
1

Object-Relational Indexing for
General Interval Relationships

Hans-Peter Kriegel, Marco Pötke, Thomas Seidl
University of Munich, Institute for Computer Science

Oettingenstr. 67, 80538 Munich, Germany
{kriegel, poetke, seidl}@dbs.informatik.uni-muenchen.de

Abstract. Intervals represent a fundamental data type for temporal, scientific, and
spatial databases where time stamps and point data are extended to time spans and
range data, respectively. For OLTP and OLAP applications on large amounts of
data, not only intersection queries have to be processed efficiently but also general
interval relationships including before, meets, overlaps, starts, finishes, contains,
equals, during, startedBy, finishedBy, overlappedBy, metBy, and after. Our new
algorithms use the Relational Interval Tree, a purely SQL-based and object-
relationally wrapped index structure. The technique therefore preserves the
industrial strength of the underlying RDBMS including stability, transactions, and
performance. The efficiency of our approach is demonstrated by an experimental
evaluation on a real weblog data set containing one million sessions.

1 Introduction
Modern database applications often manage extended data including time spans for

the validity of stored facts [TCG+ 93], tolerance ranges for imprecisely measured values
in scientific databases, or approximate values in local caches of distributed databases
[OLW 01]. Online analytical processing for data warehouses, for example on the tempo-
ral coherence of marketing activities and the sales volume, requires intervals as a basic
datatype. Moreover, the practical relevance of intervals has been strongly emphasized
by the introduction of the corresponding datatypes and predicates into the new
SQL:1999 standard, formerly known as SQL3 [EM 99]. In SQL, an interval comprising
a range between two ordered boundaries is termed a “PERIOD” and denotes an an-
chored duration on the linear time line. Dates can be encoded by a basic temporal
datatype or an integer. In addition to plain interval intersection queries, more refined re-
lationships have to be supported for many applications, e.g. sequenced temporal integ-
rity checking [LSD+ 01]. Compulsory predicates on PERIODs include the plain interval
intersection as well as a subset of Allen’s 13 general interval relationships [All 83] (cf.
Figure 1), namely “PRECEDES” (=before), “SUCCEDES” (=after), “MEETS”
(= meets ∪ metBy), and “CONTAINS” (=contains or during, resp.) [Sno 00].

In order to bring the expressive power of interval predicates and SQL:1999 to life, a
robust access method for intervals and their predicates is required. As this component
has to be integrated into commercial database servers to complement the interval data
model with efficient query execution, a maximal exploitation of the generic functional-
ity of existing RDBMS is essential [JS 99] [TJS 98]. In this paper, we therefore propose
a new technique to efficiently evaluate not only the five interval predicates of

Proc. 7th Int’l Symposium on Spatial and Temporal Databases (SSTD‘01).
Lecture Notes in Computer Science, © Springer Verlag. 2001

2

SQL:1999, but the full set of Allen’s general relationships on top of any object-relational
database kernel. We follow the layered approach of temporal database systems by trans-
forming the DDL and DML on interval data into conventional statements executed by
the underlying DBMS. At the same time, its industrial strength, including stability,
transactions, and performance is fully preserved by our proposed method.

Whereas point data has been supported very efficiently for a long time, the problem
of managing intervals is not addressed by commercial database systems up to now. Sev-
eral index structures have been proposed that immediately are built on top of relational
database systems. They use the SQL level of an ordinary RDBMS as virtual storage me-
dium, and, therefore, we call them relational storage structures. Among them, the Rela-
tional Interval Tree1 (RI-tree) [KPS 00] provides the optimal complexities of O(n/b)
space to store n intervals on disk blocks of size b, O(logbn) I/O operations for insertion
or deletion of a single interval, and O(h·logbn + r/b) I/Os to process an interval intersec-
tion query producing r results. The parameter h depends on the extension and the gran-
ularity of the data space but not on the number n of intervals. As a competing method,
the linear quadtree [Sam 90] as used in Oracle or DB2 for spatial objects maps a main-
memory structure onto built-in relational indexes, too, and may be called linear segment
tree in the one-dimensional case. Unfortunately, the decomposition of intervals into seg-
ments yields a potentially high redundancy in the database in contrast to the RI-tree.

The MAP21 transformation [ND 99] or the H-, V-, or D-order interval spatial trans-
form [GLOT 96] refine the idea to employ a composite index on the interval bounds and
order the intervals lexicographically by (lower, upper) or (upper, lower). Finally, the
window list technique [Ram 97] is very efficient but may degenerate for dynamic data
sets. An additional broad variety of secondary storage structures for intervals has been
proposed in the literature. Since these approaches rely on augmentations of built-in in-
dexes structures, they are not suitable to be used in industrial applications unless they are
integrated into the kernel software by the database vendors. A detailed discussion of
these aspects is provided in [KPS 00].

What we propose in this paper are extensions of the RI-tree algorithms that efficient-
ly support the general interval relationships of Allen. After recalling the Relational In-
terval Tree in Section 2, we present our new algorithms in Section 3. We suggest an ef-
fective extension of the underlying relational schema that preserves the optimal I/O
complexity for the majority of interval relationships. Simple but powerful heuristics

1. Patent pending

Fig. 1. The 13 general interval relationships according to Allen [All 83]

contains

overlappedBy

finishedBy startedBy

before meets overlaps

finishesstarts
during

metBy afterequals

3

minimize the overhead for the remaining interval relationships. In Section 4, we demon-
strate the efficiency of our techniques on a real weblog data set of one million intervals.

2 The Relational Interval Tree
The RI-tree [KPS 00] is a relational storage structure for interval data (lower, upper),

built on top of the SQL layer of any RDBS. By design, it follows the concept of Edels-
brunner’s main-memory interval tree [Ede 80] and obeys the optimal complexity for
storage space and for I/O operations when updating or querying large sets of intervals.

2.1 Relational Storage and Extensible Indexing

The RI-tree strictly follows the paradigm of relational storage structures since its im-
plementation is purely built on (procedural and declarative) SQL but does not assume
any lower level interfaces to the database system. In particular, built-in index structures
are used as they are, and no intrusive augmentation or modification of the database ker-
nel is required.

On top of its pure relational implementation, the RI-tree is ready for immediate ob-
ject-relational wrapping. It fits particularly well to the extensible indexing frameworks,
as already proposed in [Sto 86], which enable developers to extend the set of built-in in-
dex structures by custom access methods in order to support user-defined datatypes and
predicates. They are provided by the latest object-relational database systems, including
Oracle8i Server [Ora 99] [SMS+ 00], IBM DB2 Universal Database [IBM 99]
[CCF+ 99] or Informix Universal Server [Inf 98] [BSSJ 99].

Although available extensible indexing frameworks provide a gateway to seamlessly
integrate user-defined access methods into the standard process of query optimization,
they do not facilitate the actual implementation of the access method itself. Modifying
or enhancing the database kernel is usually not an option for database developers, as the
embedding of block-oriented access methods into concurrency control, recovery servic-
es and buffer management causes extensive implementation efforts and maintenance
cost [Kor 99], at the risk of weakening the reliability of the entire system. The server
stability can be preserved by delegating index scans and maintenance to an external pro-
cess, but this approach requires a custom concurrency control and induces severe perfor-
mance bottlenecks due to context switches and inter-process communication. Queries
and updates on relational storage structures are processed by pure SQL statements. The
robust transaction semantics of the database server is therefore fully preserved.

2.2 Dynamic Data Structure

The structure of an RI-tree consists of a binary tree of height h which makes the range
[0…2h–1] of potential interval bounds accessible. It is called the virtual backbone of the
RI-tree since it is not materialized but only the root value 2h–1 is stored persistently in a
metadata table. Traversals of the virtual backbone are performed purely arithmetically
by starting at the root value and proceeding in positive or negative steps of decreasing
length 2h–i, thus reaching any desired value of the data space in O(h) CPU time and with-
out causing any I/O operation.

Upon insertion, an interval is registered at the highest node that is contained in the
interval. For the relational storage of intervals, the value of that node is used as an arti-

4

ficial key. An instance of the RI-tree then consists of two relational indexes which in an
extensible indexing environment are preferably managed as index-organized tables. The
indexes obey the relational schema lowerIndex (node, lower, id) and upperIndex (node,
upper, id) and store the artificial key value node, the bounds lower and upper, and the id
of each interval. An interval is represented by exactly one entry in each of the two index-
es, and O(n/b) disk blocks of size b suffice to store n intervals. For inserting or deleting
intervals, the node values are determined arithmetically, and updating the indexes re-
quires O(logb n) I/O operations per interval.

The illustration in Figure 2 provides an example for the RI-tree. Let us assume the
intervals (2,13) for Mary, (4,21) for John, (20,23) for Bob, and (21,30) for Ann (Fig. 2a).
The virtual backbone is rooted at 16 and covers the data space from 1 to 31 (Fig. 2b).
The intervals are registered at the nodes 8, 16, and 24 which are the highest nodes hit by
the intervals. The interval (2,13) for Mary is represented by the entries (8, 2, Mary) in
the lowerIndex and (8, 13, Mary) in the upperIndex since 8 is the registration node, and
2 and 13 are the lower and upper bound, respectively (Fig. 2c).

2.3 Intersection Query Processing

To minimize barrier crossings between the procedural runtime environment and the
declarative SQL layer, an interval intersection query (lower, upper) is processed in two
steps. The procedural query preparation step descends the virtual backbone from the
root node down to lower and to upper, respectively. The traversal is performed purely
arithmetic without any I/O operation, and the visited nodes are collected in two main-
memory tables, leftQueries and rightQueries, as follows: Nodes left of lower may con-
tain intervals which overlap lower and are inserted into leftQueries. Analogously, nodes
right of upper may contain intervals which overlap upper and are inserted into right-

John
Mary

Bob
Ann

2M 13M

4J

10B 23J

21B

lowerIndex (node, lower, id):

upperIndex (node, upper, id):

8, 2, Mary 16, 4, John 16, 10, Bob

8, 13, Mary 16, 21, Bob 16, 23, John

Fig. 2. Example for an RI-tree. a) Four sample intervals. b) Virtual backbone and registration
positions of the intervals. c) Resulting relational indexes lowerIndex and upperIndex

30A21A

24, 30, Ann

24, 21, Ann

root = 16

248

4 12 20 28

2 6 10 14 18 22 26 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

a)

b)

c)

5

Queries. Whereas these nodes where taken from the paths, the set of all nodes between
lower and upper belongs to the so-called innerQuery which needs not to be material-
ized. All intervals registered at nodes from the innerQuery are guaranteed to intersect
the query and, therefore, will be reported without any further comparison. The query
preparation step is purely based on main memory and requires no I/O operations.

In the subsequent declarative query processing step, the transient tables are joined
with the relational indexes upperIndex and lowerIndex by a single, three-fold SQL state-
ment (Figure 3). The upper bound of each interval registered at nodes in leftQueries is
compared to lower, and the lower bounds of intervals stemming from rightQueries are
compared to upper. The innerQuery corresponds to a simple range scan over the inter-
vals with nodes in (lower, upper). The SQL query requires O(h·logb n + r/b) I/Os to re-
port r results from an RI-tree of height h since the output from the relational indexes is
fully blocked for each join partner. By the techniques presented in [KPS 00], the height
h of the backbone tree is dynamically adjusted to the expansion of the data space and to
the minimum length of the intervals. Typically, h is independent of the number n of in-
tervals. For example, when assuming a granularity of one second, a height of 25 is suf-
ficient to address one year (31,536,000 seconds), and a height of 32 makes a century ac-
cessible independent of the number of intervals in the database.

We prefer the implementation for leftQueries and rightQueries as binding variables
for transient tables over the alternative of using set containment predicates ‘i.node IN
leftQueries’ and ‘i.node IN rightQueries’. By using transient tables, we save the encod-
ing and decoding of the node values to and from ASCII. Moreover, the entire SQL query
is parsed and optimized in advance and reused for multiple queries.

3 Algorithms for General Interval Relationships

In this section, we develop our method for processing general interval relationship
queries based on the RI-tree. We first identify and classify the nodes that need to be ac-
cessed for the different interval relationships and derive the corresponding algorithms
and heuristics for the individual node classes. Finally, we compose the complete queries
from the building blocks.

SELECT id FROM upperIndex i, :leftQueries q
WHERE i.node = q.node AND i.upper >= :lower

UNION ALL
SELECT id FROM lowerIndex i, :rightQueries q

WHERE i.node = q.node AND i.lower <= :upper
UNION ALL
SELECT id FROM lowerIndex /* or upperIndex */

WHERE node BETWEEN :lower AND :upper;

Fig. 3. SQL statement for an intersection query with bind
variables leftQueries, rightQueries, lower, and upper

6

3.1 Query Generation Schema

For the 13 general interval relationships of Allen [All 83], the plain interval intersec-
tion schema is replaced by a more fine grained query generation. While we have distin-
guished only the three classes leftQueries, rightQueries, and innerQuery for intersection
queries, we are now faced with twelve classes of nodes that need to be handled different-
ly. We call these classes topLeft, bottomLeft, innerLeft, topRight, bottomRight, in-
nerRight, lower, fork, upper, allLeft, allInner, and allRight. Figure 4 provides an il-
lustration of the classification for a sample query interval (75, 106). Each class is
marked with the corresponding interval relationships. The code in Figure 5 illustrates
the computation of the node classes.

The nodes on the path from the root node (included) down to the fork node of the que-
ry interval (excluded) fall into the classes topLeft or topRight depending on whether
they are smaller than the lower query bound or greater than the upper query bound. The
nodes on the path from the fork node (excluded) down to the lower query bound (exclud-
ed) form the classes bottomLeft and innerLeft depending on their position with respect
to the lower query bound. Analogously, the nodes on the path from the fork node (ex-
cluded) down to the upper query bound (excluded) form the classes innerRight and
bottomRight depending on their position with respect to the upper query bound. The
mentioned node classes are generated by arithmetically traversing the virtual backbone

�����

Fig. 4. Node classes generated for a sample query interval (75, 106): The six traversal
classes topLeft (64), bottomLeft (72, 74), innerLeft (76, 80), topRight (128), inner-
Right (104), bottomRight (108, 112), the three singleton classes lower (75), fork (96),
upper (106), and the three range classes allLeft (nodes < 75), allInner (76…105), and
allRight (nodes > 106). Each class is marked with the corresponding relationships

��

���
��

�����

��

��

��

���

���

���

��

ERWWRP/HIW
before
meets

overlaps

LQQHU/HIW
overlaps
starts
during

ORZHU
meets

overlaps
starts

LQQHU5LJKW
during

finishes
overlappedBy

ERWWRP5LJKW
overlappedBy
metBy
after

XSSHU
finishes
metBy
overlappedBy

DOO/HIW�
before

DOO,QQHU�
during

DOO5LJKW�
after

WRS5LJKW
contains
startedBy
overlappedBy
metBy
after

WRS/HIW
before
meets
overlaps
finishedBy
contains

IRUN
overlaps, finishedBy, contains, starts, equals,
finishes, during, startedBy, overlappedBy

7

and, therefore, we call them the traversal classes. As an immediate implication, the car-
dinality of their union is bound by twice the height of the backbone tree.

The fork node itself as well as the lower and the upper query bound each forms a class
of its own, i.e. fork, lower, and upper, and we call them the singleton classes. All of the
hitherto classes are disjoint except in the special case where fork coincides with lower
or with upper. Finally, the union of classes allLeft, allInner, and allRight covers all
nodes of the backbone tree except the lower and the upper query bound. We call these
node sets the range classes. They are not materialized but represented by the predicates
‘node < lower’ for allLeft, ‘lower < node AND node < upper’ for allInner, and
‘upper < node’ for allRight.

PROCEDURE generalIntervalQuery (string operator, int lower, int upper) {
List 〈int〉 topLeft, bottomLeft, innerLeft;
List 〈int〉 topRight, bottomRight, innerRight;
int fork;

//--- Descend from root node down to fork node ---
int n = root;
for (int step = n/2; step >= minstep; step = step/2) {

if (n < lower) {topLeft ← n; n = n + step;}
elsif (upper < n) {topRight ← n; n = n – step;}
else /* n is fork */ {fork = n; break;}

}
//--- Descend from fork node down to lower ---
if (lower < fork) {

n = fork – step;
for (int lstep = step/2; lstep >= minstep; lstep = lstep/2) {

if (n < lower) {bottomLeft ← n; n = n + lstep;}
elsif (lower < n) {innerLeft ← n; n = n – lstep;}
else /* n is lower */ {break;}

}
}
//--- Descend from fork node down to upper ---
if (fork < upper) {

n = fork + step;
for (int rstep = step/2; rstep >= minstep; rstep = rstep/2) {

if (n < upper) {innerRight ← n; n = n + rstep;}
elsif (upper < n) {bottomRight ← n; n = n – rstep;}
else /* n is upper */ {break;}

}
}
//--- Start the SQL query for operator (see Table 2) ---

}

Fig. 5. Computation of the query classes for general interval relationships

8

3.2 Query Processing for the Traversal Classes

In the following, we assume a query interval q = (lower, upper) to be given. A data-
base interval i registered at a node in topLeft is guaranteed to start before the lower que-
ry bound, i.e. i.lower < q.lower, but no assumption about the upper bound is valid. In
addition to the relationships before, meets, and overlaps even finishedBy or contains
may be valid but no other relationship can hold. For before and meets, it suffices to test
the upper bound against the lower query bound, i.e. i.upper Θ q.lower with Θ denoting
< or = for the respective interval relationship. For finishedBy and contains, the upper
bound has to be compared to the upper query bound, i.e. i.upper Θ q.upper with Θ de-
noting = and >, respectively. For overlaps, however, the upper bound has to be compared
to both query bounds, resulting in the test q.lower < i.upper < q.upper. In any case, the
test is optimally supported by a range scan on the relational upperIndex guaranteeing
blocked output:

SELECT id FROM upperIndex i, :topLeft q
WHERE i.node = q.node AND i.upper Θ :lower; -- set Θ to < (before), = (meets)

SELECT id FROM upperIndex i, :topLeft q WHERE i.node = q.node
AND i.upper Θ :upper; -- set Θ to = (finishedBy), > (contains)

SELECT id FROM upperIndex i, :topLeft q WHERE i.node = q.node
AND i.upper > :lower AND i.upper < :upper; -- for overlaps

Analogous considerations apply to the symmetric class topRight and the relation-
ships after, metBy, overlappedBy, startedBy, and contains which are best processed by
scanning the relational lowerIndex:

SELECT id FROM lowerIndex i, :topRight q WHERE i.node = q.node
AND i.lower Θ :upper; -- set Θ to > (after), = (metBy)

SELECT id FROM lowerIndex i, :topRight q WHERE i.node = q.node
AND i.lower Θ :lower; -- set Θ to = (startedBy), < (contains)

SELECT id FROM lowerIndex i, :topRight q WHERE i.node = q.node
AND i.lower > :lower AND i.lower < :upper; -- for overlappedBy

A database interval i registered at a node in bottomLeft is guaranteed to start before
the lower query bound, i.e. i.lower < q.lower, and to end before the upper query bound
since i.upper < q.fork ≤ q.upper. Only the relationships before, meets, or overlaps may
hold, and it suffices to test the upper bound against the lower query bound, i.e. i.upper Θ
q.lower where Θ denotes <, =, >, respectively.

Again, the relational upperIndex supports the test while guaranteeing blocked output
in any case. As above, analogous considerations apply to intervals from nodes in the
symmetric class bottomRight and the respective relationships after, metBy, and over-
lappedBy which are best supported by the relational lowerIndex:

SELECT id FROM upperIndex i, :bottomLeft q WHERE i.node = q.node
AND i.upper Θ :lower; -- set Θ to < (before), = (meets), > (overlaps)

9

SELECT id FROM lowerIndex i, :bottomRight q WHERE i.node = q.node
AND i.lower Θ :upper; -- set Θ to > (after), = (metBy), < (overlappedBy)

A database interval i from a node in innerLeft ends before the query interval ends
since i.upper < q.fork ≤ q.upper but no assumption about the lower bound may be ex-
ploited in advance. The only relationships with q where i may participate are overlaps,
starts, and during which are tested by a comparison of the registered lower bound
against the lower query bound, i.e. i.lower Θ q.lower where Θ denotes <, =, > for the
respective interval relationship. Optimal support is provided by the relational lowerIn-
dex in this case. Analogously, intervals from innerRight may only participate in the re-
lationships during, finishes, and overlappedBy which are efficiently tested by scanning
the relational upperIndex:

SELECT id FROM lowerIndex i, :innerLeft q WHERE i.node = q.node
AND i.lower Θ :lower; -- set Θ to < (overlaps), = (starts), > (during)

SELECT id FROM upperIndex i, :innerRight q WHERE i.node = q.node
AND i.upper Θ :upper; -- set Θ to < (during), = (finishes), > (overlappedBy)

In any of the previous cases, the existing relational indexes lowerIndex and upperIn-
dex immediately support the required comparisons by efficient range scans guarantee-
ing blocked output. Unfortunately, this observation does not hold for the singleton class-
es which we investigate in the following subsection.

3.3 Extended Indexes for the Singleton Classes

For intervals i registered at lower, we know in advance that they do not start later than
the lower query bound, i.lower ≤ q.lower. As long as lower is distinct from fork we also
know that the interval i ends before the upper query bound, i.upper < q.fork ≤ q.upper.
Thus, the database interval i may participate in the relationships meets, overlaps, or
starts but in no other relationships. For meets, the upper bound is tested against the lower
query bound by scanning the relational upperIndex, and for starts, the lower bound of
the database interval i is compared to the lower query bound by scanning the relational
lowerIndex:

SELECT id FROM upperIndex i WHERE i.node = :lower
AND i.upper = :lower; -- for meets (even if lower = fork)

SELECT id FROM lowerIndex i WHERE i.node = :lower
AND i.lower = :lower; -- for starts (if lower ≠ fork)

For the relationship overlaps, both bounds of the database interval i have to be com-
pared with the lower query bound, and the required selection predicate is i.lower <
q.lower < i.upper. At this point, the problem occurs that neither the relational lowerIn-
dex nor the relational upperIndex alone suffice to process the query, and a join of the two
indexes is performed as a preliminary solution to the existing relational schema:

SELECT id FROM lowerIndex l, upperIndex u -- (preliminary) for overlaps
WHERE l.node = :lower AND l.lower < :lower

AND u.node = :lower AND u.upper > :lower AND l.id = u.id;

10

This join-based approach yields an expensive execution plan, and the performance
drawbacks of join processing fully apply. A solution that avoids these disadvantages
while introducing only a small overhead for storage space is to extend each of the two
relational indexes by the opposite interval bound. The resulting relational schema con-
sists of two primary indexes, preferably stored as index-organized tables:

lowerUpperIndex (node, lower, upper, id) -- extended lowerIndex
upperLowerIndex (node, upper, lower, id) -- extended upperIndex

Regarding the space required for the node values and the interval bounds (typically 4
bytes each) and for the referring attribute id (e.g. 10 bytes for an extended ROWID in
Oracle8i), the storage space for the new indexes is only 17% larger than for the previous
relational schemata lowerIndex and upperIndex. An important observation is that all of
the hitherto investigated range scans are supported by the extended indexes as well. In
the following, we use the symbol ‘upper(Lower)Index’ if we actually scan the upper-
LowerIndex but the upperIndex would be sufficient. Analogously, we write ‘lower(Up-
per)Index’ in the symmetric case. For the relationship overlaps, the scan to retrieve the
qualifying entries from the node lower may now be based on any of the two indexes,
lowerUpperIndex or upperLowerIndex, and it has the following form:

SELECT id FROM lowerUpperIndex /*upperLowerIndex*/ i WHERE i.node = :lower
AND i.lower < :lower AND i.upper > :lower; -- for overlaps

The symmetric considerations hold for intervals registered at upper. The relation-
ships finishes and metBy are immediately supported by the respective relational upper-
Index or lowerIndex and, following the general observation from above, also by the new
extended indexes upperLowerIndex and lowerUpperIndex. For the relationship over-
lappedBy, a join of lowerIndex and upperIndex would be necessary and, again, is avoid-
ed by using any one of the extended indexes, lowerUpperIndex or upperLowerIndex:

SELECT id FROM upper(Lower)Index i WHERE i.node = :upper
AND i.upper = :upper; -- for finishes (if upper ≠ fork)

SELECT id FROM lower(Upper)Index i WHERE i.node = :upper
AND i.lower = :upper; -- for metBy (even if upper = fork)

SELECT id FROM lowerUpperIndex /*upperLowerIndex*/ i WHERE i.node = :upper
AND i.lower < :upper AND i.upper > :upper; -- for overlappedBy

3.4 Heuristics to Scan the Fork Node

The node contributing to the most interval relationships among all query classes is
fork. Intervals registered at the query’s fork node may participate in overlaps, finished-
By, contains, starts, equals, finishes, during, startedBy, and overlappedBy but not in be-
fore or after since the database intervals at fork are known to intersect the query interval
at least at the fork value. The relationships meets and metBy can only hold if fork coin-
cides with lower and upper, respectively, and they are already covered by handling
those nodes.

In any case, query processing has to consider both bounds of the registered intervals.
In order to avoid expensive join processing, we exploit the extended relational indexes.

11

The relationships starts and startedBy are best supported by the lowerUpperIndex, and
for the relationships finishedBy and finishes, the upperLowerIndex is suited best since
one of the interval bounds is tested for equality, i.e. lower = :lower or upper = :upper,
respectively:

SELECT id FROM lowerUpperIndex i WHERE i.node = :fork
AND i.lower = :lower AND i.upper Θ :upper; -- set Θ to < (starts), > (startedBy)

SELECT id FROM upperLowerIndex i WHERE i.node = :fork
AND i.upper = :upper AND i.lower Θ :lower; -- set Θ to < (finishedBy), > (finishes)

Due to the equality condition for one of the interval bounds, blocked output can be
guaranteed which means that no non-qualifying entries have to be discarded from the
index range scan. Figure 6 provides an example for a blocked index scan where all of the
entries between the first and the last result belong to the actual result set, and an addi-
tional example for a non-blocked output where some entries between the first and the
last result do not qualify for the result set. This case may occur for the relationships over-
laps, contains, equals, during, and overlappedBy regardless of which of the two rela-
tional indexes is scanned.

SELECT id FROM lowerUpperIndex /*upperLowerIndex*/ i WHERE i.node = :fork
AND i.lower Θ1 :lower AND i.upper Θ2 :upper; -- set Θ1, Θ2 to (=, =) (equals),
-- (<, <) (overlaps), (<, >) (contains), (>, <) (during), (>, >) (overlappedBy)

In the following, we develop heuristics to minimize the overhead of scanning non-
qualifying entries in an index in order to choose the best index for fork node scans. Our
heuristics are based on the observation that the extensions of the intervals from the fork
node to the lower bound and from the fork node to the upper bound follow an exponen-
tial distribution. We normalize the distances by the step width step = 2l associated with
each level l in the node resulting in a model obeying the same mean value and standard
deviation over all entries in the indexes.

The distribution functions that estimate the number of entries registered at the query
fork node are given by Φleft(lower) = e–β (fork–lower)/step for intervals that start at lower or
earlier and by Φright(upper) = e–β (upper–fork)/step for intervals that start at upper or later. The
parameter β is the reciprocal mean value of the normalized differences (fork – lower)/
step and (upper – fork)/step and is stored in the RI-tree metadata table. Figure 7 depicts
the empirically measured frequencies for our real data set of 1,000,000 intervals from
weblog data as well as the approximating density functions Φleft and Φright.

For the relationship contains, the condition ‘i.lower < :lower AND i.upper > :upper’
has to be evaluated for the entries at the fork node. The fraction of entries scanned when
using the upperLowerIndex is estimated by 1 – Φright(upper) whereas the fraction of en-
tries scanned by using the lowerUpperIndex is estimated by 1 – Φleft(lower). Let us em-

Fig. 6. Blocked and non-blocked index scan for a single range query

12

phasize that the number of qualifying intervals is the same for both ways, and choosing
the index scanning the smaller fraction of entries obviously improves the performance
of query processing since the overhead to discard non-qualifying entries is minimized.
Due to the monotonicity of Φleft and Φright, the test is simplified to the comparison of
(fork – lower) and (upper – fork) in case of the relationship contains. If the latter differ-
ence is greater, the upperLowerIndex will be employed, and if the prior expression is
greater, the lowerUpperIndex is chosen.

For the relationship during, we compare Φleft(lower), i.e. the estimated fraction of en-
tries between lower and fork, and Φright(upper), i.e. the estimated fraction between fork
and upper, in order to assess whether the condition ‘i.lower > :lower’ or the condition
‘i.upper < :upper’ is more selective. For the relationship overlaps, the fraction of entries to
the left of lower, i.e. 1 – Φleft(lower), and the fraction of entries between fork and upper,
i.e. Φright(upper), is compared. Finally, the relationship overlappedBy requires a com-
parison of the estimated fraction between lower and fork, i.e. Φleft(lower), with the esti-
mated fraction of entries to the right of upper, i.e. 1 – Φright(upper). In the experimental
section, we will show the effectiveness of this approach which yields only a few percent
of overhead for scanning over non-qualifying index entries as opposed to a fixed assign-
ment of the fork node scan to any one of the two relational indexes. The cost for these
optimizations are negligible since only a few arithmetic operations are performed.

3.5 Closing Gaps for the Range Classes

A few nodes only or even a single node have to be visited in the relational indexes to
completely process the traversal classes and the singleton classes. The range classes,
however, span wide ranges of nodes. Most of the entries at nodes from allLeft, for in-
stance, participate in the relationship before. Only a few intervals belong to other rela-
tionships including meets, overlaps, finishedBy, or contains. These intervals, if any, are
registered in topLeft or bottomLeft nodes, and they occur as gaps in the range of inter-
vals in the relational upper(Lower)Index as illustrated in Figure 8. The number of gaps
is bounded by the height of the backbone tree.

Let us discuss two ways to process the allLeft nodes. The first way is to exclude the
gaps from the index range scans by “inverting” the topLeft and bottomLeft lists with

Fig. 7. Empirical frequency and predicted density for the normalized interval exten-
sions from fork to lower (left diagram) and from fork to upper (right diagram)

0%25%50%75%100%

(fork-lower)/step

empirical

model ’lower’

0% 25% 50% 75% 100%

(upper-fork)/step

empirical

model ’upper’

13

respect to allLeft nodes. As a result, a pair-valued list beforeList of nodes is generated
characterizing the ranges of results between two gaps. The entries in the beforeList are
of the form (firstNode, lastNode), and their number is bound by the height of the back-
bone tree. The corresponding SQL statement for the relationship before is as follows:

SELECT * FROM upperIndex i, :beforeList q -- (preliminary) for before
WHERE i.node BETWEEN q.firstNode AND q.lastNode AND i.upper < :lower;

This statement includes the correct handling of nodes from topLeft and bottomLeft,
so it is complete for the relationship before. Whereas the advantage of this solution is the
blocked output for the results, there are also some drawbacks. In practice, the gaps are
very small and typically occupy only a fraction of a disk block. Thus, scanning the gaps
in addition to the results rarely yields any I/O overhead. From a CPU cost point of view,
the few additional evaluations are compensated by the saved navigation in the relational
index from its root node down to the current leaf nodes. As a minor aspect, the pair-val-
ued list increases the complexity of the query processor since an additional list type
needs to be managed. Altogether, scanning all nodes before the lower query bound
seems to be a very practical solution. The code for the relationship before and, analo-
gously, for the relationship after which scans the allRight nodes is therefore as follows:

SELECT * FROM upper(Lower)Index i WHERE i.node < :lower
AND i.upper < :lower; -- for before

SELECT * FROM lower(Upper)Index i WHERE i.node > :upper
AND i.lower > :upper; -- for after

A similar situation occurs for the node class allInner that covers all results of the re-
lationship during except for the cases discussed for the node classes innerLeft, fork,
and innerRight. Rather than excluding those entries as gaps, we again scan the entire
range of allInner nodes. For inner nodes to the left of fork, the lower bounds of the reg-
istered intervals are compared to the lower query bound. Whereas this test is only nec-
essary for the few nodes also in leftInner, it does not affect the other nodes since their
registered intervals start after lower in any case. Analogously, the upper bounds of the
inner nodes to the right of fork are compared to the upper query bound to report the re-
sults while excluding the gaps potentially occurring at rightInner nodes:

SELECT id FROM lower(Upper)Index i WHERE :lower < i.node AND i.node < :fork
AND i.lower > :lower -- left hand part for during

SELECT id FROM upper(Lower)Index i WHERE :fork < i.node AND i.node < :upper
AND i.upper < :upper -- right hand part for during

What remains to be done for the relationship during is to scan the database intervals
registered at the fork node as discussed above.

Fig. 8. Index ranges to be scanned for a before query (with gaps)

querybefore

14

3.6 Complete Query Processing

In the preceding subsections, we have derived SQL statements to process general in-
terval relationship queries for the different classes of nodes. For example, the innerLeft
nodes have to be accessed for overlaps, starts, or during queries. We now switch to the
inverse view and collect the classes of nodes that contribute to each interval relationship
in order to assemble SQL statements that guarantee completeness for query processing.
For instance, a starts query has to scan nodes from innerLeft, lower and fork. Table 1
provides a survey of the inverse view.

The individual SQL statements for the node classes are now combined to the final
SQL queries. Since the single SQL statements yield disjoint result sets and, thus, no du-
plicates are produced, we employ the operator UNION ALL thus saving the effort of
eliminating duplicates from the final result. In addition, UNION ALL is a non-blocking
operator which fully supports pipelining and fast retrieval of first results. Table 2 com-
prises the complete SQL statements to process each of Allen’s interval relationships
based on the two relational indexes lowerUpperIndex and upperLowerIndex. Rather
than to include the heuristic fork node optimization, we present particular instances of
the queries in case of the relationships contains, during, overlaps, and overlappedBy.

Let us finally analyze the I/O complexity of the algorithms. For meets, finishedBy,
starts, startedBy, finishes, and metBy, the bound of O(h·logb n + r/b) I/Os is guaranteed
since no false hits need to be discarded when scanning the fork node. For equals, even
O(logb n + r/b) I/Os suffice. For overlaps, contains, during, and overlappedBy, the pro-
posed heuristics help to reduce the disk accesses but do not affect the worst case com-
plexity of O(h·logb n + r/b + f/b) I/Os where f denotes the number of database entries
registered at the fork node of the query interval. Whereas f = O(n/2h) holds in the average

Table 1: General interval relationships and affected node classes

before allLeft (including topLeft and bottomLeft)

meets topLeft, bottomLeft, lower

overlaps topLeft, bottomLeft, innerLeft, lower, fork

finishedBy topLeft, fork

starts innerLeft, lower, fork

contains topLeft, fork, topRight

equals fork

during allInner (including innerLeft, fork, innerRight)

startedBy topRight, fork

finishes innerRight, upper, fork

overlappedBy topRight, bottomRight, innerRight, upper, fork

metBy topRight, bottomRight, upper

after allRight (including topRight and bottomRight)

15

Table 2: Complete SQL statements for interval relationships (w/o fork optimization)

before SELECT id FROM upperLowerIndex i
WHERE i.node < :lower AND i.upper < :lower

meets SELECT id FROM upperIndex i, :(topLeft ∪ bottomLeft ∪ lower) q
WHERE i.node = q.node AND i.upper = :lower

overlaps SELECT id FROM upperLowerIndex i, :(topLeft ∪ bottomLeft) q
WHERE i.node = q.node AND :lower < i.upper AND i.upper < :upper

UNION ALL
SELECT id FROM lowerUpperIndex i, :(innerLeft ∪ lower ∪ fork) q

WHERE i.node = q.node AND i.lower < :lower
AND i.upper < :upper AND i.upper > :lower

finishedBy SELECT id FROM upperLowerIndex i, :(topLeft ∪ fork) q
WHERE i.node = q.node AND i.upper = :upper AND i.lower < :lower

starts SELECT id FROM lowerUpperIndex i, :(innerLeft ∪ lower ∪ fork) q
WHERE i.node = q.node AND i.lower = :lower AND i.upper < :upper

contains SELECT id FROM lowerUpperIndex i, :(topRight ∪ fork) q
WHERE i.node = q.node AND i.lower < :lower AND :upper < i.upper

UNION ALL
SELECT id FROM upperLowerIndex i, :topLeft q

WHERE i.node = q.node AND :upper < i.upper

equals SELECT id FROM lowerUpperIndex i /*or upperLowerIndex*/
WHERE i.node = :fork AND i.lower = :lower AND i.upper = :upper

during SELECT id FROM lowerUpperIndex i WHERE i.node > :lower AND
i.node <= :fork AND i.lower > :lower AND i.upper < :upper

UNION ALL
SELECT id FROM upperLowerIndex i

WHERE i.node > :fork AND i.node < :upper AND i.upper < :upper

startedBy SELECT id FROM lowerUpperIndex i, :(topRight ∪ fork) q
WHERE i.node = q.node AND i.lower = :lower AND :upper < i.upper

finishes SELECT id FROM upperLowerIndex i, :(innerRight ∪ upper ∪ fork) q
WHERE i.node = q.node AND i.upper = :upper AND :lower < i.lower

over-
lappedBy

SELECT id FROM lowerUpperIndex i, :(topRight ∪ bottomRight) q
WHERE i.node = q.node AND :lower < i.lower AND i.lower < :upper

UNION ALL
SELECT id FROM upperLowerIndex i, :(innerRight ∪ upper ∪ fork) q

WHERE i.node = q.node AND i.upper > :upper
AND i.lower > :lower AND i.lower < :upper

metBy SELECT id FROM lowerIndex i, :(topRight ∪ bottomRight ∪ upper) q
WHERE i.node = q.node AND i.lower = :upper

after SELECT id FROM lowerUpperIndex i
WHERE i.node > :upper AND i.lower > :upper

16

case, f approaches n in the degenerate case where that particular fork node is populated
significantly above the average. For before and after, the sequential heuristic algorithms
may have to scan n entries in degenerate cases but they are expected to share the I/O
complexity of the straightforward algorithms which is O(h·logb n + r/b) in the average
case. A histogram based cost model will help to recognize large fruitless gaps and to ex-
clude them from the range scans.

4 Experimental Evaluation
We implemented the Relational Interval Tree in Oracle8i and extended it by the new

algorithms for Allen’s interval relationships. For our experiments, we used a real data
set of 1,005,447 intervals representing sessions on a frequently accessed web server
over a range of two years. The interval bounds range from 31,419 to 66,394,508, result-
ing in a height of 26 for the virtual backbone tree. From this data set, we randomly se-
lected a sample of 1,000 intervals which we used as query objects. What we demonstrate
in the following is the effect of our heuristics to minimize the overhead of scanning non-
qualifying index entries which have to be discarded when scanning the node ranges.

The diagrams in Figure 9 illustrate the characteristics of our data set and of the ran-
domly selected queries. From the distribution of the interval lengths depicted in the top
diagrams, we can see that there are two peaks, one for intervals lasting some 10 seconds
and one for intervals of some 200,000 seconds. The bottom diagrams show the height
distribution of the fork nodes, starting with a height of one for the leaf nodes.

Fig. 9. Characteristics of the real data set and of the query samples: Distribution of
the interval lengths (top row) and distribution of the node heights (bottom row)

database

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25

height of fork node

nu
m

be
r

queries

0

20

40

60

80

100

120

140

0 5 10 15 20 25

height of fork node

nu
m

be
r

database

0

50000

100000

150000

200000

250000

1 100 10000 1000000 1E +08

interval length

nu
m

be
r

queries

0

50

100

150

200

250

1 100 10000 1000000 1E +08

interval length

nu
m

be
r

17

Figure 10 demonstrates the effect of assigning the index range scan for the fork node
to the lowerUpperIndex or to the upperLowerIndex, depending on the chosen heuristics.
The abscissa axis ranges over the ratio of the extensions from fork to lower and from
fork to upper and is scaled logarithmically. The ordinate axis indicates the percentage of
discarded index entries when scanning the fork node. Let us focus on the diagram for
contains. As expected, running the fork node scan on the lowerUpperIndex works well
if the fork node of the query is close to the lower query bound (left hand side in the dia-
gram) and is very expensive if fork is close to the upper query bound (the right hand
side). Analogously, scanning the upperLowerIndex is the better choice if the fork node
of the query is closer to upper than to lower. The effect of the heuristics to choose the
index depending on the relative position of the fork value between lower and upper is
depicted at the bottom by the shaded area. For contains as well as for during, the heuris-
tics actually yield the minimum number of index entries which have to be discarded. A
similar observation holds for overlaps and overlappedBy queries, and the heuristics
based on the exponential distribution of interval bound distances to the fork node misses
the optimum only in some few cases where the fork node is near to the lower bound.

Fig. 10. Percentage of the scanned but discarded index entries at the fork node for the re-
lationships contains, during, overlappedBy, and overlaps depending on the ratio of the ex-
tensions from the fork node of the query to upper and to lower, respectively. Among the

three index usage policies, the optimized version is marked by the shaded area

contains

0%

1%

2%

3%

4%

5%

6%

76543210-1-2-3-4-5-6-7
extension ratio [log]

di
sc

ar
de

d
[%

]

during

0%

1%

2%

3%

4%

5%

6%

76543210-1-2-3-4-5-6-7
extension ratio [log]

di
sc

ar
de

d
[%

]

overlappedBy

0%

20%

40%

60%

80%

100%

76543210-1-2-3-4-5-6-7
extension ratio [log]

di
sc

ar
de

d
[%

] overlaps

0%

20%

40%

60%

80%

100%

76543210-1-2-3-4-5-6-7
extension ratio [log]

di
sc

ar
de

d
[%

]

optimized fork query on low erUpperIndex fork query on upperLow erIndex

18

Our next series of experiments addresses the overhead produced by scanning non-
qualifying index entries for the interval relationships before, after, and during (see
Figure 11). As expected for increasing lower and upper query bounds, the number of re-
sults of a before query increases and the number of results of an after query decreases.
Except for a few rare cases, the discarded index entries are significantly below 1%. The
selectivity of during queries depends on the length of the query interval as indicated by
the diagrams in the bottom row. Again, only a few percent of the scanned index entries
need to be discarded in most cases. Fractions of 5% to 10% occur only for very small
result sets of ten or less answers.

The basic lesson we learn from these observations is that the analysis of the intersec-
tion query processing in [KPS 00] also applies to general interval queries. The overhead

Fig. 11. Percentage of scanned but discarded index entries depending on the height
of the query fork node in the virtual backbone tree (relationships before, after, and

during) and on the result size (during only)

before

0%

1%

2%

3%

4%

5%

0 20000 40000 60000 80000
low er query bound [1000]

di
sc

ar
de

d
[%

]

after

0%

1%

2%

3%

4%

5%

0 20000 40000 60000 80000
upper query bound [1000]

di
sc

ar
de

d
[%

]

during

1

10

100

1000

10000

100000

1000000

1 100 10000 1000000 1E+08
length of query interval

re
su

lt
si

ze

before

0

200000

400000

600000

800000

1000000

1200000

0 20000 40000 60000 80000
low er query bound [1000]

re
su

lt
si

ze

after

0

200000

400000

600000

800000

1000000

1200000

0 20000 40000 60000 80000
upper query bound [1000]

re
su

lt
si

ze

during

0%

2%

4%

6%

8%

10%

1 100 10000 1000000
result size

di
sc

ar
de

d
[%

]

19

of discarding non-qualifying index entries is in the range of a few percent, and the num-
ber of I/O operations as well as the response time is still dominated by the cardinality of
the result set. Figure 12 demonstrates the result sizes and the number of disk accesses
averaged over 1000 queries for each of the individual interval relationships. As expect-
ed, the number of I/O operations is closely related to the number of results.

5 Conclusions
In this paper, we introduced algorithms for Allen’s interval relationships as new que-

ry types for the Relational Interval Tree, a purely relational storage structure that man-
ages interval data efficiently on top of SQL. The extension of the previous relational
lowerIndex and upperIndex by the opposite query bound, upper and lower, respectively,
suffices to support the general interval relationships efficiently. We classified the nodes
to be scanned in the indexes into the traversal, singleton, and range classes and investi-
gated the individual handling in each case. Effective heuristics for assigning the fork
node scan to one of the two relational indexes are proposed which significantly decrease
the number of non-qualifying index entries that are read from the database but do not
contribute to the result set. The methodical part is concluded by a simplification for the
range node classes thus reducing the query preprocessing effort for before and after que-
ries. We integrated the algorithms into our Oracle8i domain index implementation of the
Relational Interval Tree and observed that the chosen heuristics are very effective such
that the good performance measured in [KPS 00] also applies to the general interval re-
lationships.

Fig. 12. Result sizes and disk accesses for the individual interval relationships

1035.93

1113.63

1.01

0.02

0.03

0.28

0.28

38.46

38.67

0.02

0.02

505727.16

498349.09

0.01 1 100 10000 1000000

after

before

contains

during

equals

finis hedB y

finis hes

meets

metB y

overlappedB y

overlaps

s tartedB y

s tarts

avg. result size

16.7

7.5

1.1

2.9

1.2

3.2

3.1

4.9

4.8

2.8

1.2

2279.0

2306.0

1 10 100 1000 10000

after

before

contains

during

equals

finis hedB y

finis hes

meets

metB y

overlappedB y

overlaps

s tartedB y

s tarts

avg. physical reads

20

References
[All 83] Allen J. F.: Maintaining Knowledge about Temporal Intervals. Communications of the

ACM 26(11): 832-843, 1983
[BSSJ 99] Bliujute R., Saltenis S., Slivinskas G., Jensen C.S.: Developing a DataBlade for a New

Index. Proc. IEEE 15th Int. Conf. on Data Engineering (ICDE): 314-323, 1999
[CCF+ 99] Chen W., Chow J.-H., Fuh Y.-C., Grandbois J., Jou M., Mattos N., Tran B., Wang Y.:

High Level Indexing of User-Defined Types. Proc. 25th Int. Conf. on Very Large
Databases (VLDB): 554-564, 1999

[Ede 80] Edelsbrunner H.: Dynamic Rectangle Intersection Searching. Inst. for Information
Processing Report 47, Technical University of Graz, Austria, 1980

[EM 99] Eisenberg A., Melton J.: SQL:1999, formerly known as SQL3. ACM SIGMOD
Record, 28(1): 131-138, 1999

[GLOT 96] Goh C. H., Lu H., Ooi B. C., Tan K.-L.: Indexing Temporal Data Using Existing B+-
Trees. Data & Knowledge Engineering, Elsevier, 18(2): 147-165, 1996

[IBM 99] IBM Corp.: IBM DB2 Universal Database Application Development Guide, Vs. 6.
Armonk, NY, 1999

[Inf 98] Informix Software, Inc.: DataBlade Developers Kit User’s Guide. Menlo Park, CA,
1998

[JS 99] Jensen C. S., Snodgrass R. T.: Temporal Data Management. IEEE Transactions on
Knowledge and Data Engineering, 11(1): 36-44, 1999

[Kor 99] Kornacker M.: High-Performance Extensible Indexing. Proc. 25th Int. Conf. on Very
Large Databases (VLDB): 699-708, 1999

[KPS 00] Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Efficiently in Object-Relational
Databases. Proc. 26th Int. Conf. on Very Large Databases (VLDB): 407-418, 2000

[LSD+ 01] Li W., Snodgrass R. T., Deng S., Gattu V. K., Kasthurirangan A.: Efficient Sequenced
Temporal Integrity Checking. Proc. IEEE 17th Int. Conf. on Data Engineering (ICDE):
131-140, 2001

[ND 99] Nascimento M. A., Dunham M. H.: Indexing Valid Time Databases via B+-Trees.
IEEE Trans. on Knowledge and Data Engineering (TKDE) 11(6): 929-947, 1999

[OLW 01] Olston C., Loo B. T., Widom J.: Adaptive Precision Setting for Cached Approximate
Values. Proc. ACM SIGMOD Int. Conf. on Management of Data, 2001

[Ora 99] Oracle Corp.: Oracle8i Data Cartridge Developer’s Guide, Release 2 (8.1.6).
Redwood City, CA, 1999

[Ram 97] Ramaswamy S.: Efficient Indexing for Constraint and Temporal Databases. Proc. 6th
Int. Conf. on Database Theory (ICDT), LNCS 1186: 419-413, 1997

[Sam 90] Samet H.: Applications of Spatial Data Structures. Addison-Wesley, 1990.
[SMS+ 00] Srinivasan J., Murthy R., Sundara S., Agarwal N., DeFazio S.: Extensible Indexing: A

Framework for Integrating Domain-Specific Indexing Schemes into Oracle8i. Proc.
IEEE 16th Int. Conf. on Data Engineering (ICDE): 91-100, 2000

[Sno 00] Snodgrass R. T.: Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann, 2000

[Sto 86] Stonebraker M.: Inclusion of New Types in Relational Data Base Systems. Proc. IEEE
2nd Int. Conf. on Data Engineering (ICDE): 262-269, 1986

[TCG+ 93] Tansel A. U., Clifford J., Gadia S., Jajodia S., Segev A., Snodgrass R.: Temporal
Databases: Theory, Design and Implementation. Redwood City, CA, 1993.

[TJS 98] Torp K., Jensen C. S., Snodgrass R. T.: Stratum Approaches to Temporal DBMS
Implementation. Proc. IDEAS Conf.: 4–13, 1998

