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Abstract

Modern database applications including computer-aided de-
sign, multimediainformation systems, medical imaging, mo-
lecular biology, or geographical information systemsimpose
new requirements on the effective and efficient management
of gpatial data. Particular problems arise from the need of
high resolutions for large spatial objects. In this short paper,
we sketch a new decompositioning approach based on clus-
tering. We propose to describe avoxelized spatial object by a
set of Gaussian distribution functions. Based on this decom-
positioning technique, we proposeintersection querieswhich
do not simply return aboolean valuefor each database obj ect,
but assign to each object a probability value indicating how
likely an intersection is. The benefit of this approach com-
pared to traditional approachesis that we do not any longer
need an expensive refinement step for detecting whether ob-
jectsintersect exactly on the fine-grained voxel sets.

1. Introduction

The efficient management of rasterized geographical ob-
jects has become an enabling technology for many novel da-
tabase applications. As a common and successful approach,
spatial objectscan conservatively be approximated by aset of
voxels, i.e. cells of agrid covering the complete data space
(cf. Figure 1). By means of space filling curves, each voxel
(often called pixel in 2D) can be encoded by asingle integer
and, thus, an extended object is represented by a set of enu-
merated voxels. As a principal design goal, space filling
curves achieve good spatial clustering properties since cells
inclosespatial proximity areencoded by contiguousintegers.
Adjacent cell valuescan begroupedtogether tointervals, tiles
or boxes which are basic datatypes for spatial applications.

By expressing spatial region queries as intersections of
these spatial primitives, vital operationsfor GIS applications
can be supported. For these applications suitable index struc-
tures, which guarantee efficient spatial query processing, are
indispensable. An important new requirement for large spa-
tial objectsisahigh approximation quality whichisprimarily
influenced by the resolution of the grid covering the data
space. A promising way to cope with high resolution spatial
data may be found somewhere in between replicating and
non-replicating spatial index structures. In the case of repli-
cating access methods, e.g. the Relationa Interval Tree[7],
the number of the simple spatial primitives used to approxi-
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Figure 1. Voxelized Spatial Objects.

mate the objects can become very high, resulting in astorage
and query processing overhead. On the other hand, many of
the non-replicating access methods, e.g. R-trees[5], usesim-
ple spatia primitives such as rectilinear hyper-rectangles for
one-value approximations of extended objects. Although
providing theminimal storage complexity, one-value approx-
imationsof spatially extended objectsoften arefar too coarse.
In many GIS applications, objectsfeature avery complex ge-
ometry. A non-replicating storage of such data causes region
queries to produce too many false hits that have to be elimi-
nated by subsequent filter steps. For such applications, theac-
curacy can beimproved by decomposing the objects.

In this paper, we propose a new fuzzy decompositioning
paradigm for high-resolution objects which is based on the
well-known k-means clustering algorithm. The basic ideais
to describethevoxe set by k clusterswhere thevalue of k de-
pendson thecharacteristic of thevoxel set. Each clusterisde-
scribed by afew statistical values which are stored in a data-
base. If we carry out collison or window queries, we
determinefor each object in the database acertain probability
value that indicates the likelihood that the object belongs to
the result set. This probability value can be computed by ex-
ploiting the statistical information describing the k clusters of
the object and without accessing the fine-grained exact voxel
representations. Note that the traditional approach also as-
signs probability valuesto the object, i.e. 0if the object inter-
sectsthe query object and 1 otherwise. Aswe omit the refine-
ment step on the exact voxel representations, we can
accelerate the complete query process.

Theremainder of the paper isorganized asfollows. In Sec-
tion 2, we present therelated work in the area of spatial object
decompositioning. In Section 3, we present our decomposi-
tioning approach based on clustering. In Section 4, we show
how we can carry out fuzzy intersection queries based on de-
composed spatial objects. Finally, we will close the paper in
Section 5 with a short summary and afew remarks on future
work.



2. Related Work

In this section, we will shortly present the related work in
the area of decomposing high resol ution voxelized objects.

Gaede pointed out that the number of voxels representing
a gpatially extended object exponentialy depends on the
granularity of the grid approximation [4]. Furthermore, the
extensive analysisgivenin [2] showsthat the number of vox-
elsis proportional to the surface of the approximated object.
Thus, in the case of large high resol ution parts, the number of
voxels can become unreasonably high.

A common approach to approximate the high resolution
voxelized objects is to use their minimum bounding rectan-
gles. Although providing the minimal storage complexity,
one-val ue approximations of spatially extended objects often
arefar too coarse. In many applications, GIS or CAD objects
feature avery complex and fine-grained geometry. The recti-
linear bounding box of the brake line of a car, for example,
would cover large parts of the data space. A non-replicating
storage of such data would cause too many false hits in the
filter step that have to be eliminated by the refinement step.

Ontop of theresolution of the dataspace and theclustering
properties of the space-filling curve, amorefine-grained con-
trol of the trade-off between redundancy and accuracy is de-
sired for many applications. Note that the granularity may
have to differ for each individual object rather than to apply
the sameresolution to all objects. An approach to control this
trade-off is the concept of size-bound and error-bound ap-
proximation [9] beyond the granularity-bound approxima-
tion [4]. A recursive subdivision procedure stops if the de-
sired redundancy (size-bound) or the desired maximum
approximation error (error-bound) is reached.

In [10], Kriegel and Schiwietz tackled the problem of
“complexity versus redundancy” for 2D polygons. They in-
vestigated the natural trade-off between the compl exity of the
components and the redundancy, i.e. the number of compo-
nents, with respect to its effect on efficient query processing.
The presented empirically derived root-criterion suggests to
decompose a polygon consisting of n vertices into O(./n)
many simple approximations.

In [6] a high-resolution spatial object was decomposed
based on its linearized voxel sequence (cf. Figure 1c) into
gray intervals which cover both object voxel and non object
voxel. Thehull of the gray intervalswas used inthefilter step
to generate a candidate set. In the refinement step the voxel
set covered by a gray interval was evaluated to avoid false
hits. The disadvantage of this approach is that the filter step
has arather bad selectivity because much dead spaceis cov-
ered by the gray intervals.

In this paper, we propose atotally new decompositioning
approach of voxelized objects based on clustering. Thus, we
decompose the spatial objects directly in the original 2D/3D
spacewithout linearizing the voxel sbefore by means of space
filling curves.

3. Clustering based Object Decompositioning

In the following, we assume that the geometry of aspatial
object is described by a set of voxels which in 2D are also
known as pixels. Throughout the remainder of this paper, we
assume a 3D data space.

Definition 1 (Voxelized Objects)

Let O bethedomain of all object identifiersandletid € O be
an object identifier. Furthermore, let IN® be the domain of
3-dimensional points. Then, wecall apair O g,q = (id, {Vy, ...,
v.}) e 0x2V a3-dimensional voxelized object. We call
each of the v, an object voxel, wherei € {1, .., n}. By v,

and v, we describethe corresponding coordi nat%of avoxel v.

Theideaof our decompositioning approachisto apply the
rather simple and well-known k-means clustering algorithm
[8] to our voxel set. The k-means algorithm can be regarded
asasimplified version of the more general EM algorithm [1]
which describes a dataset by multiple Gaussian distribution
functions. In our approach, we regard each voxel as a 3-di-
mensional feature vector. The clustering algorithm k-means
divideseach voxelized object o = (id, { vy, ..., v} ) intoaset of
kclusters C7,..,Cy . Each cluster C” containsavoxel set V.
For these k voxel setsthe two following properties hold:
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Each voxel of the object is thereby assigned to the closest
centroid. Aniterative control strategy isused to minimizethe
squared distances of the voxelsto the centroids:
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sqerr® = 3" % LZ(V, C?)

i=1veV

The algorithm startswith arandom partition and iterative-
ly reassignsthe voxel sto the centroids based on the distances
between the voxel s and the centroids until aconvergence cri-
terion is met. For example, the iteration may stop when no
voxels are reassigned from one centroid to another one any
more, or when the squared error sgerr® of the clustering ceas-
esto decrease significantly, or after amaximum number of it-
erations has been performed. Advantages of the k-means
clustering algorithmarethat itiseasy to understand and toim-
plement and that the runtime complexity isO(n- k- 1) for n
voxels, k clustersand | iterations.

The accuracy of our decompositioning algorithm isinflu-
enced by the chosen parameters, i.e. thevaueof kand theini-
tial centroids. In [3] a method based on sampling is intro-
duced which helps to chose these parameters appropriately.
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Figure 2. Gaussian distribution functions.

The distribution of the voxels withi none cl uster c’ can
accurately be described by thecentr0|d C. = (cI % Ci, y i, >)
and the standard deviations o7 , , cﬁy , . These standard
deviation values can be estimated by us ng the following for-
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Obvioudly, we could also describe the distribution of the
voxels V; by meansof their covariance matrix Cov! . Inorder
to reduce the storage cost per cluster, we refrain from this
morecomplex description and storeonly the centroidsand the
standard deviation values. Thus, we approximate avoxel set
v’ of acluster C by an axis-parallel Gaussian distribution
function.

Figure 2 shows an example for describing two 2-dimen-
sional voxelized objects o, and o, by means of 3 and 2 ax-
is-parallel Gaussian distribution functions, respectively. Note
that the problem of finding an appropriate value of kispart of
activeresearch in the data mining community. We can benefit
from these resultsfor solving the problem of finding theright
trade-off between accuracy and redundancy in the case of
spatial object decompositioning.

Figure 2, furthermore, showsthe minimum bounding rect-
angles (MBR) of the clusters. These MBRs can be used
throughout thefilter step to detect true misses. Nevertheless,
inthe examplein Figure 2, for both objects o, and o, arather
expensive refinement step on the exact voxel representation
isnecessary to decide whether the objectsbel ong to the result
set or not.

We proposeto store the MBRs of an object in an R-tree[5]
or one of itsvariants. In order to increase the efficiency of the
refinement step, we do not store the exact voxel sets V! of a
clugter C. We only store the centr0|d val ues Cl s ?y . Ciy
and the standard deviations o, , cfy, iz along with the
MBRsof thecluster. Based on thisstatistical information, we
can compute how likely anintersection between an object and
the query object iswithout accessing the detail ed information
provided by the voxel set. In Figure 2, for instance, we will
detect that the probability that o, isintersected by thewindow

1. Likewise, we computethevalues of , and o7 ,

query isbelow 50%. Onthe other hand, based onthe Gaussian
distribution functions we can compute that it is very likely
that 0, belongs to the result set. In the following section, we
will formally introduce this approach.

4. Fuzzy Intersection Query

The ideato avoid the expensive refinement step, isto as-
sign to each database object represented by an object depen-
dent number of k clusters a probability value indicating the
likelihood that the object belongsto the result set. Traditional
intersection queriesassign avalue 1 or 0 to each object in the
databaseindicating whether the obj ect belongsto theresult or
not. We proposefuzzy intersection querieswhich order all da-
tabase objects according to their intersection probability.

Definition 2 Fuzzy I ntersection Query

Let DB be a database of voxelized decomposed objects,
and let q be aquery object. Furthermore, let p(q m 0) denote
the probability that g intersectsthe object o € DB. Then, the
fuzzy intersection query fuzzy-: 1..DB| — DBx[0,1] is a
function which ranks all objects 0 € DB according to their
probabilitiesp(qM 0), i.e.

Vi,je 1.DBJ:
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Notethat the result of such afuzzy intersection query does
not necessarily contain less information than the traditional
result set. For instance, in Figure 2 the traditional approach
only detects that object 0, does not intersect the window
query. Our approach might assign a probability value
p(qno;) = 0.28 indicating that the object is quite close to
the query object. We suggest that this probability value canbe
regarded as a meaningful measure for describing the close-
ness between database objects and query objects. Thus, the
fuzzy intersection queries might even provide moreinforma-
tion than the binary result intersection or non-intersection.

The crucial question is now how to compute the probabil -
ity that an object belongsto aresult set. Inthisshort paper, we
will exemplarily demonstrate how to compute this value for
box volume queries (cf. Figure 2) which are commonly used
in many applications, e.g. GIS or CAD applications.

First, we must compute for each cluster C” of an object o
the probability that at least one voxel of the corresponding
voxel set V! intersectsthequery. Thereto, wefirst determine
for each dimension A e {x,y, z} individually the probabil -
ity pI A that the query interval [l,, u,] intersects the
one-dimensional Gau53|an distribution with center ¢,
and standard deviation o7 , (cf. Figure 3). By means of the
standard Gaussian cumul ative distribution function, conven-
tionally denoted by ®, we can compute the probability pi‘f A
straightforward by the following equation:
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Figure 3. Intersection probability pﬁA of aquery interval [l 5, u,]
and acluster C indimension A.

For the voxel set belonging to the current cluster, we can
assume that the three dimensions are independent from each
other. Notethat thisassumption hasto hold only for the object
voxelsof onecluster and not for all voxelsof an object. Based
on this legitimate assumption, we can easily compute the
probability p that the box query intersects the axis-parallel
3-dimensional Gaussian distribution which describes the
cluster C.

Lemmal. Letq=[l,, ulxl,, ulxl, u] bea3-dimension-
al box query. Furthermore, let C be acluster having |V? |
many voxels which can be described by a 3-dimensional
Gaussian distribution function with centroid & = (Cixo Ciys
¢;,) and standard deviations o ,, o;,, o; ,. Then, we can
compute the probability that at least one voxel of the cluster
C? iswithin the box query by:

Vi
p(q9 C|O) = 1_(1_ H p(cic? A’ Gicz A’ lA’ UA)}
Ae {xY,z}

Finally, we can state the following lemma.

Lemma2. Letq=[l,, ulxl,, uJx[l, u,] bea3-dimension-
al box query. Furthermore, let 0o be a voxelized object
which is decomposed into k clusters C7, ..., C;. Then, we
can compute the probability p(q, o) that g intersects o by:

k
p(a.0) = 1- ] (1-p(a C))
i=1

Obviousdly, based on this probability value, we can answer
the fuzzy intersection query introduced in Definition 2. We
traversethe R-treeasusual. Ontheleaf level of the R-tree, we
compute the probability values for each cluster (cf. Lemma
1) and combine these probability valuesto object probability
valuesaccordingto LemmaZ2. Notethat if wefind one cluster
which intersects our window query with high probability, the
corresponding object probability value will be closeto 1. On
the other hand, to those objects for which we have not detect-
ed any clusters throughout the tree traversal, we assign a
probability value of 0.

5. Conclusion

In this short paper, we sketched a new approach which
helpsto find an optimal trade-off between complexity and re-
dundancy of object approximations. The proposed decompo-
sitioning algorithm is based on the well-known clustering al-
gorithm k-means. Thus a voxelized object is described by k
clusters. Wedescribe each of these clustersby an axis-parallel
3-dimensional Gaussi an distribution function and aminimum
bounding rectangle of the cluster voxels. We store these min-
imum bounding rectangles along with statistical information
in standard index structures. During query processing, we
propose to omit the expensive refinement step on the exact
voxel representations. Instead, we assign a probability value
to each database object indicating how likely it belongsto the
result set. The corresponding probability values are comput-
ed by exploiting statistical information describing the muilti-
variate Gaussian distribution functions. In a give-me-more
manner the user receivesthe objectswhich most likely belong
to the result set.

Our first experiments showed that we can accel erate inter-
section queries considerably while still achieving high quali-
ty results. In our futurework, we plan adetailed experimental
evaluation demonstrating the characteristics and benefits of
our fuzzy decompositioning approach.
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