
Fuzzy Decomposition of Spatially Extended Objects

Hans-Peter Kriegel, Martin Pfeifle
University of Munich, Germany
{kriegel, pfeifle}@dbs.ifi.lmu.de

Abstract

Modern database applications including computer-aided de-
sign, multimedia information systems, medical imaging, mo-
lecular biology, or geographical information systems impose
new requirements on the effective and efficient management
of spatial data. Particular problems arise from the need of
high resolutions for large spatial objects. In this short paper,
we sketch a new decompositioning approach based on clus-
tering. We propose to describe a voxelized spatial object by a
set of Gaussian distribution functions. Based on this decom-
positioning technique, we propose intersection queries which
do not simply return a boolean value for each database object,
but assign to each object a probability value indicating how
likely an intersection is. The benefit of this approach com-
pared to traditional approaches is that we do not any longer
need an expensive refinement step for detecting whether ob-
jects intersect exactly on the fine-grained voxel sets.

1. Introduction

The efficient management of rasterized geographical ob-
jects has become an enabling technology for many novel da-
tabase applications. As a common and successful approach,
spatial objects can conservatively be approximated by a set of
voxels, i.e. cells of a grid covering the complete data space
(cf. Figure 1). By means of space filling curves, each voxel
(often called pixel in 2D) can be encoded by a single integer
and, thus, an extended object is represented by a set of enu-
merated voxels. As a principal design goal, space filling
curves achieve good spatial clustering properties since cells
in close spatial proximity are encoded by contiguous integers.
Adjacent cell values can be grouped together to intervals, tiles
or boxes which are basic datatypes for spatial applications.

By expressing spatial region queries as intersections of
these spatial primitives, vital operations for GIS applications
can be supported. For these applications suitable index struc-
tures, which guarantee efficient spatial query processing, are
indispensable. An important new requirement for large spa-
tial objects is a high approximation quality which is primarily
influenced by the resolution of the grid covering the data
space. A promising way to cope with high resolution spatial
data may be found somewhere in between replicating and
non-replicating spatial index structures. In the case of repli-
cating access methods, e.g. the Relational Interval Tree [7],
the number of the simple spatial primitives used to approxi-

mate the objects can become very high, resulting in a storage
and query processing overhead. On the other hand, many of
the non-replicating access methods, e.g. R-trees [5], use sim-
ple spatial primitives such as rectilinear hyper-rectangles for
one-value approximations of extended objects. Although
providing the minimal storage complexity, one-value approx-
imations of spatially extended objects often are far too coarse.
In many GIS applications, objects feature a very complex ge-
ometry. A non-replicating storage of such data causes region
queries to produce too many false hits that have to be elimi-
nated by subsequent filter steps. For such applications, the ac-
curacy can be improved by decomposing the objects.

In this paper, we propose a new fuzzy decompositioning
paradigm for high-resolution objects which is based on the
well-known k-means clustering algorithm. The basic idea is
to describe the voxel set by k clusters where the value of k de-
pends on the characteristic of the voxel set. Each cluster is de-
scribed by a few statistical values which are stored in a data-
base. If we carry out collision or window queries, we
determine for each object in the database a certain probability
value that indicates the likelihood that the object belongs to
the result set. This probability value can be computed by ex-
ploiting the statistical information describing the k clusters of
the object and without accessing the fine-grained exact voxel
representations. Note that the traditional approach also as-
signs probability values to the object, i.e. 0 if the object inter-
sects the query object and 1 otherwise. As we omit the refine-
ment step on the exact voxel representations, we can
accelerate the complete query process.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the related work in the area of spatial object
decompositioning. In Section 3, we present our decomposi-
tioning approach based on clustering. In Section 4, we show
how we can carry out fuzzy intersection queries based on de-
composed spatial objects. Finally, we will close the paper in
Section 5 with a short summary and a few remarks on future
work.

Figure 1. Voxelized Spatial Objects.

ii) Voxel seti) Spatial object iii) Voxel linearization

a)

17th Int. Conf. on Scientific and Statistical Database Management (SSDBM'05)

2. Related Work

In this section, we will shortly present the related work in
the area of decomposing high resolution voxelized objects.

Gaede pointed out that the number of voxels representing
a spatially extended object exponentially depends on the
granularity of the grid approximation [4]. Furthermore, the
extensive analysis given in [2] shows that the number of vox-
els is proportional to the surface of the approximated object.
Thus, in the case of large high resolution parts, the number of
voxels can become unreasonably high.

A common approach to approximate the high resolution
voxelized objects is to use their minimum bounding rectan-
gles. Although providing the minimal storage complexity,
one-value approximations of spatially extended objects often
are far too coarse. In many applications, GIS or CAD objects
feature a very complex and fine-grained geometry. The recti-
linear bounding box of the brake line of a car, for example,
would cover large parts of the data space. A non-replicating
storage of such data would cause too many false hits in the
filter step that have to be eliminated by the refinement step.

On top of the resolution of the data space and the clustering
properties of the space-filling curve, a more fine-grained con-
trol of the trade-off between redundancy and accuracy is de-
sired for many applications. Note that the granularity may
have to differ for each individual object rather than to apply
the same resolution to all objects. An approach to control this
trade-off is the concept of size-bound and error-bound ap-
proximation [9] beyond the granularity-bound approxima-
tion [4]. A recursive subdivision procedure stops if the de-
sired redundancy (size-bound) or the desired maximum
approximation error (error-bound) is reached.

In [10], Kriegel and Schiwietz tackled the problem of
“complexity versus redundancy” for 2D polygons. They in-
vestigated the natural trade-off between the complexity of the
components and the redundancy, i.e. the number of compo-
nents, with respect to its effect on efficient query processing.
The presented empirically derived root-criterion suggests to
decompose a polygon consisting of n vertices into
many simple approximations.

In [6] a high-resolution spatial object was decomposed
based on its linearized voxel sequence (cf. Figure 1c) into
gray intervals which cover both object voxel and non object
voxel. The hull of the gray intervals was used in the filter step
to generate a candidate set. In the refinement step the voxel
set covered by a gray interval was evaluated to avoid false
hits. The disadvantage of this approach is that the filter step
has a rather bad selectivity because much dead space is cov-
ered by the gray intervals.

In this paper, we propose a totally new decompositioning
approach of voxelized objects based on clustering. Thus, we
decompose the spatial objects directly in the original 2D/3D
space without linearizing the voxels before by means of space
filling curves.

3. Clustering based Object Decompositioning

In the following, we assume that the geometry of a spatial
object is described by a set of voxels which in 2D are also
known as pixels. Throughout the remainder of this paper, we
assume a 3D data space.

Definition 1 (Voxelized Objects)
Let O be the domain of all object identifiers and let id ∈ O be
an object identifier. Furthermore, let IN3 be the domain of
3-dimensional points. Then, we call a pair Ovoxel = (id, {v1, ...,
vn}) a 3-dimensional voxelized object. We call
each of the vi an object voxel, where i ∈ {1, .., n}. By vx, vy,
and vz we describe the corresponding coordinates of a voxel v.

The idea of our decompositioning approach is to apply the
rather simple and well-known k-means clustering algorithm
[8] to our voxel set. The k-means algorithm can be regarded
as a simplified version of the more general EM algorithm [1]
which describes a dataset by multiple Gaussian distribution
functions. In our approach, we regard each voxel as a 3-di-
mensional feature vector. The clustering algorithm k-means
divides each voxelized object o = (id, {v1, ..., vn}) into a set of
k clusters ,.. , . Each cluster contains a voxel set .
For these k voxel sets the two following properties hold:

 •
 •

Each cluster is represented by a centroid .

Each voxel of the object is thereby assigned to the closest
centroid. An iterative control strategy is used to minimize the
squared distances of the voxels to the centroids:

The algorithm starts with a random partition and iterative-
ly reassigns the voxels to the centroids based on the distances
between the voxels and the centroids until a convergence cri-
terion is met. For example, the iteration may stop when no
voxels are reassigned from one centroid to another one any
more, or when the squared error sqerro of the clustering ceas-
es to decrease significantly, or after a maximum number of it-
erations has been performed. Advantages of the k-means
clustering algorithm are that it is easy to understand and to im-
plement and that the runtime complexity is O() for n
voxels, k clusters and l iterations.

The accuracy of our decompositioning algorithm is influ-
enced by the chosen parameters, i.e. the value of k and the ini-
tial centroids. In [3] a method based on sampling is intro-
duced which helps to chose these parameters appropriately.

O n()

 O 2N 3

×∈

C1
o Ck

o Ci
o Vi

o

i j 1…k(): i j≠ v V∈ i
o

v Vj
o∉⇒()⇒()∈,∀

Vi
o

i 1…k=
∪ v1 ... vn, ,{ }=

Ci
o

Ci
o 1

Vi
o

---------- vx
v Vi

o∈
∑ vy

v Vi
o∈

∑ vz
v Vi

o∈
∑, ,

 
 
 
  t

=

Ci
o

sqerr
o

L2 v Ci
o, 

 
2

v Vi
o∈

∑
i 1=

k

∑=

n k l⋅ ⋅

The distribution of the voxels within one cluster can
accurately be described by the centroid = (, ,)
and the standard deviations , , . These standard
deviation values can be estimated by using the following for-
mula1.

Obviously, we could also describe the distribution of the
voxels by means of their covariance matrix . In order
to reduce the storage cost per cluster, we refrain from this
more complex description and store only the centroids and the
standard deviation values. Thus, we approximate a voxel set

 of a cluster by an axis-parallel Gaussian distribution
function.

Figure 2 shows an example for describing two 2-dimen-
sional voxelized objects o1 and o2 by means of 3 and 2 ax-
is-parallel Gaussian distribution functions, respectively. Note
that the problem of finding an appropriate value of k is part of
active research in the data mining community. We can benefit
from these results for solving the problem of finding the right
trade-off between accuracy and redundancy in the case of
spatial object decompositioning.

Figure 2, furthermore, shows the minimum bounding rect-
angles (MBR) of the clusters. These MBRs can be used
throughout the filter step to detect true misses. Nevertheless,
in the example in Figure 2, for both objects o1 and o2 a rather
expensive refinement step on the exact voxel representation
is necessary to decide whether the objects belong to the result
set or not.

We propose to store the MBRs of an object in an R-tree [5]
or one of its variants. In order to increase the efficiency of the
refinement step, we do not store the exact voxel sets of a
cluster . We only store the centroid values , ,
and the standard deviations , , along with the
MBRs of the cluster. Based on this statistical information, we
can compute how likely an intersection between an object and
the query object is without accessing the detailed information
provided by the voxel set. In Figure 2, for instance, we will
detect that the probability that o1 is intersected by the window

query is below 50%. On the other hand, based on the Gaussian
distribution functions we can compute that it is very likely
that o2 belongs to the result set. In the following section, we
will formally introduce this approach.

4. Fuzzy Intersection Query

The idea to avoid the expensive refinement step, is to as-
sign to each database object represented by an object depen-
dent number of k clusters a probability value indicating the
likelihood that the object belongs to the result set. Traditional
intersection queries assign a value 1 or 0 to each object in the
database indicating whether the object belongs to the result or
not. We propose fuzzy intersection queries which order all da-
tabase objects according to their intersection probability.

Definition 2 Fuzzy Intersection Query
Let DB be a database of voxelized decomposed objects,

and let q be a query object. Furthermore, let p() denote
the probability that q intersects the object . Then, the
fuzzy intersection query fuzzy : 1..|DB| → DB×[0,1] is a
function which ranks all objects o ∈ DB according to their
probabilities p(), i.e.

∀i, j ∈ 1..|DB|:
i<j ∧ fuzzy (i)=(oi, p()) ∧ fuzzy (j)=(oj, p()) ⇒

p() p()

Note that the result of such a fuzzy intersection query does
not necessarily contain less information than the traditional
result set. For instance, in Figure 2 the traditional approach
only detects that object o1 does not intersect the window
query. Our approach might assign a probability value
p() = 0.28 indicating that the object is quite close to
the query object. We suggest that this probability value can be
regarded as a meaningful measure for describing the close-
ness between database objects and query objects. Thus, the
fuzzy intersection queries might even provide more informa-
tion than the binary result intersection or non-intersection.

The crucial question is now how to compute the probabil-
ity that an object belongs to a result set. In this short paper, we
will exemplarily demonstrate how to compute this value for
box volume queries (cf. Figure 2) which are commonly used
in many applications, e.g. GIS or CAD applications.

First, we must compute for each cluster of an object o
the probability that at least one voxel of the corresponding
voxel set intersects the query. Thereto, we first determine
for each dimension individually the probabil-
ity that the query interval [l∆, u∆] intersects the
one-dimensional Gaussian distribution with center
and standard deviation (cf. Figure 3). By means of the
standard Gaussian cumulative distribution function, conven-
tionally denoted by Φ, we can compute the probability
straightforward by the following equation:

1. Likewise, we compute the values and

Ci
o

Ci
o

ci x,
o

ci y,
o

ci z,
o

σi x,
o σi y,

o σi z,
o

σi x,
o 1

Vi
o 1–

------------------- vx ci x,
o–()

2

v Vi
o∈

∑2
=

σi y,
o σi z,

o

Vi
o Covi

o

Vi
o Ci

o

Figure 2. Gaussian distribution functions.

window query

minimum bounding rectangle
of cluster C1

o1
Gaussian distribution function
of cluster C2

o1

object o1

object o2

Vi
o

Ci
o

ci x,
o

ci y,
o

ci z,
o

σi x,
o σi y,

o σi z,
o

q o∩
o DB∈

∩

q o∩

∩ q oi∩ ∩ q oj∩
oi oj≠ ∧ q oi∩ ≥ q oj∩

q o1∩

Ci
o

Vi
o

∆ x y z, ,{ }∈
pi ∆,

o

ci ∆,
o

σi ∆,
o

pi ∆,
o

pi ∆,
o

p ci ∆,
o σi ∆,

o
l∆ u∆, , ,() Φ

u∆ ci ∆,
o

–

σi ∆,
o

 
 
 

Φ
l∆ ci ∆,

o
–

σi ∆,
o

 
 
 

–= =

For the voxel set belonging to the current cluster, we can
assume that the three dimensions are independent from each
other. Note that this assumption has to hold only for the object
voxels of one cluster and not for all voxels of an object. Based
on this legitimate assumption, we can easily compute the
probability p that the box query intersects the axis-parallel
3-dimensional Gaussian distribution which describes the
cluster C.

Lemma 1. Let q = [lx, ux]x[ly, uy]x[lz, uz] be a 3-dimension-
al box query. Furthermore, let be a cluster having | |
many voxels which can be described by a 3-dimensional
Gaussian distribution function with centroid = (ci,x, ci,y,
ci,z) and standard deviations , , . Then, we can
compute the probability that at least one voxel of the cluster

 is within the box query by:

Finally, we can state the following lemma.

Lemma 2. Let q = [lx, ux]x[ly, uy]x[lz, uz] be a 3-dimension-
al box query. Furthermore, let o be a voxelized object
which is decomposed into k clusters , ..., . Then, we
can compute the probability p(q, o) that q intersects o by:

Obviously, based on this probability value, we can answer
the fuzzy intersection query introduced in Definition 2. We
traverse the R-tree as usual. On the leaf level of the R-tree, we
compute the probability values for each cluster (cf. Lemma
1) and combine these probability values to object probability
values according to Lemma 2. Note that if we find one cluster
which intersects our window query with high probability, the
corresponding object probability value will be close to 1. On
the other hand, to those objects for which we have not detect-
ed any clusters throughout the tree traversal, we assign a
probability value of 0.

5. Conclusion

In this short paper, we sketched a new approach which
helps to find an optimal trade-off between complexity and re-
dundancy of object approximations. The proposed decompo-
sitioning algorithm is based on the well-known clustering al-
gorithm k-means. Thus a voxelized object is described by k
clusters. We describe each of these clusters by an axis-parallel
3-dimensional Gaussian distribution function and a minimum
bounding rectangle of the cluster voxels. We store these min-
imum bounding rectangles along with statistical information
in standard index structures. During query processing, we
propose to omit the expensive refinement step on the exact
voxel representations. Instead, we assign a probability value
to each database object indicating how likely it belongs to the
result set. The corresponding probability values are comput-
ed by exploiting statistical information describing the multi-
variate Gaussian distribution functions. In a give-me-more
manner the user receives the objects which most likely belong
to the result set.

Our first experiments showed that we can accelerate inter-
section queries considerably while still achieving high quali-
ty results. In our future work, we plan a detailed experimental
evaluation demonstrating the characteristics and benefits of
our fuzzy decompositioning approach.

References

[1] Dempster A.P., Laird N.M., and Rubin D.B.: Maximum Like-
lihood from Incomplete Data via the EM algorithm. Journal of the
Royal Statistical Society, Series B, 39(1):1-31, 1977.

[2] Faloutsos C., Jagadish H. V., Manolopoulos Y.: Analysis of the
n-Dimensional Quadtree Decomposition for Arbitrary Hyperrect-
angles. IEEE TKDE 9(3), 1997, 373-383.

[3] Fayyad U., Reina C., Bradley P.: Initialization of Iterative
Refinement Clustering Algorithms. KDD 1998.

[4] Gaede V.: Optimal Redundancy in Spatial Database Systems.
SSD 1995, pp. 96-116.

[5] Guttman A.: R-trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD1984, pp. 47-57.

[6] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: Spatial Query
Processing for High Resolutions. DASFAA 2003.

[7] Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An
Object-Relational Approach to Manage Spatial and Temporal Data.
SSTD 2001, pp. 481-501.

[8] McQueen J.: Some Methods for Classification and Analysis of
Multivariate Observation. Proc. 5th Berkeley Symp. on Math. Stat-
ist. and Prob., Vol. 1, 1965.

[9] Orenstein J. A.: Spatial Query Processing in an Object-Ori-
ented Database System. SIGMOD 1986, pp. 326-336.

[10] Schiwietz M., Kriegel H.-P.: Query Processing of Spatial
Objects: Complexity versus Redundancy. SSD 1993, pp. 377-396.

Gaussian distribution along dimension

∆

Figure 3. Intersection probability of a query interval [l∆, u∆]

and a cluster in dimension ∆.

pi ∆,
o

Ci
o

l∆ u∆
query range in
dimension ∆

probability intersection probability

ci ∆,
o

σi ∆,
o

pi ∆,
o Φ= u∆ ci ∆,

o–

σi ∆,
o

 
 
 

Φ
l∆ ci ∆,

o–

σi ∆,
o

 
 
 

–

Φ
l∆ ci ∆,

o–

σi ∆,
o

 
 
 

Ci
o Vi

o

Ci
o

σi x,
o σi y,

o σi z,
o

Ci
o

p q Ci
o,() 1 1 p ci ∆,

o σi ∆,
o l∆ u∆, , ,()

∆ x y z, ,{ }∈
∏–

 
 
  Vi

o

–=

C1
o

Ck
o

p q o,() 1 1 p q Ci
o,()–()

i 1=

k

∏–=

