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Abstract. The design of external index structures for one- and multidimensional
extended objects is a long and well studied subject in basic database research.
Today, more and more commercial applications rely on spatial datatypes and
require a robust and seamless integration of appropriate access methods into
reliable database servers. This paper proposes an efficient, dynamic and scalable
approach to manage one-dimensional interval sequences within off-the-shelf
object-relational database systems. The presented technique perfectly fits to the
concept of space-filling curves and, thus, generalizes to spatially extended objects
in multidimensional data spaces. Based on the Relational Interval Tree, the method
is easily embedded in modern extensible indexing frameworks and significantly
outmatches Linear Quadtrees and Relational R-trees with respect to usability,
concurrency, and performance. As demonstrated by our experimental evaluation on
an Oracle server with real GIS and CAD data, the competing methods are
outperformed by factors of up to 4.6 (Linear Quadtree) and 58.3 (Relational R-tree)
for query response time.

1  Introduction
After two decades of temporal and spatial index research, the efficient management

of one- and multidimensional extended objects has become an enabling technology for
many novel database applications. The interval, or, more generally, the sequence of in-
tervals, is a basic datatype for temporal and spatial data. Interval sequences are used to
handle finite domain constraints [Ram 97] or to represent periods on transaction or valid
time dimensions [TCG+ 93]. Typical applications of one-dimensional interval sequenc-
es include the temporal tracing of user activity for service providers: a query like “Find
all customers who were online last month between 5 and 6 pm” maps to an intersection
query of interval sequences on a database storing online periods of all registered users.
When applied to space-filling curves, interval sequences naturally represent spatially
extended objects with even intricate shapes. By expressing spatial region queries as in-
terval sequence intersections, vital operations for two-dimensional GIS and environ-
mental information systems [MP 94] can be supported. Efficient and scalable database
solutions are also required for two- and three-dimensional CAD applications to cope
with rapidly growing amounts of dynamic data and highly concurrent workflows. Such
applications include the digital mock-up of vehicles and airplanes [BKP 98], haptic sim-
ulations [MPT 99], or general engineering data management [KMPS 01].
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For commercial use, a seamless and capable integration of temporal and spatial in-
dexing into industrial-strength databases is essential. Unfortunately, most commercially
relevant database systems provide no built-in access method for temporal and spatial
datatypes [CCF+ 99], nor do they offer a generic framework to facilitate the integration
of user-defined search trees based on disk-blocks, as proposed by Hellerstein, Naughton
and Pfeffer [HNP 95]. In this paper, we therefore follow the paradigm of using relation-
al access methods [KPS 00] to integrate index support for temporal and spatial
datatypes. As access methods of this class are designed on top of the pure SQL layer,
they can be easily implemented on virtually any available relational database server.
Replicating techniques based on the Linear Quadtree [TH 81] [OM 88] [Sam 90]
[IBM 98] [Ora 99b] [RS 99] [FFS 00] decompose spatial objects into tiles which corre-
spond to constrained segments on a space-filling curve. In contrast, our new technique
supports arbitrary intervals across tile boundaries, and therefore, yields a significantly
lower redundancy. It is based on the Relational Interval Tree (RI-tree) [KPS 00], a rela-
tional adaption of the main-memory Interval Tree [Ede 80].

The remainder of the paper is organized as follows: Section 2 reviews the benefits
and limitations of available extensible indexing frameworks. Section 3 surveys the re-
lated work on relational access methods for spatial data. Section 4 describes the applica-
tion of the RI-tree to store and retrieve interval sequences. Section 5 generalizes our
technique to multidimensional applications by mapping spatially extended objects to in-
terval sequences on a space-filling curve. Following an experimental evaluation in
Section 6 on 2D-GIS and 3D-CAD databases, the paper is concluded in Section 7.

2  Extensible Indexing

Extensible indexing frameworks, as already proposed by Stonebraker [Sto 86], en-
able developers to extend the set of built-in index structures by custom access methods
in order to support user-defined datatypes and predicates. This section discusses the
main properties of extensible indexing within object-relational database systems, in-
cluding Oracle8i Server [Ora 99a] [SMS+ 00], IBM DB2 Universal Database [IBM 99]
[CCF+ 99] or Informix Universal Server [Inf 98] [BSSJ 99].

2.1  Declarative Integration

An object-relational indextype encapsulates stored functions for opening and closing
an index scan, iterating over resulting records, and performing insert, delete and replace
operations on the indexed table. It is complementary to the functional implementation of
user-defined predicates. The indextype also implements functions for the estimation of
query selectivity and processing cost. The custom computation of persistent statistics
and histograms is triggered by the usual administrative SQL statements. The query op-
timizer considers a custom index among alternative access paths and may actually
choose it for the execution plan. This approach preserves the declarative paradigm of
SQL, as it requires no manual query rewriting in order to handle user-defined predicates
efficiently. As an example, we can now write:

SELECT * FROM db WHERE intersects(db.sequence, query_sequence);
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2.2  Relational Implementation

Although available extensible indexing frameworks provide a gateway to seamlessly
integrate user-defined access methods into the standard process of query optimization,
they do not facilitate the actual implementation of the access method itself. Modifying
or enhancing the database kernel is usually not an option for database developers, as the
embedding of block-oriented access methods into concurrency control, recovery servic-
es and buffer management causes extensive implementation efforts and maintenance
cost [Kor 99], at the risk of weakening the reliability of the entire system. We therefore
focus on relational storage structures to implement the object-relational indextype for
intersections of interval sequences. By following this approach, derived index data is
stored in one or more index tables besides the original data table. An index table is or-
ganized by a built-in index structure, e.g. a B+-tree. Queries and updates on relational
storage structures are processed by pure SQL statements. The robust transaction seman-
tics of the database server is therefore fully preserved. According to the semantics of the
index tables, we have identified two generic schemes for relational storage structures:

Positional scheme. The index tables contain transformed user data rows. Each row
in the data table is directly mapped to a set of linear positions, i.e. rows in the index ta-
bles. Inversely, each row in an index table exclusively belongs to a single row in the data
table. In order to support queries, the linear positions are indexed by a built-in index, e.g.
a B+-tree. Examples for the positional scheme include the Linear Quadtree, the one-di-
mensional RI-tree and our optimization for interval sequence and multidimensional
queries (cf. Sections 4 and 5).

Navigational scheme. The index tables contain data that is recursively traversed at
query time in order to determine the resulting tuples. Therefore, a row in the index table
is logically shared by many rows in the data table. Examples for the navigational scheme
are the Relational R-tree [RRSB 99] and the Relational X-tree [BBKM 99], which map
the nodes of a hierarchical directory to a flat relational schema. To support the naviga-
tion through the directory table, a built-in index is created on artificial node identifiers.
To execute a navigational query by a single SQL statement, a recursive version of SQL
like SQL:1999 [EM 99] is required.

Although the navigational scheme offers a straightforward way to simulate any
block-based index structure on top of a relational data model, it suffers from the fact that
navigational data is locked like user data. As two-phase locking on index tables is too
restrictive, the possible level of concurrency is unnecessarily decreased. For example,
uncommitted node splits in a hierarchical directory may lock entire subtrees against con-
current updates. Built-in indexes solve this problem by committing structural modifica-
tions separately from content changes [KB 95]. This approach is not feasible on the SQL
layer without braking up the user transaction. A similar overhead exists with logging.

These drawbacks are not shared by the positional scheme, as any row in the index
tables exclusively belongs to one single data object. Therefore, relational storage struc-
tures following the positional scheme raise no overhead in combination with locking
and logging. They do not only preserve the semantics of concurrent transactions and re-
covery services, but also inherit the high concurrency and efficient recovery of built-in
access methods. We therefore follow the positional approach in this paper.
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3  Related Work

A wide variety of access methods for one- and multidimensional extended objects
has been published so far. Following the scope of this paper, we will focus our review on
relational access methods and refer the reader to the surveys of Manolopoulos, Theodo-
ridis and Tsotras [MTT 00] or Gaede and Günther [GG 98]. As an extensive comparison
of index structures for one-dimensional intervals has been done by Kriegel, Pötke and
Seidl [KPS 00], this section concentrates on multidimensional access methods for ob-
jects with a spatial (or temporal) extension. We classify these techniques with respect to
inherent data replication, i.e. the need to produce redundancy for spatial objects and
their identifiers.

3.1  Non-Replicating Spatial Access Methods

Non-replicating access methods use simple spatial primitives such as rectilinear hy-
perrectangles for one-value approximations of extended objects. The following relation-
al techniques implement the positional scheme: The hB-tree of Lomet and Salzberg
[LS 89] transforms spatially extended objects to points in a higher dimensional space
and, thus, avoids the need to split data objects due to space partitioning. The relational
DOT index of Faloutsos and Rong [FR 91] organizes this higher-dimensional space in a
B+-tree by means of a space-filling curve. Unfortunately, query regions in the higher di-
mensional space are much more complex than in the original space. Furthermore, the
transformation to points produces a highly nonuniform distribution even for originally
uniform data [GG 98]. The XZ-Ordering of Böhm, Klump and Kriegel [BKK 99] is a
space-filling curve specialized for extended objects. By encoding overlapping regions
in the original data space, tight approximate representations of bounding boxes are
mapped to a single region code and stored in a B+-tree. The 2dMAP21 method of Nasci-
mento and Dunham [ND 97] indexes the one-dimensional projections of two-dimen-
sional rectangles by separate B+-trees. Apart from the known drawbacks of this inverted
list approach, only inclusion queries are supported efficiently by the proposed one-di-
mensional query processor.

R-trees as presented by Guttman [Gut 84], Beckmann et al. [BKSS 90], or Kamel and
Faloutsos [KF 94] partition the original data space into overlapping regions. Thereby
the spatial distribution and clustering of the data may be preserved. However, in the ab-
sence of a block-based interface to the database kernel, the pages of a hierarchical index
structure have to be simulated on top of a relational model by following the navigational
scheme. This approach has been adopted for the Relational X-tree of Berchtold et al.
[BBKM 99] and the Relational R-tree of Ravi Kanth et al. [RRSB 99]. As a major draw-
back, concurrent updates are not supported well (cf. Section 2.2).

In many applications, GIS or CAD objects feature a very complex and fine-grained
geometry. The rectilinear bounding box of the brake line of a car, for example, would
cover the whole bottom of the indexed data space. A non-replicating storage of such data
causes region queries to produce too many false hits that have to be eliminated by sub-
sequent filter steps. For such applications, the accuracy can be improved by decompos-
ing spatial objects independently from the index partitions, or, alternatively, by using a
replicating index structure, which is inherently tuned for redundancy.
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3.2  Replicating Spatial Access Methods

Replicating access methods partition the data space into mutually disjoint bucket re-
gions. Thereby, spatially extended objects spanning more than one bucket region are de-
composed. Typical index structures of this kind are the R+-tree of Sellis, Roussopoulos
and Faloutsos [SRF 87] or the Cell Tree of Günther [Gün 89]. Their corresponding nav-
igational mapping, again, is not suited for a high level of concurrency.

Tile-based techniques map spatial partitions on a regular grid to one-dimensional re-
gion codes indexed by built-in B+-trees. They can be classified as positional. The gen-
eral concept of managing spatial objects by linear region codes has already been pro-
posed by Tropf and Herzog [TH 81] and has been termed Linear Quadtree by Samet
[Sam 90]. In the following, a cell denotes an element of a regular cubic grid. A cell cor-
responds to a pixel in 2D or to a voxel in 3D spaces. The number of cells along each di-
mension is called the resolution of the grid. A tile is a set of cells that is generated by
recursive binary partitioning of the grid, e.g. according to the Z-order. A tile can be rep-
resented by two integers (value and level). A highly tuned sort-merge join algorithm for
processing queries on tiled objects has been proposed by Orenstein and Manola
[OM 88].

To eliminate the need of intrusive modifications to the query processor, Freytag,
Flasza, and Stillger [FFS 00] have presented an adaption to object-relational database
systems. The relational Linear Quadtree of the Oracle Spatial Cartridge [Ora 99b]
[RS 99] and the IBM DB2/ESRI Spatial Extender [IBM 98] further refines this concept
of tile-based indexing: spatial objects are decomposed at a user-defined fixed quadtree
level (fixlev), and the resulting ordered Z-tiles are indexed by a built-in B+-tree. Each
resulting fixed-sized tile contains a set of variable-sized tiles as a fine-grained represen-
tation of the covered geometry. Multidimensional query regions are also decomposed
according to the fixed level. The technique then combines an equijoin on the fixed-sized
tiles in the index with a sequential scan over the corresponding variable-sized tiles. Note
that due to possible fruitless scans below the indexed fixed level, this popular variant of
the Linear Quadtree does not guarantee blocked output. Finding an adequate fixed level
for the expected data distribution is crucial. With fixlev set too high, too much redundan-
cy and effort for duplicate elimination emerges due to small fixed-sized tiles, whereas a
low fixlev causes too much approximation error and possible overhead for scanning
many variable-sized tiles. Therefore, the setting has to be carefully tuned to achieve op-
timal cost for query processing and update operations [Ora 99b]. By introducing two ad-
ditional fixed-sized tiling levels [IBM 98], huge objects are indexed at a lower accuracy
and tiny objects at a higher accuracy.

If we employ space-filling curves, spatial objects are naturally represented by inter-
val sequences [Jag 90] [Gae 95] [MJFS 96] [FJM 97]. The replicating Linear Quadtree
technique can be regarded as a Segment Tree [PS 93] managing the resulting one-di-
mensional intervals: each interval is decomposed into segments, where each segment
corresponds to a multidimensional tile. Therefore, the original redundancy of a spatial
interval sequence is destroyed. In this paper, we preserve this redundancy by replacing
the segment-based storage of the Linear Quadtree by the interval-based storage of the
Relational Interval Tree.
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4  Management of Interval Sequences

The RI-tree of Kriegel, Pötke and Seidl [KPS 00] is an application of extensible in-
dexing for interval data. Based on relational storage, single intervals are stored, updated
and queried with an optimal complexity. After discussing a naive algorithm that simply
considers an interval sequence as a set of independent entities, we present an optimized
version that exploits the connection between the elements of an interval sequence.

4.1  The Relational Interval Tree1

The RI-tree strictly follows the paradigm of relational access methods since its im-
plementation is restricted to (procedural) SQL and does not assume any lower level in-
terfaces. In particular, the built-in index structures of a DBMS are used as they are, and
no intrusive augmentations or modifications of the database kernel are required.

The conceptual structure of the RI-tree is based on a virtual binary tree of height h
which acts as a backbone over the range [0…2h–1] of potential interval bounds. Travers-
als are performed purely arithmetically by starting at the root value 2h and proceeding in
positive or negative steps of decreasing length 2h–i, thus reaching any desired value of
the data space in O(h) time. This backbone structure is not materialized, and only the
root value 2h is stored persistently in a meta data tuple. For the relational storage of in-
tervals, the nodes of the tree are used as artificial key values: Each interval is assigned a
fork node, i.e. the first intersected node when descending the tree from the root node
down to the interval location.

An instance of the RI-tree consists of two relational indexes which in an extensible
indexing environment are at best managed as index-organized tables. These indexes
then obey the relational schema lowerIndex (node, lower, id) and upperIndex (node, up-
per, id) and store the artificial fork node value node, the bounds lower and upper, and the
id of each interval. The RI-tree therefore implements the positional scheme of relational
access methods and, thus, fully preserves the effectivity of the underlying concurrency
control. As any interval is represented by exactly one entry for each the lower and the
upper bound, O(n/b) disk blocks of size b suffice to store n intervals. For inserting or
deleting intervals, the node values are determined arithmetically, and updating the in-
dexes requires O(logb n) I/O operations per interval. We store an interval sequence by
simply labelling each associated interval with the sequence identifier. Figure 1 illus-
trates the RI-Tree by an example. 

4.2  Interval Query Processing

To minimize barrier crossings between the procedural runtime environment and the
declarative SQL layer, an interval intersection query (lower, upper) is processed in two
steps. In the procedural query preparation step, range queries are collected in two tran-
sient tables, leftNodes and rightNodes, which are obtained by a purely arithmetic tra-
versal of the virtual backbone from the root node down to lower and to upper, respec-
tively. The visited nodes fall into three classes: Nodes left of lower are collected in

1 Patent pending
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leftNodes since they may contain intervals who overlap lower. Analogously, nodes right
of upper are collected in rightNodes since their intervals may contain upper. The inter-
vals registered at nodes between lower and upper are guaranteed to overlap the query
and, therefore, will be reported without any further comparison by a so-called inner que-
ry. The query preparation procedure is purely main memory-based and, thus, yields no
I/O operations.

In the second step, the declarative query processing, the transient tables are joined
with the relational indexes upperIndex and lowerIndex by a single, three-fold SQL state-
ment (Figure 2). The upper bound of each interval registered at nodes in leftNodes is
checked against lower, and the lower bounds of intervals from rightNodes are checked
against upper. We call the corresponding queries left queries and right queries, respec-
tively. The inner query corresponds to a simple range scan over the nodes in (lower, up-
per). The SQL query yields O(h · logb n + r/b) I/Os to report r results from an RI-tree of
height h. The height h of the backbone tree depends on the expansion and resolution of
the data space, but is independent of the number n of intervals. Furthermore, output from
the relational indexes is fully blocked for each join partner. 

The naive way to process interval sequence intersections on an RI-tree is to perform
independent queries for each of the intervals. As an example, let us consider the interval

SELECT id FROM upperIndex i, :leftNodes left
WHERE i.node = left.node AND i.upper >= :lower // left queries

UNION ALL
SELECT id FROM lowerIndex i, :rightNodes right

WHERE i.node = right.node AND i.lower <= :upper // right queries
UNION ALL
SELECT id FROM lowerIndex i  /* or upperIndex i */

WHERE i.node BETWEEN :lower AND :upper; // inner queries

Figure 2. SQL statement for a single query interval with bind
variables leftNodes, rightNodes, lower, upper.

John
Mary
Bob
Ann

31J26J

2M 13M

4J

10B 23J

21B

29M19M

lowerIndex (node, lower, id):

upperIndex (node, upper, id):

8, 2, Mary 12, 10, Ann 16, 4, John 16, 10, Bob 24, 19, Mary

8, 13, Mary 12, 15, Ann 16, 21, Bob 16, 23, John 24, 29, Mary

Figure 1. a) Four sample interval sequences. b) The virtual backbone positions the intervals. 
c) Resulting relational indexes.

30A21A15A10A

24, 30, Ann

24, 21, Ann 28, 26, John

28, 31, John

root = 16

248

4 12 20 28

2 6 10 14 18 22 26 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

a)

b)

c)
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sequence 〈(43, 52), (55, 85), (87, 91)〉. Figure 3 illustrates the resulting 24 queries for the
query intervals. The traversed paths of the target RI-tree of height 8 are depicted, and the
numbers denote the node values, e.g. 128 for the root of the virtual backbone. In the ex-
ample, the 7 gray queries are generated for the first interval (43, 52), the 9 white queries
for (55, 85), and the 8 black queries for (87, 91). From the total of 24 queries, 11 are left
queries, 10 are right queries, and 3 are inner queries. 

4.3  Gap Optimization for Interval Sequences

The naive approach disregards the important fact that the intervals of an interval se-
quence represent the same object. As a major disadvantage, many overlapping queries
are generated. This redundancy causes an unnecessary high main memory footprint for
the transient query tables, an overhead of query time, and lots of duplicates in the result
set which have to be eliminated. Our basic idea is to avoid the generation of redundant
queries, rather than to discard the respective queries after their generation. A related
concept is known as streaming in the context of data space decomposition for decom-
posable searching problems [EO 85].

In the example, the root node (128) is queried by three right queries. An interval reg-
istered at the root node is reported three times if its lower bound is less or equal to 52,
and twice if its lower bound is greater than 52 but not greater than 85. The right query of
the rightmost (black) interval suffices to report all resulting intervals from node 128, and
discarding the gray and the white query prevents the generation of duplicates without
yielding false dismissals. Node 64 is also queried three times, i.e. by a gray right query,
a black left query, and a white inner query. A registered interval is reported at least once
– due to the inner query – and up to three times if its lower bound is less or equal to 52
and its upper bound is greater or equal to 87. Here, the white inner query suffices to pro-
duce the complete result at node 64, and the left and right queries yield only duplicates.
Analogously, the nodes 32, 48, 52, 56, 80, 84, 88, and 96 are queried twice and may pro-
duce duplicates.

A particular case occurs at node 86 to which a white right query and a black left query
are assigned. Though resulting intervals may be reported twice, both queries are neces-
sary for a complete result. If discarding the white right query, an interval with a lower

8555 91875243

Figure 3. The 24 naive queries for an interval sequence.

64

96
32

8048

40

44

42

43

56

52

54

88

9284
86

85 87

90

9155

128

left queries

right queries

inner queries
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bound less or equal to 85 and an upper bound less than 87 is missing in the output. Anal-
ogously, an interval with a lower bound greater than 85 and an upper bound greater or
equal to 87 is a false dismissal if the black left query is omitted.

We now present the fundamental rule for optimizing the queries for a sorted interval
sequence q = 〈q1, …, qn〉, qi = (loweri, upperi). For the inexistent intervals q0 and qn+1,
we assume the bounds upper0 = –∞ and lowern+1 = ∞.

Theorem. For a sorted query interval sequence q = 〈q1, …, qn〉 with intervals qi =
(loweri, upperi), the result of an intersection query is complete if for each qi, query
generation is restricted to nodes n with upperi–1< n < loweri+1 where upper0 = –∞
and lowern+1 = ∞.

Proof. For any interval qi of an interval sequence q, the following queries are redundant to
queries for the neighboring intervals qi–1 or qi+1 and, thus, may be discarded without affecting
the completeness:

(i) Left queries at nodes n ≤ upperi–1 (n lies to the left of the gap between qi–1 and qi)

(ii) Right queries at nodes n ≥ loweri+1 (n lies to the right of the gap between qi and qi+1)

We now show these propositions in detail.

(i) A left query for qi at a node n retrieves the intervals r registered at n for which
r.upper ≥ loweri. Let us now focus to the interval qi–1 immediately to the left of qi. If n lies
within qi–1, i.e. loweri–1 ≤ n ≤ upperi–1, the inner query for qi–1 reports all intervals from n and,
thus, even all results for qi at n independent of their individual bounds. If n lies even to the left
of qi–1, i.e. n < loweri–1, a left query for qi–1 is generated at n since n belongs to the path from
the root to loweri–1 as well as to the path to loweri. This left query reports intervals r with
r.upper ≥ loweri–1 from n and, as a subset, contains the results r for qi at n fulfilling
r.upper ≥ loweri. Summarizing, the results of left queries for qi at nodes n ≤ upperi–1 are al-
ready reported by queries for the preceding interval qi–1.

(ii) Analogously, the results of right queries for qi at nodes n ≥ loweri+1 are reported by inner
queries or right queries for the subsequent interval qi+1. q.e.d.

4.4  Integrating Inner Queries

The proposed optimization in [KPS 00] which integrates the inner queries into the set
of left queries is a purely syntactic rewriting that does not affect the number of queries.
Contrary to rewriting, the exploitation of the following observation typically avoids the
generation of 75% of the inner queries.

As an example, consider the interval (43, 52) in Figure 3 which yields the inner query
‘node BETWEEN 43 AND 52’ or, rewritten, ‘node BETWEEN 43 AND 52 AND
upper≥ 43’. The left query at node 42 translates to ‘node = 42 AND upper ≥ 43’ or, re-
written, ‘node BETWEEN 42 AND 42 AND upper ≥ 43’. The left query range (42, 42)
is immediately adjacent to the inner query range (43, 52). Thus, merging both queries to
the single range query ‘node BETWEEN 42 and 53 AND upper ≥ 43’ saves one
(cached) B+-tree lookup without producing any redundancy. 

Figure 4 illustrates the frequent applicability of the inner query optimization. For an
odd interval bound, the outer adjacent node is even and, thus, is reached earlier when
descending the tree (cases a, b, c). The inner query may be merged with the closest left
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query (cases a, b) or right query (cases b, c). If both interval bounds are odd (43 and 59
in case b), the algorithm arbitrarily chooses the adjacent left node (42) or right node (60).
Only if both interval bounds are even (case d), the inner query cannot be merged with an
adjacent query. The descending algorithm stops at even interval bounds which reside
higher in the tree than odd nodes which are located at the leaf level. Therefore, no left or
right query is immediately adjacent and, though still syntactically rewritable, the inner
query cannot be merged with a neighboring query. For uniformly distributed interval
bounds, this situation applies to 25% of all cases. The optimization is thus highly effec-
tive.

4.5  Final Optimized Algorithm

The presented optimizations are orthogonal and may be integrated into the naive al-
gorithm independent from each other. When descending from the root to the interval
bounds, single queries beyond the adjacent gaps are suppressed, and inner queries may
be combined with adjacent left or right queries. The resulting left and right queries are
collected in two transient tables, leftNodes (from, to, lower) and rightNodes (from, to,
upper), indicating the single nodes (if from = to) or the range of nodes (if from < to) to
be scanned, and the lower or upper bound of the individual query intervals. Query pro-
cessing itself is performed by a single two-fold SQL statement that merges the join of
the transient leftNodes and the persistent upperIndex with the join of the transient
rightNodes and the persistent lowerIndex (Figure 5). 

Figure 6 illustrates the effect of the optimization to our prior example. Having origi-
nally generated 24 queries, now only 9 queries are produced: Three gray left queries to
the left of the first interval (left boundary queries), a single white left query in the first
gap, one white right query and one black left query in the second gap, and three black
right queries to the right of the last interval (right boundary queries). All inner queries
have been integrated into adjacent left queries as indicated by dots (…).

5243

Figure 4. Top row: The four cases of interval bounds, a) odd–even, b) odd–odd, 
c) even–odd, d) even–even. Bottom row: Integration of the inner queries into 

left (a’, b’ ) or right (c’) queries, indicated by ‘…’. For d’ , no integration is possible.

42

43

5243

42

…

54 59

60

59

54 59

60

…

54

54

5943

42

43

5943

42

…

52

52 60

59

60

a) b) c) d)

54 60

6054

54 60

6054

a’) b’) c’) d’)
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5  Spatially Extended Objects
This section addresses the management of multidimensional extended objects by in-

terval sequences in the Relational Interval Tree. Spatial region queries are transformed
to interval sequence intersection queries.

5.1  Mapping Extended Objects to Interval Sequences

Encoding extended objects by means of space-filling curves is a common approach
for many applications. First, an appropriate grid resolution is defined that determines the
finest possible granularity for the approximation of spatial objects. Each cell of the grid
is then encoded by a single integer number and, thus, an extended object is represented
by a set of integers. Typically, cells in close spatial proximity are encoded by similar in-
tegers or, conversely, contiguous integers encode cells in close spatial neighborhood.
Many space-filling curves have been evaluated with respect to their spatial clustering
properties. Examples include the lexicographic-, Z- or Hilbert-order, with the Hilbert-
order generating the least intervals per object [Jag 90] [FR 89] but being also the most
complex linear ordering. As a good trade-off between redundancy and complexity, we
use the Z-order throughout the following examples.

Since the numbers representing an extended object form some continuous ranges, we
immediately obtain interval sequences from this encoding. Managing the resulting in-
terval sequences by a dedicated interval storage structure now exploits the spatial clus-
tering properties of space-filling curves in a very explicit and immediate way. Aside its

Figure 5. SQL statement for interval sequence queries.

SELECT id FROM intervals i, :leftNodes left
WHERE i.node BETWEEN left.from AND left.to

AND i.upper >= left.lower  // using upperIndex
UNION
SELECT id FROM intervals i, :rightNodes right

WHERE i.node BETWEEN right.from AND right.to
AND i.lower <= right.upper  // using lowerIndex

Figure 6. The 9 reduced queries for the interval sequence from Figure 3.
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advantages for relationally storing intervals as described above, the RI-tree qualifies
very well for interval sequences on space-filling curves. First, the extension of the data
space is known in advance and does not dynamically expand while inserting new inter-
vals. Thus, the root value is constant, and the height of the tree does not depend on the
number of managed objects. Moreover, the interval bounds are integer values and, there-
fore, perfectly fit to the basic variant of the RI-tree.

5.2  Controlling Accuracy and Redundancy

A basic parameter for the mapping of extended objects to interval sequences is the
granularity, i.e. the resolution of the underlying grid. When refining the resolution, the
approximations become more accurate, but redundancy increases. Figure 7a illustrates
the granularity-bound decomposition into variable-sized Z-tiles (top row) and into Z-or-
dered interval sequences (bottom row). The approximation error is the ratio of the dead
space to the object area. According to the extensive analysis given in [MJFS 96] and
[FJM 97], the asymptotic redundancy of a tile- or interval-based decomposition is in
both cases proportional to the surface of the approximated object. Nevertheless, as inter-
vals on a Z- or Hilbert-curve may span many tiles, their average number is significantly
lower than the average number of tiles. 

On top of the resolution of the data space and the clustering properties of the space-
filling curve, a more fine-grained control of the trade-off between redundancy and accu-
racy is desired for many applications. First, the granularity may have to be adjustable for
each individual object rather than to generally apply to all stored objects. Second, the
resolution is fixed at database creation time whereas an object may have to be approxi-
mated differently at insertion time and at query time. An approach to control this trade-
off is the concept of size-bound and error-bound approximation [Ore 89] beyond the
mentioned granularity-bound approximation [Gae 95]. A recursive subdivision proce-
dure stops if the desired redundancy (size-bound) or the desired maximum approxima-
tion error (error-bound) is reached. Figure 7b illustrates the size-bound approximation

17 intervals

Figure 7. a) Granularity-bound, b) size-bound, and c) error-bound decomposition into 
Z-tiles (top row) and Z-ordered interval sequences (bottom row).

60 tiles

41 intervals

+14% error

+14% error
20 intervals
+26% error

20 tiles
+61% error

+30% error

+30% error
30 tiles

a) b) c)
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of a polygon into variable-sized tiles (top row) and into Z-ordered interval sequences
(bottom row). Examples for an error-bound approximation are depicted in Figure 7c.
These examples already illustrate the superiority of unconstrained interval sequences
over Quadtree tiling: interval sequences yield about half the approximation error for the
size-bound approach (cf. Figure 7b) and half the redundancy for the error-bound ap-
proach (cf. Figure 7c). The redundancy of the tiling approach may further increase, if
one or more fixed-sized tiling levels are introduced (cf. Section 3.2).

We adapt the algorithms of [Ore 89] by integrating the management of generated in-
tervals into the recursive spatial decomposition. The algorithm returns the sorted inter-
val sequence for a given d-dimensional spatial object (Figure 8). Starting with a single
interval encoding the entire data space, non-empty tiles are subdivided recursively fol-
lowing the chosen space-filling curve. Three cases may occur: first, if an interval starts
or ends with an empty tile, the range of numbers encoding the empty tile is removed
from the interval. The approximation error is thus decreased without affecting redun-
dancy. Second, if a tile is empty but does not contain an interval bound, the interval is
split into two by removing the range of numbers encoding the empty tile. Whereas the
approximation error again is decreased, redundancy is increased by one in this case.
Third, if none of the tiles is empty, the encoding interval is neither shrunk nor split. De-
pending on the desired approximation type, the recursion is terminated by a size-bound
or an error-bound criterion. 

An alternative approach proceeds bottom-up and iteratively closes the smallest gaps
between the intervals. For a size-bound approximation, this algorithm stops if the max-
imal redundancy has been reached. For the error-bound case, the approximation error is
controlled by a minimum gap length (mingap) for the resulting interval sequence, and
the redundancy is minimized.

fun decompose (object, bound) → sequence of intervals;
begin

Sequence result = 〈 [0..2h–1] 〉;
PriorityQueue tiles = 〈(∞, entire_space)〉;
while bound exceeded   // size bound or error bound 

  and not tiles.empty() do   // granularity bound 
tile = tiles.dequeueGreatest ();
if tile ∩ object is empty then

remove the cell codes of tile from result;
elsif | tile | > 1 then

split tile into {tile1, …, tilen};
for i = 1..n do tiles.enqueue(|tilei – object|, tilei);

end if;
end do;
return result;

end decompose;

Figure 8. Recursive decomposition of a spatial object into an interval sequence.



14

6  Empirical Evaluation
6.1  Experimental Setup

To evaluate the performance of our approach, we have implemented the naive and
optimized intersection queries of Section 4 on top of an RI-tree for the Oracle Server Re-
lease 8.1.7. We have used PL/SQL for the computation of the transient query tables
leftNodes and rightNodes and executed the single SQL statement of Figure 5 for the ac-
tual interval sequence query. All experiments have been performed on an Athlon/750
machine with IDE hard drives. The database block cache was set to 50 disk blocks with
a block size of 8 KB and was used exclusively by one active session. In our experiments,
we have examined two-dimensional GIS polygon data (2D-GIS) from the
SEQUOIA 2000 benchmark [SFGM 93]. In addition, we used different datasets of vox-
elized three-dimensional CAD parts supplied by two European car manufacturers. As
the results for these two CAD databases were comparable, only the evaluation on one
car project is reported here (3D-CAD). In the next subsections, we evaluate storage and
performance characteristics for the 2D-GIS and 3D-CAD databases by comparing the
following three relational access methods:

RI-tree (naive and optimized). We used the proposed mapping of Section 5 to trans-
form the spatial objects to interval sequences on different space-filling curves. Unless
otherwise noted, all experiments are based on the Z-order. We have set the granularity to
30 bits (2D-GIS) and 27 bits (3D-CAD), i.e. a grid resolution of 215 cells per dimension
in 2D and 29 cells per dimension in 3D. The grid resolution has been chosen to match the
finest possible granularity that users should be able to materialize in the spatial index.
An error bound for the decomposition of spatial objects was defined by closing all gaps
in an interval sequence that are smaller than mingap.

Linear Quadtree. We took the variant that is used in many commercial spatial data
engines [Ora 99b] [RS 99] [IBM 98]. We implemented a two- and a three-dimensional
version with one fixed level, parameterized by fixlev. As described in Section 3.2, find-
ing a good setting for fixlev is crucial for the performance and redundancy of the Linear
Quadtree. As all spatial objects are decomposed to the fixed-sized tiles, the fixlev has to
be tuned for the desired approximation error. By design, the Linear Quadtree only sup-
ports a static fixed-level optimization. Thus, the performance and redundancy might de-
generate due to changing data distributions. Below the fixed level, variable-sized tiles
refine the approximation as long as the resulting redundancy does not deteriorate. The
granularity bound for variable-sized tiles was set to 232 cells per dimension in 2D and to
29 cells per dimension in 3D.

Relational R-tree. By following the navigational scheme of relational access meth-
ods, a relational implementation of the well-known R-tree structure can be easily
achieved. For the following empirical evaluation, we have transformed the hierarchical
block-based R-tree directory to a relational scheme (cf. Section 3.1). This approach has
already been adopted for commercial products [RRSB 99]. In order to adjust the approx-
imation error in the R-tree to the RI-tree and Linear Quadtree, the complex geometries
of the 2D-GIS and 3D-CAD databases have been decomposed by using standard algo-
rithms [KHS 91] [SK 93] [BKP 98]. The resulting sets of rectilinear boxes have been
bulk-loaded with the popular VAMSplit approach [WJ 96] [RRSB 99].
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6.2  Redundancy, Accuracy, and Storage

In the first set of experiments, we evaluated the approximation error, redundancy, and
storage occupancy for the competing techniques. The approximation error is defined by
the average ratio of dead space to the polygon area. Redundancy for the RI-tree is mea-
sured by the average number of intervals per polygon, i.e. the cardinality of the corre-
sponding interval sequence. The approximation error was controlled by the mingap pa-
rameter. For the Linear Quadtree, redundancy is equal to the average number of
variable-sized tiles. We determined an optimal fixlev of 10, 11, 12, and 13 for different
approximation errors. Figure 9 depicts the resulting redundancy for the replicating tech-
niques, where each sampling point is labelled with the chosen setting of mingap and fix-
lev, respectively.

To achieve a redundancy of 10, the Linear Quadtree requires 3.6 times more approx-
imation error than the RI-tree, because it is restricted to tiles and generates redundancy
to populate the fixed level rather than to improve the overall approximation. Inversely,
at an average approximation error of 33%, the Linear Quadtree generates an 8 times
higher redundancy than the RI-tree. At an approximation error of 64%, the RI-tree and
the Linear Quadtree occupy about 24 MB and 51 MB of index space, respectively. The
average redundancy for the corresponding interval sequences is about five times higher
than for the box sets indexed by the R-tree. Nevertheless, the total storage occupancy of
the R-tree (17 MB) is comparable to the RI-tree. This is due to the higher storage com-
plexity of multidimensional boxes compared to one-dimensional intervals and the stor-
age overhead for the relational R-tree directory. For the following query experiments,
the databases have been indexed with an average approximation error of 64% (2D-GIS)
and 0% (3D-CAD). 

6.3  Query Processing

This subsection compares the query performance of the techniques by averaging the
results of 200 region queries. The region queries consist of window/polygon queries
(2D) and box/collision queries (3D) following a distribution which is compatible to the
respective spatial database. To reduce the overhead of barrier crossings and value pass-
ing between the procedural runtime environment (PL/SQL, in our case) and the declar-
ative SQL layer, both the Linear Quadtree and the RI-tree precompute the transient que-

Figure 9. Redundancy vs. accuracy for the Linear Quadtree and the RI-tree.
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ry tables and bind them at once to the SQL statement. Thus, the total number of rows in
the query tables should be minimized in order to keep a low memory profile of concur-
rent sessions. Figure 10 presents the average number of one-dimensional range queries
generated for a region query. For the RI-tree, we distinguish three types of join partners
in the leftNodes and rightNodes tables: Boundary queries are left or right queries as-
signed to nodes outside the span of the interval sequence. Gap queries stem from nodes
within the gaps, and inner queries from nodes within the actual intervals. The naive RI-
tree query preparation generates 7.7 times more range queries than our optimized ap-
proach. The Linear Quadtree still requires 5.2 times more transient join partners, as que-
ry regions are decomposed to tiles rather than to unrestricted interval sequences. There-
fore, the optimized RI-tree scales well in a multi-user environment, as it drastically
reduces the main memory footprint per session. Furthermore, redundant queries are
avoided, and, thus, the cost for duplicate elimination on the result set are minimized.  

Figure 11a compares the average physical disk block accesses for region queries on
the 2D-GIS database. Both the naive and optimized RI-tree queries clearly outperform
the Linear Quadtree by a factor of up to 15. Opposed to the RI-tree, the Linear Quadtree
suffers from its non-blocked output (cf. Section 4.2). Moreover, the join partners in the
transient query tables of the naive RI-tree are redundant to a large extent, whereas the
queries for the Linear Quadtree are not (cf. Figure 10). Therefore, the LRU database

Figure 10. Average number of transient join partners for region queries.
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cache eliminates the difference between the naive and the optimized RI-tree, whereas
much more B+-tree lookups remain to be processed for the Linear Quadtree. The Rela-
tional R-tree requires up to 7.4 times more disk accesses than the RI-tree.

Figure 11b clearly reveals the effect of our query optimization over the naive RI-tree.
The speed-up in the response time of the optimized RI-tree to the Linear Quadtree rang-
es from 2.9 to 3.6. On the whole, the speed-up of our technique to the Linear Quadtree
is achieved by physical I/O optimization, whereas the speed-up to the naive RI-tree
stems from logical I/O and CPU cost reduction. The speed-up from 2.0 to 4.0 of the RI-
tree to the Relational R-tree is also caused by much lower physical I/O cost. Figure 12
presents the results for region queries on the 3D-CAD database. The optimized RI-tree
outperforms the Linear Quadtree by a factor of up to 4.6, and the Relational R-tree by a
factor of up to 2.7.

The next experiment in Figure 13 shows the scale-up of the competing approaches
for two-dimensional databases growing from 57,500 to 1.55 million polygons. The larg-
er databases have been created by replicating polygon data outside of the regions
touched by the sample queries. The queries therefore retrieve a constant number of 320
results on the average. As the height of the underlying B+-trees remains constant, the
average speed-up factor of 2.8 of the optimized RI-tree over the Linear Quadtree and of
2.9 over the naive RI-tree are almost unaffected. In contrast, the spatial partitioning of
the Relational R-tree deteriorates significantly with increasing database size, mainly
due to highly overlapping data objects. In consequence, the average speed-up from the
RI-tree to the Relational R-tree increases from 1.6 to 58.3. Note that the Relational R-
tree has been created by a bulk-load operation, whereas our RI-tree is fully dynamic.
Moreover, the Relational R-tree suffers from its navigational implementation (cf.
Subsection 2.2), and, thus, does not support concurrent updates of directory entries.

6.4  Impact of Space-Filling Curves

The number of intervals generated by various space-filling curves has already been
thoroughly studied [Jag 90] [Gae 95] [MJFS 96] [FJM 97]. Extensive evaluations iden-
tified the Hilbert curve as one of the best mappings. Unfortunately, existing index struc-
tures as the Linear Quadtree replicate intervals on tile bounds and therefore destroy the

Figure 12. Average response time for region 
queries on 3D data.

Figure 13. Scale-up of the average response 
time for region queries on 2D data.
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original redundancy of the resulting interval sequences (cf. Figure 9). According to a
performance study on Linear Quadtrees, the Hilbert curve or other fractal space-filling
curves do not yield a substantial performance improvement over the Z-order [BKK 99]. 

One of the most important features of our RI-tree application is the ability to handle
arbitrary interval sequences at their original redundancy. We therefore conclude this ex-
perimental evaluation with a comparison of different space-filling curves for the opti-
mized RI-tree. Figure 14 compares the redundancy of interval sequences for different
approximation errors. As expected, the Hilbert-order generates the smallest sequences,
whereas the lexicographic order is hardly adjustable to desired approximation errors.
According to Figure 15, the achieved clustering for database and query objects largely
affects the corresponding response times. The polygons have been indexed with an ap-
proximation error of 6.8% (mingap 1). Although at this accuracy, the lexicographic or-
der generated a lower redundancy than the Z-order, its poor clustering deteriorates the
query performance. The Hilbert-order does not only deliver the least redundancy, but
also the best clustering.

7  Conclusions

In this paper, we presented a relational access method for one-dimensional interval
sequences based on the Relational Interval Tree. We introduced algorithms for mapping
multidimensional extended objects to interval sequences and thereby extended its appli-
cability to spatial region queries on multidimensional databases. In contrast to existing
tile-based access methods, our proposal manages arbitrary interval sequences at a mini-
mal redundancy. Our experimental evaluation on two- and three-dimensional data dem-
onstrates that our technique significantly outperforms the Linear Quadtree and the Re-
lational R-tree. Due to a much lower memory footprint, it also scales better for a multi-
user environment. The optimized RI-tree is easily integrated into commercial database
systems by using an extensible indexing framework. By encapsulating our method into
an object-relational indextype for interval sequence objects or spatial entities, the de-
clarative paradigm of SQL is fully preserved.

Figure 14. Redundancy vs. accuracy on the 
RI-tree for different space-filling curves.

Figure 15. Average response time for different 
space-filling curves (optimized RI-Tree).
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Another contribution of this work is the classification of relational access methods
into positional and navigational approaches. As the RI-tree follows the positional
scheme, high concurrency and efficient logging are naturally achieved when managing
interval sequences. This is not the case for navigational techniques, including the Rela-
tional R-tree. Therefore, interval sequences on the RI-tree provide an efficient, dynamic,
scalable and yet simple solution to temporal and spatial indexing in off-the-shelf object-
relational databases.

In our future work, we plan to investigate other query types such as object ranking for
nearest neighbor search or spatial join algorithms. Another interesting extension is the
support of the 9-intersection model [ES 93] for topological predicates. In order to sup-
port cost-based optimization, we are working on selectivity estimation and cost models
for interval sequence intersections and their spatial interpretation.
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