us note, that this requires the

assumption that the attributes are independent for the points belonging to that
cluster. However, as discussed above this is no serious constraint. Figure 4(b)
illustrates the integral of the intersection of a one-dimensional Gaussian and the



query Q for an attribute i. The query in that attribute is given by the interval
[li, ui]. The integral I(Q, Ci) measures the proportion of qualifying points, i.e.
points of D that match the query Q.

Given the d-dimensional Gaussian distribution C = (µC , varC), the d corre-
sponding one-dimensional Gaussian distributions can easily be obtained. These
one-dimensional Gaussian distributions are represented by the mean µi

C and by
the standard deviation si

C , i.e. Ci = (µi
C , si

C). The mean value µi
C is simply the

i-th component of µC . The standard deviation si
C can be computed as follows:

si
C =

√
vari

C ,

where vari
C ∈ varC is the variance of attribute i. Obviously, at this point, we do

not need the covariance matrix ΣC , but only the variances vari
C which has the

above discussed advantages. The integral I(Q, Ci) can then be computed rather
straightforward. We simply materialize the standard Gaussian distribution Φ
with µ = 0 and σ = 1 in a table. The integral can then be computed as follows:

I(Q, Ci) = |Φ(ui) − µi
C

σi
C

− Φ(li) − µi
C

σi
C

|.

The selectivity of Q w.r.t. a cluster C is then the product of all attribute-wise
integrals, i.e.

I(Q, C) =
d∏

i=1

I(Q, Ci).

The overall selectivity of a query Q is estimated as the weighted sum of
selectivities of Q w.r.t. all Ci ∈ M , formally

Sec+(Q, M) =
∑
c∈M

wC · I(Q, C).

The pseudo code of our method SEC+ is given in Figure 5. In the next
section we will show experimentally that SEC+ is superior to SEC and to other
comparative methods.

5 Experimental Evaluation

In this section, we present a broad experimental evaluation of SEC, SEC+ and
comparative methods on synthetic and real-world data sets. We used randomly
generated window queries throughout all our experiments. To judge the accuracy
of each selectivity estimation method we used two measurements to compute the
error rate of each method, the relative error rate and the absolute error rate. Let
SQ be the true selectivity and S′

Q the estimated selectivity of a query Q. Let n
be the number of tuples in the considered data set. The relative error rate Er(q)
measures the error of the estimation w.r.t. the true selectivity, formally

Er(Q) =
|SQ − S′

Q|
SQ



SEC+ (SetOfObjects D, Query Q)

Compute model M of D by EM(D);

for each cluster Ci ∈ M do

for each dimension j of D do

Compute I(Q, Cj
i )

end for

Compute I(Q, Cj) =
Qd

i=1 I(Q, Ci
j)

end for

Compute Sec+(Q,M) =
Pk

i=1 wCi · I(Q, Ci).

Fig. 5. Pseudocode of SEC+.
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Fig. 6. Results on synthetic data set with Gaussian non-axis parallel ellipsoid clusters.

The absolute error rate Ea(Q) measures the error of the estimation w.r.t. the
size of the database, formally

Ea(Q) =
|SQ − S′

Q|
n

We compared SEC+ to several competitive methods, including random sam-
pling using 1% of the database as sampling rate (indicated in the diagrams by
“Random 1%”), random sampling using 5% of the database as sampling rate
(indicated in the diagrams by “Random 5%”), one-dimensional equi-width his-
tograms using 30 intervals per dimension (indicated in the diagrams by “Equi-
Width”), one-dimensional equi-depth histograms using an interval capacity of
5% of the data set (indicated in the diagrams by “EquiDepth”), and multi-
dimensional histograms (STHoles) using 1,000 randomly generated sample queries
to establish the histogram as proposed in [16]. In [23] a method to choose the
parameter k and the intial clustering for any variant of the EM algorithm is
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Fig. 7. Results on the “Abalone” data set.

described. We used this method to determine k and the intial clustering for SEC
and SEC+.

5.1 Comparison of SEC and SEC+.

In Figure 6, we compared SEC and SEC+ with its competitors. SEC is the vari-
ant that uses covariances throughout the EM-clustering process, whereas SEC+
only uses variances. All our experiments show that SEC+ performs as good or
even better than SEC. For a comparison of SEC, SEC+ and other techniques,
we applied all methods on a data set of 10,000 5-dimensional tuples containing
several non-axis parallel Gaussian clusters. This data set was chosen because
it seems to favor SEC which uses covariances over SEC+. SEC outperforms all
competitive methods besides SEC+. However, as illustrated in Figure 6, the use
of the covariances during clustering does not achieve a gain in accuracy com-
pared to the improved SEC+ algorithm. In case of queries with lower selectivity,
SEC+ even outperforms SEC which uses covariances during clustering. Let us
note that we needed less storage for SEC+ than for SEC in our experiments
but achieved better results when using SEC+ rather than SEC. This result was
repeated in all other experiments, justifying the use of SEC+. Thus, throughout
the rest of our evaluation, we will only show the results of SEC+.

5.2 Accuracy of SEC+.

Comparison with other methods. We applied SEC+ and the comparative
methods on several real-world data sets. Due to space limitations, we focus on
two data sets. The first one is the “Abalone” benchmark data set from the UCI
Machine Learning Database Repository1. It contains approximately 4,200 ob-
jects in a 8-dimensional feature space. The second data set is a gene expression
1 http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 8. Results on the gene expression data set.
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Fig. 9. Comparison of the accuracy w.r.t. dimensionality of the data set.

data set from our project partners2 and contains approximately 1500 objects in a
5-dimensional feature space. We evaluated the error rates of SEC+ and the com-
parative methods w.r.t. the selectivity (in %) of the queries. The results on the
“Abalone” data set are depicted in Figure 7. SEC+ outperforms all other meth-
ods regarding relative and absolute error rates. Only for very selective queries
(<5%), random sampling with 5% sampling rate is slightly better. However, a
sampling rate of 5% is rather high for large databases. A similar observation
can be made from Figure 8 illustrating the results on the gene expression data
set. Again, SEC+ outperforms all other comparative methods w.r.t. both the
relative error rate and the absolute error rate, even for very selective queries.
The histogram based approaches perform slightly better than on the “Abalone”
data set, especially compared to the sampling based approaches. We guess that
this can be explained with the lower dimensionality of the gene expression data
set. Both experiments show, that SEC+ outperforms competitive approaches in
terms of accuracy especially in high dimensional spatial data.

2 Genomatix SW GmbH: http://www.genomatix.de/
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Fig. 10. Results on the synthetic data set with 20% noise.

Accuracy w.r.t. data dimensionality. We evaluated the accuracy of SEC+ and
the five comparative methods w.r.t. the dimensionality of the data set using
synthetic data of 10,000 tuples and a sample query q having a selectivity Sq =
10%. The results are visualized in Figure 9. As expected, we can observe that the
accuracy of random sampling methods are independent of the dimensionality of
the data set, whereas the accuracy of histogram-based methods detoriates with
increasing dimensionality. Let us note that StHoles is not shown in the charts
because its error rates are far above the interval shown here. It can also be seen
that the accuracy of SEC+ is independent of the data dimensionality. In a 5-
, 7- and 10-dimensional feature spaces, SEC+ performs better than all other
techniques besides 5% random sampling. But even 5% random sampling which
is already very inefficient for large data sets, is only as good as SEC+.

Influence of noisy data. Next, we tested the influence of noisy data on the
accuracy of SEC+ and the competitive methods. Since SEC+ relies on cluster-
ing, noisy data may cause problems in generating an accurate compression of
the data distribution and thus may influence the selectivity estimation. Figure
10 illustrates the error rates of SEC+ and the comparative methods w.r.t. the
selectivity of the query on a synthetic data set of 10,000 tuples of 5 dimensions
with 80% of the data belonging to clusters and 20% noise objects. As it can be
seen, SEC+ is quite robust against noisy data. For a broad range of query selec-
tivity, SEC+ outperforms its competitors w.r.t. the relative and absolute error
rates. Again, the sampling based methods are ranked second followed by one-
dimensional histograms. Equi-depth and equi-width histograms produce nearly
the same results in that experiment.

6 Conclusions

Advanced database applications rely on accurate and efficient query optimiza-
tion. One key step for query optimization is the estimation of the selectivity of



a given query. Recent approaches for selectivity estimation have problems with
medium to high dimensional data spaces and/or usually require a high sampling
rate to achieve accurate results.

In this paper, we proposed two new methods for selectivity estimation of
spatial window queries called SEC (Selectivity Estimation via Clustering) and
SEC+. Our solutions are based on modelling the data through a set of multi-
variate Gaussian functions which are computed using different variants of the
EM clustering algorithm. Two techniques to derive an accurate estimation of
the query size using the generated models are discussed in detail. A broad ex-
perimental evaluation illustrates that SEC+ outperforms existing approaches in
terms of accuracy. In particular, SEC+ is robust against the dimensionality of
the data space and can handle noisy data effectively.
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