
Probabilistic Ranking Queries on Gaussians

Christian Böhm Alexey Pryakhin Matthias Schubert
Institute for Informatics
University of Munich

D-80538 Munich, Germany
{boehm,pryakhin,schubert}@dbs.ifi.lmu.de

Abstract

In many modern applications, there are no exact values
available to describe the data objects. Instead, the feature
values are considered to be uncertain. This uncertainty is
modeled by probability distributions instead of exact feature
values. A typical application of such an uncertainty model
are moving objects where the exact position of each object
can be determined only at discrete time intervals. Queries
often involve the positions of objects between two such time
stamps or after the last known time stamp. Then the ob-
jects are essentially uncertain unless the pattern of move-
ment is very simple (e.g. linear). One of the most important
probability density functions for those applications is the
Gaussian or normal distribution which can be defined by
a mean value and a standard deviation. In this paper, we
examine a new type of queries on uncertain data objects,
called probability ranking queries (PRQ). A PRQ retrieves
those k objects which have the highest probability of being
located inside a given query area. To speed up probabilis-
tic queries on large sets of uncertain data objects described
by Gaussians, we introduce a novel index structure called
Gauss-tree. Furthermore, we provide an algorithm for em-
ploying the Gauss-tree to answer PRQs. In our experimen-
tal evaluation, we demonstrate that the Gauss-tree achieves
a considerable efficiency advantage with respect to PRQs
compared to other applicable methods.

1 Introduction

Recently, the research community is spending increas-

ing effort to the development of databases that are capa-

ble to handle uncertain data objects. For an uncertain data

object, some or even all describing feature values are not

exactly known. However, it is possible to make conclusions

about uncertain data objects by describing the uncertain val-

ues using probability distributions. For real valued features,

a density distribution function can be assumed which can

be used to approximate the exact feature value based on the

last observed exact value. Example applications for uncer-

tain objects are databases managing moving objects where

it is not possible to determine the exact positions of objects

at each point of time. Instead, the position of each observed

moving object is recorded regularly after a certain time in-

terval has passed. If a query occurs in the meantime, the

exact location of the object is unknown. However, know-

ing the last position of an object, the current position of the

object can be described by a density distribution. A simi-

lar scenario occurs in sensor networks collecting environ-

mental data like temperature, noise level or CO2 emissions.

Usually, the sensors transfer the collected information to a

database and due to bandwidth and storage limitations the

exact values may be obtained in certain time intervals only.

Again, if a query is posed at a time when the last exact value

has been recorded some time ago, the object value becomes

uncertain.

In order to manage uncertain objects in a database, an un-

certainty model is needed to derive a probability distribution

from the last observed feature values. A common approach

which is described in [4] is to assume that there is at least a

certain interval where it can be guaranteed that the current

value of the data object is contained in. Within this interval

an arbitrary density distribution function is specified. We

will refer to this approach as the interval uncertainty model.

Though there exists a large variety of probability density

functions, most applications rely on standard distributions

like the uniform distribution or the Gaussian distribution for

each data object. A disadvantage of the interval uncertainty

model is the need to specify an interval which must contain

the current object value. Though it is quite often possible

to make some worst-case estimation, the resulting intervals

often tend to be crude approximations of the current value

which might be a problem for the selectivity of query pro-

cessing. A solution to this approach is the use of distribu-

tion functions like the Gaussian where it is not necessary to

specify an explicit interval. Since the density of a Gaussian

rapidly decreases after a given distance to the mean value is

18th Int. Conf. on Scientific and Statistical Database Management (SSDBM'06)

reached, the area for which it is likely that the current object

value is contained in, is limited in a natural way.

In this paper, we therefore introduce another uncertainty

model, called Gaussian uncertainty model. The Gaussian

density distribution is one of most established ways to de-

scribe uncertainty in a variety of applications. A Gaus-

sian is defined w.r.t. two parameters, the mean value and

the standard deviation. For example, to model the change

of temperature, recorded by a sensor in a sensor network,

the mean value can be assumed at the last observed exact

value and the variance value can be estimated based on re-

cent variations of the observed temperatures. An important

advantage of the Gaussian uncertainty model is that each

object value is only complemented with one additional un-

certainty attribute. Employing other distributions having p
additional parameters increases the size of the database p
times as well. This is a problem if we already assume lim-

ited storage capacity and bandwidth. Based on the Gaussian

uncertainty model, we will discuss two important types of

queries, probability threshold queries (PTQs) [5] and prob-

ability ranking queries(PRQs). The second type of queries,

the PRQs, has not been studied, yet. A PRQ retrieves those

k objects which have the highest probability of being lo-

cated inside a given query area. To speed up processing

these queries, we introduce the Gauss-tree, an index struc-

ture for efficient query processing on Gaussian density dis-

tributions. Based on the Gauss-tree, we describe algorithms

for answering PRQs and PTQs. The main contributions of

this paper are:

• A new model to handle uncertainty that does not rely

on specifying guaranteed intervals.

• The definition of a new useful type of probabilistic

queries called probability ranking queries (PRQs).

• An index structure which can be used to organize large

amounts of Gaussians, called the Gauss-tree.

• Algorithms for efficiently answering PTQs and PRQs

on the Gauss-tree.

The rest of this paper is organized as follows. Section

2 contains a brief description of related work in the area

of indexing uncertain objects. In section 3, we define the

Gaussian uncertainty model and both query types that will

be discussed in the paper. The Gauss-tree and novel query

algorithms are discussed in section 4. In our experimen-

tal evaluation in section 5, we demonstrate that the Gauss-

tree outperforms already introduced query processing meth-

ods that are applicable to the Gaussian uncertainty model as

well. Finally, section 6 concludes the paper with a summary

and ideas for future work.

2 Related Work

The Gauss-tree is a member of the R-Tree family which

is a spatial index structure for indexing high dimensional

data. For a survey on spatial index structures please refer

to [2]. The Gauss-tree was first introduced in [3] to an-

swer so-called identification queries which are based on a

Bayesian uncertainty model that cannot be used for spatial

uncertainty as discussed in this paper.

In [4] a new uncertainty model is introduced and several

new types of queries are described that allow the handling

of inexact data. This model is based on the assumption that

it is possible to determine an interval for each feature value

containing the exact value. Additionally, a feature value is

described by an individual probability density function over

this interval. We will refer to this model as the interval un-

certainty model. [5] describes two methods for efficiently

answering probabilistic threshold queries that are based on

the R-Tree [7]. A probabilistic threshold query returns all

data objects that are placed in a given query interval with a

probability exceeding a specified threshold value. The first

of these methods does not rely on any assumptions about the

underlying probability distributions and thus is very gen-

eral. The second method is only suitable for a certain class

of distribution functions, so-called symmetric and smooth

variance monotonic density functions. The most promi-

nent member of the this class of distribution functions is the

Gaussian distribution. The idea of this approach is based

on precalculating so-called x-bounds. An x-bound limits

an area in the value set for which it can be guaranteed that

any interval being completely contained within this area has

a probability of less or equal to x%. For storing x-bounds

the method exploits the observation that the behavior of two

density functions of the same type only depends on a single

parameter. For Gaussians, this parameter is equivalent to

the standard deviation. The differences of this approach to

our new approach are the following. The method described

in [5] relies on a table to approximate the properties of one

type of distribution function. The Gauss-tree is for Gaus-

sians only and thus, directly employs the Gaussian density

function. In [5] a table is used to derive x-bounds for a given

node in an index structure. The Gauss-tree can directly cal-

culate the maximum probability for any Gaussian in a data

node for any given query interval. Unlike the method in [5]

the Gauss-tree has its own split heuristic incorporating the

non-linear characteristic of the standard deviation.

[9] introduced the U-Tree for indexing uncertain 2D ob-

jects. The paper relies again on the interval uncertainty

model. For the U-tree each object is guaranteed to be

placed within a given polygon and a density function is

given over this polygon. To index uncertain objects, the

U-tree builds a conservative approximation for each node

of an U-tree which consists of the minimum bounding rect-

angles (MBRs) of the polygons. The density functions are

approximated by planes starting at each side of a MBR. This

method is not applicable to the Gaussian uncertainty model,

because the planes start on the edges of the MBR. Thus,

since we do not have any guaranteed area in the Gaussian

uncertainty model, the U-tree is not applicable here. Be-

sides the mentioned methods for indexing spatially uncer-

tain objects, [6] introduces existential uncertainty. The idea

of this approach is that the existence of each data object is

uncertain. Thus, each object is coupled with a probability

that it is indeed real. Though this method handles uncer-

tainty as well, the methods for query processing cannot be

applied to the problems discussed in this paper.

3 Uncertainty and Query Types

3.1 Gaussian Uncertainty

An uncertain data object v is described by d uncertain

attribute values vi with 1 ≤ i ≤ d. For each uncertain

attribute vi, we cannot store an exact feature value, but store

a probability density function describing the likelihood of

all possible attribute values. In the Gaussian uncertainty

model, we consider this density distribution function to be

a Gaussian which is defined as follows:

Definition 1 (Gaussian) The Gaussian probability density
function Nμ,σ(x) with respect to a mean value μ and a stan-
dard deviation σ is defined as following:

Nμ,σ(x) =
1√
2πσ

· e−(x−μ)2

2σ2

The Gaussian density function is one of the most estab-

lished methods to model uncertainty and is quite easy to

apply. For example, in a network of temperature sensors,

the last observed temperature provides a suitable mean vec-

tor and the standard deviation can be calculated from the

variation of previously recorded temperatures.

To calculate the probability that an uncertain attribute

value is contained in a certain query interval, we can in-

tegrate the Gaussian density function on the query interval.

Definition 2 (Gaussian Probability Function) For a < b
with a, b ∈ R the Gaussian probability for a given mean
value μ and a standard deviation σ can be defined as fol-
lows:

Pμ,σ(a, b) = Pr(v ∈ [a, b], μ, σ) =
∫ b

a

Nμ,σ(x) dx

An object having d uncertain attributes which are speci-

fied by a vector of mean values �μ and a vector of standard

deviations �σ is called probabilistic feature vector (pfv). For

this pfv, we can calculate the probability that each attribute

value vi is contained in an attribute specific query interval

[ai, bi]. Under the common assumption of attribute inde-

pendency, calculating this probability can be done as fol-

lows:

Pr(vi ∈ [ai, bi], μi, σi,∀i : 1 ≤ i ≤ d) =
d∏

i=1

Pμi,σi
(ai, bi)

3.2 Queries on the Gaussian Uncertainty Model

After describing a method to model uncertain data ob-

jects using Gaussians, we will now formally define two im-

portant types of queries on uncertain data objects. The first

is the probability threshold query (PTQ) which was first de-

fined in [4] for the interval uncertainty model. A PTQ com-

putes all uncertain data objects that might be contained in

a given query interval with a probability exceeding a given

query threshold. For example, we want to retrieve all ships,

that are likely to be found in a certain area of the ocean with

a probability of at least 75%. Formally, a PTQ can be de-

fined as follows:

Definition 3 (Probability Threshold Query(PTQ)) Let
DB be a set of uncertain data objects described by pfvs
having d uncertain dimensions and let t ∈ [0, 1] be a
probability threshold. Given d query intervals [ai, bi] with
1 ≤ i ≤ d and ai, bi ∈ R, a probability threshold query
(PTQ) returns all objects �v ∈ DB for which the following
condition holds:

Pr(vi ∈ [ai, bi],∀i : 1 ≤ i ≤ d) ≥ t.

Let us note that if we cannot specify a query interval for

one of the attributes, we may assume that the attribute is al-

lowed to have any value. In this case, the probability for this

dimension is 1 which is the integral over the complete value

set of the Gaussian density function. To compute a PTQ,

the straightforward approach is to retrieve each pfv in the

database DB and calculate the probability that the corre-

sponding object has attribute values which are contained in

the query area. If this probability is larger than t the object

is part of the result set.

PTQs are very useful in many applications. However,

formulating a PTQ often proves to be more complicated

then necessary. Though the given query interval might be

available, finding a useful threshold probability is often dif-

ficult. Thus, a PTQ might have to be repeated with varying

threshold values until a reasonable result set is found.

To avoid this problem, we introduce a new type of un-

certainty queries called probability ranking queries (PRQs).

A PRQ retrieves the k most likely data objects that might

be placed in the given query interval. Specifying the num-

ber of results is usually much more intuitive and can easily

be done by any user. In the ship example, a possible PRQ

root

na nb nc

nba nbb nbc

(trust vectors)

ncbncanabnaa

3.0 4.03.5

0.6

0.7

0.8

0.9 A

B

C
D

E

F

Figure 1. A 3 level Gauss-tree.

would be : ”Retrieve the 10 ships which are most likely in

the given area”. Formally, a PRQ is defined as follows:

Definition 4 (Probability Ranking Query(PRQ)) Let
DB be a database of uncertain objects described by pfvs
and let k ∈ N be a natural number. Given d query intervals
[ai, bi] with 1 ≤ i ≤ d, ai < bi, ai, bi ∈ R, a probability
ranking query (PRQ) over DB returns the smallest set of
data objects kSet(�a,�b), having at least k elements, for
which the following condition holds:

∀p ∈ kSet(�a,�b),∀q ∈ DB \ kSet(�a,�b) :
Pr(pi ∈ [ai, bi],∀i : 1 ≤ i ≤ d) >

Pr(qi ∈ [ai, bi],∀i : 1 ≤ i ≤ d).

If the number of result objects is not clear, PRQs can

be extended to incremental PRQs which always retrieve the

object having the next largest probability. Since the intro-

duced query algorithms yields a close similarity to the query

algorithm for nearest neighbor search described in [8], an

extension to incremental queries is straight forward.

4 The Gauss-Tree

In the previous section, we have introduced the Gaussian

uncertainty model and queries on top of a set of uncertain

data objects. We are now going to define the Gauss-tree,

a suitable index structure improving the management of

uncertain object values in the Gaussian uncertainty model.

Additionally, we will describe algorithms for efficiently an-

swering PRQs and PTQs on the Gauss-tree.

4.1 The Structure of the Gauss-Tree

The Gauss-tree is a balanced tree from the R-tree family

and can be used to manage d-dimensional pfvs. In con-

trast to the other index structures from this family, not the

space of the spatial objects (i.e. the Gaussians) is indexed

but instead the parameter space (μi, σi, 1 ≤ i ≤ d) of the

Gaussians. The structure of the index is inherited from the

R-tree family which facilitates the integration into object-

relational database management systems.

Definition 5 (Gauss-tree)
A Gauss-tree of degree M is a search tree where the follow-
ing properties hold:

• The root has between 1 and M entries unless it is a
leaf. All other inner nodes have between M/2 and M
entries each. A leaf node has between M and 2M en-
tries.

• An inner node with k entries has k child nodes.

• Each entry of a leaf node is a probabilistic feature vec-
tor consisting of d probabilistic features (μi, σi).

• An entry of a non-leaf node is a minimum bound-
ing rectangle of dimensionality 2d defining upper and
lower bounds for every mean value [μ̌i, μ̂i] and every
standard deviation [σ̌i, σ̂i] as well as the address of the
child node.

• All leaf nodes are at the same level.

In Figure 1, we see an example of a Gauss-tree consist-

ing of 3 levels. On the right side, we have depicted the

minimum bounding rectangle of a leaf node for one of the

probabilistic attributes.

For query processing, we need a conservative approxi-

mation of the probability that any possible Gaussian which

is stored in a node or in a certain subtree, can achieve over

the given query area. In the one dimensional case, we have

to compute the maximum probability of a Gaussian over the

query interval [a, b] under the condition that the mean value

μ ∈ [μ̌, μ̂] and the standard deviation σ ∈ [σ̌, σ̂]. Since the

one dimensional case can be easily extended to the multi-

dimensional case by multiplying the resulting approxima-

tion probabilities, we will derive the closed form for one

dimension only.

As a formula, the approximating pdf P̂μ̌,μ̂,σ̌,σ̂(a, b) is

given as:

P̂μ̌,μ̂,σ̌,σ̂(a, b) = max
μ∈[μ̌,μ̂],σ∈[σ̌,σ̂]

{Pμ,σ(a, b)}

For efficient query processing, a closed formula for

P̂μ̌,μ̂,σ̌,σ̂(a, b) without an explicit maximization process

over two continuous variables is needed. To derive this

closed form, we first of all derive the following lemma.

Lemma 1 Let [a, b] with a < b and a, b ∈ R be a given
query interval and let σ ∈]0,∞[be a given standard devi-
ation. Then, the Gaussian for the given σ having the maxi-
mum probability over the interval [a, b] has the mean value:
μmax = a+b

2 .
Furthermore, the probability of the Gaussian decreases
monotonically with the distance of μ from μmax.

Proof 1 We can differentiate Pμ,σ(a, b) by μ and see that
there is only one extremum μmax. Furthermore, the limes
of Pμ,σ(a, b) for μ → ±∞ is 0. Since Pμmax,σ(a, b) > 0,
Pμ,σ(a, b) is monotonic on both sides of the maximum.

Based on that lemma we can state that the mean value

μ∗ ∈ [μ̌, μ̂] of the wanted conservative approximation is

always the one closest to the middle of the query interval:

μ∗ = max{μ̌,min{1/2(a + b), μ̂}}
To find the corresponding σ∗ for the conservative ap-

proximation, we formulate the following lemma:

Lemma 2 Let [a, b] with a < b and a, b ∈ R be a given
query interval, let μ be a given mean value and let [σ̌, σ̂]
be the interval of valid σ values with 0 < σ̌ < σ̂. Then,
we can maximize Pμ,σ(a, b) by selecting σ∗ from [σ̌, σ̂] as
follows:

Case I a < b < μ:

σmax = −
√

2 ln (μ−b
μ−a)(a − b)(2μ − a − b)

2 ln (μ−b
μ−a)

and σ∗ = max{σ̌, min{σmax, σ̂}}.

Case II a ≤ μ ≤ b : σ∗ = σ̌.

Case III μ < a < b:

σmax =

√
2 ln (μ−b

μ−a)(a − b)(2μ − a − b)

2 ln (μ−b
μ−a)

and σ∗ = min{σ̂, max{σmax, σ̌}}.

Proof 2 Case I We can differentiate Pμ,σ(a, b) for σ and
receive the above formula for σmax which is the only ex-
tremum in]0,∞[. Examining the limes σ → 0 and σ → ∞,
we observe that Pμ,σ(a, b) converges against 0 in both
cases. Since Pμ,σmax(a, b) > 0, Pμ,σ(a, b) decreases
monotonic on both sides of σmax. Thus, σ∗ can be cho-
sen to be the closest value to σmax in [σ̌, σ̂].
Case II In this case, μ is inside [a, b] and if σ → 0 then
Pμ,σ(a, b) → 1. Since if σ → ∞ then Pμ,σ(a, b) → 0
and there is no defined extremum, Pμ,σ(a, b) is monotonic
and the smallest σ ∈ [σ̌, σ̂] causes the largest value for
Pμ,σ(a, b).
Case III This case is symmetric to case I.

Using both lemmas, we can calculate Pμ∗,σ∗(a, b) which

is the largest possible probability for any Gaussian stored in

a given node or subtree of the Gauss-tree. Let us note that

this bound is tight which means that there could be indeed

a Gaussian in the node having exactly the calculated proba-

bility. Figure 2 displays the probabilities for a given query

interval [a, b] for arbitrary μ and σ.

xl
xu

p =0.55

=0.45

=0.02

=0.1=0.55=0.45
=0.1

=0.02

p

p

Figure 2. Visualization of probabilities for
P̂μ,σ(a, b) in the μ-σ space.

4.2 Query Processing on the Gauss-Tree

After describing the structure of the Gauss-tree and de-

riving a conservative approximation of the maximum prob-

ability of its nodes, we are now going to describe algorithms

for query processing which are suitable for answering PTQs

and PRQs in efficient time.

4.2.1 PTQs

The algorithm for answering PTQs traverses the Gauss-tree

from the root node in a depth-first order. Thus, the algo-

rithm starts with inserting the subtrees of the root node into

a stack. Now, the algorithms always takes the first object

from the stack until the stack is empty. If the object is a

node the algorithm determines μ∗ and σ∗ and calculates

P̂μ̌,μ̂,σ̌,σ̂(a, b) for each dimension. After multiplying the

probabilities for each dimension the resulting approxima-

tion is compared to the threshold t. If the approximation

is smaller than t, we can prune the corresponding subtree.

If not, we must push the son objects of the node onto the

stack. If the object on top of the stack is a pfv, we deter-

mine its probability for lying within the query area. If this

probability is larger than t we have found a result and store

it for output. Let us note that this algorithm is given for

demonstrating that the Gauss-tree is applicable to PTQs as

well. However, the main focus of this paper are PRQs which

are described in the following.

4.3 PRQs

For the answering PRQs, we employ the same idea as

proposed in [8]. Instead of using a stack, the algorithm

ranks the yet unprocessed entries of the Gauss-tree with a

priority queue, which we will call entry queue. The entry

queue has to be ordered in descending order w.r.t. to the

largest probability value. Furthermore, we need a second

priority queue to store the k best results being retrieved so

far. This second queue is ordered in ascending order which

means the result pfv having the smallest probability is al-

ProbabilityRankingQuery(Query q, integer k)
entryQueue: ascending priority queue;
resultQueue: descending priority queue;
entryQueue.insert(root, 1);
WHILE notentryQueue.isEmpty() or

entryQueue.getF irst() > resultQueue.getF irst() DO
currentNode = entryQueue.removeF irst();
IF currentNode is a data node THEN

FOR EACH d in currentNode DO
prob = calculate probability of d w.r.t. q;
IF resultQueue.size() < k THEN

resultQueue.insert(d, prob);
ELSE IF resultQqueue.getF irst() < prob THEN

resultQueue.removeF irst();
resultQueue.insert(d, prob);

END IF
END FOR

ELSE IF currentNode is a directory node THEN
FOR EACH entry e in currentNode DO

prob = calculate probability of e w.r.t. q;
entryQueue.insert(e, prob);

END FOR
END IF

END WHILE
RETURN result;

Figure 3. Pseudo code probability ranking
query.

ways on top of the queue. We will refer to this queue as

result queue.

Figure 3 denotes the algorithm in Pseudo Code. The al-

gorithms starts with pushing the root node onto the entry

queue with a probability of 1. Afterwards, we always re-

move the top object from the entry queue until the entry

queue is empty or the algorithms can be guaranteed to have

found all valid results. If the top element is a inner node, we

load all son nodes, calculate their conservative approxima-

tion probabilities and insert them into the entry queue w.r.t.

to these probabilities. In the case, a leaf node is placed on

top of the entry queue, the exact probabilities for all pfvs

stored in the node are calculated and the objects are pushed

on the entry queue as well. If the top element of the entry

queue is a pfv, we check if the result queue already contains

k results. If not, we can add the pfv as a possible result.

If we have already encountered k pfvs, we must check if

the new pfv has a larger probability than the top element of

the result queue. If the new pfv is a more likely result than

the top of the result queue, the top of the result queue is

removed and the new pfv is added to the result queue. The

algorithm can be terminated if the top of the result queue has

a larger probability than the top of the entry queue. In this

case, it can be guaranteed that there are no pfvs which have

a larger probability than the k objects in the result queue.

Let us note that this algorithm is optimal since it guarantees

that no unnecessary nodes are read from the hard drive.

I II III IV V VI VII45°x

(, max)

Figure 4. The different sectors used to calcu-
late N̂μ̌,μ̂,σ̌,σ̂(x).

4.4 Tree Construction

In the following we derive the optimization goals for the

insert- and split strategies applied in the Gauss-tree. Intu-

itively, we have to collect such probabilistic feature vec-

tors in one common leaf node (or subtree in general) which

share both similar μ and σ values because if one of these pfv

is needed for a given query, also the other ones are proba-

bly needed for that query. However, the situation is not that

clear as it is for conventional feature vectors where the typ-

ical optimization goal is to achieve hyper-rectangles with

approximately uniform side lengths. The main difference is

the following: If we have a node which contains only pfv

which have a small standard deviation for one of the prob-

abilistic features, i.e. σ̂i 	 0 then it is also beneficial if the

μ values are spread over a small range, i.e. μ̂i − μ̌i 	 0
because if we have both small values of σ as well as small

ranges of μ, then this node will be very selective, i.e. the

node will only be accessed for queries for which the stored

pfv are highly probable candidates. In contrast, if the node

also contains pfv with a high variance then a small range

of μ will not help much either because the contained Gaus-

sians will be spread over a wide range anyway. But if the

range of σ values (i.e. σ̂i − σ̌i) is small, then we know at

least that this node contains no pfv with a high probability

density. In this case, the node can be excluded for many

queries which have already found at least k pfv with higher

probability in some other nodes of the Gauss-tree. We can

summarize this intuition for the split strategy (on every node

overflow) in the following way: If σ̂i is low, then perform

a node split according to μi. Otherwise perform a split op-

eration according to σi. In the following, we will capture

this intuition more precisely because we do not only have

to decide whether to split in μ or σ but also which of the d
different μ or σ have to be used for splitting.

This mathematical model can be used not only for the

decision of the split but also for resolving the situations

during the insert (i.e. whenever more than one branch of

the tree is eligible for the new pfv). To find a suitable

criteria for the approximation quality of a node in the

Gauss-tree, we first of all define the density hull for a given

node N̂μ̌,μ̂,σ̌,σ̂(x) :

N̂μ̌,μ̂,σ̌,σ̂(x) = max
μ∈[μ̌,μ̂],σ∈[σ̌,σ̂]

{Nμ,σ(x)}

For efficiently calculating the hull, a closed formula for

N̂μ̌,μ̂,σ̌,σ̂(x) without an explicit maximization process over

two continuous variables is needed. This can be derived by

the following lemma:

Lemma 3 The conservative approximation N̂μ̌,μ̂,σ̌,σ̂(x) of
the probability density functions stored in a data node can
be exactly computed by the following piecewise function:

N̂μ̌,μ̂,σ̌,σ̂(x) =

8>>>>>>>><
>>>>>>>>:

Nμ̌,σ̂(x) if x < μ̌ − σ̂ (I)
Nμ̌,μ̌−x(x) if μ̌ − σ̂ ≤ x < μ̌ − σ̌ (II)

Nμ̌,σ̌(x) if μ̌ − σ̌ ≤ x < μ̌ (III)
Nx,σ̌(x) if μ̌ ≤ x < μ̂ (IV)
Nμ̂,σ̌(x) if μ̂ ≤ x < μ̂ + σ̌ (V)

Nμ̂,x−μ̂(x) if μ̂ + σ̌ ≤ x < μ̂ + σ̂ (V I)
Nμ̂,σ̂(x) if μ̂ + σ̂ ≤ x (V II)

Proof 3 Since N̂μ̌,μ̂,σ̌,σ̂ is the maximum of some other
Gaussian functions Nμ,σ(x) with mean values μ between μ̌
and μ̂, the hull function is monotonically increasing for all
x ≤ μ̌ and monotonically decreasing for all x ≥ μ̂. There-
fore, for a given x in the quadrants (I) to (III), the gaus-
sian function which is maximal among all possible functions
Nμ,σ(x), μ ∈ [μ̌, μ̂], σ ∈ [σ̌, σ̂] must be on the left border
of the minimum bounding rectangle, i.e. on the line parallel
to the σ axis with μ = μ̌. We determine the σ value which
maximizes N̂μ̌,μ̂,σ̌,σ̂ by setting the derivative with respect to
σ to zero:

∂

∂σ
Nμ̌,σ(x) = 0

As the only positive solution we obtain a local maximum at:

σmax = μ̌ − x

The function Nμ̌,σ is also monotonically increasing with re-
spect to σ for lower values of σ and monotonically decreas-
ing for all σ > σmax. For some x between μ̌− σ̂ and μ̌− σ̌
our maximum is at the border of the minimum bounding
rectangle, i.e. σ̌ ≤ σmax ≤ σ̂, and therefore, the maximum
value for some given x in quadrant (II) is

N̂μ̌,μ̂,σ̌,σ̂(x) = Nμ̌,σmax=μ̌−x(x)

In quadrant (I) the local maximum is at σmax > σ̂. Due
to monotonicity, the global maximum (with restriction to the
minimum bounding rectangle) must be at σ̂. To the same
reason, the maximum is at (μ̌, σ̌) for all x in quadrant (III).

In quadrant (IV) the maximum Nμ,σ(x) is at μ = x.
For σ, we obtain to the same reason as for quadrant (III) a
global maximum value of σ̌.

The cases (V) to (VII) are symmetric to (III), (II), and (I),
respectively.

After we can calculate the density hull of a node, we can

now use it to calculate the quality of a node. Therefore, we

integrate the density hull over all possible attribute values.

∫ +∞

−∞
N̂μ̌,μ̂,σ̌,σ̂(x)dx

This integral is a good indicator for the quality of a node.

If the value of the integral is 1, the quality of the node is op-

timal. In this case, the node contains n equal pfvs having

the same μ and σ values. Therefore, we cannot make any

approximation error. In general, the smaller the value of

the integral the more similar is the behavior of the indexed

Gaussians. Let us note that this criteria incorporates the for-

mer conclusions because the location of the mean value has

less influence on the integral with increasing standard devi-

ations. On the other hand, if the σ values of all n contained

Gaussian converge against 0, then the integral will converge

to the value n for n varying μ values. To conclude, the re-

sulting nodes of a split should have an as small as possible

value for this quality criteria. The integral can be deter-

mined for each probabilistic feature separately. The com-

putation of the integral is straightforward. Remember the

case analysis of lemma 3. Case (IV) is a constant function,

and cases (I), (III), (V), and (VII) are Gaussian functions

with given μ and σ for which efficient integration methods

are known. We apply sigmoid approximation by a degree-5

polynomial. The only part which requires a little bit of con-

sideration is case (II) and its symmetric counterpart (VI)

where we have to integrate over Nμ̌,μ̌−x(x) from μ̌ − σ̂ to

μ̌− σ̌. However, substituting (μ̌− x) for σ in the definition

of the probability density function of the Gaussian distribu-

tion yields:

Nμ̌,μ̌−x(x) =
1√

2πe · (μ̌ − x)

which integrates to (ln σ̂ − ln σ̌)/
√

2πe for the above men-

tioned integration limits.

For the insertion strategy, we apply the following rules

to select a path of the Gauss-tree :

• If the new pfv fits into exactly one node, this node is

followed.

• If the new vector does not fit into any node, we exam-

ine all subnodes and find the leaf node which causes

the least increase of volume.

• If the new vector fits into more than one node, we fol-

low all paths and try to find a leaf node where the node

exactly fits in (or minimize the increase of volume, if

no exactly fitting node exists).

When a node is beyond its capacity, it has to be split.

We tentatively perform a median split in each μ-dimension

and each σ-dimension of the Gauss-tree. For every ten-

tative split, we determine the lower and upper μ and σ
bounds of the two resulting nodes, and evaluate the inte-

gral
∫

N̂μ̌,μ̂,σ̌,σ̂(x)dx for both nodes. The split operation

minimizing the sum of these two integrals is made perma-

nent.

5 Evaluation

In our experimental evaluation, we implemented the

Gauss-tree and its comparison partners in Java 1.4. To make

the results reproducible, we measured the CPU times and

counted logical page accesses on the hard drive. For cal-

culating the complete query time, we assumed a hard drive

having 6 ms access time and 50MB/s transfer rate.

We employed two data sets. The first data set (DS1) was

a set of 100.000 1-dimensional Gaussians for which the μ
and σ values were randomly generated. Data set 2 (DS2)

was taken from the TIGER1 database containing 2D spatial

coordinates of landmarks in the US. For DS2, we used the

county of Sacramento having 62.182 objects. Since we did

not have any uncertainty values, we generated random stan-

dard deviations for each of the coordinates. We randomly

generated 200 query intervals for DS1 or 200 query rectan-

gles for DS2.

To have a baseline comparison partner, we compared our

methods to a sequential scan over the complete database.

Additionally, we implemented the method for symmetric

and smooth variance-monotonic distribution functions be-

ing described in [5]. We will refer to this method as ”x-

bounds-tree”. To extend the x-bound-tree to the multi-

dimensional case, we pruned each dimension separately, i.e.

when testing the pruning criteria, we assumed a maximum

probability of 1 in all other dimensions. Let us note that this

is not optimal, since multiplying several dimensions usually

decreases the probability. However, since the method does

not allow to derive a concrete maximum probability for any

dimension but only checks if the closest bound is violated,

this method is a feasible solution. For demonstrating the ef-

fect of our splitting and insertion method, we implemented

a Gauss-tree employing the split and insertion algorithm of

the x-tree [1] to which we refer to as GX-tree.

Our first experiment compares the average query time for

200 PTQs on DS1. Table 1 compares the average elapsed

time for a PTQs with t = 0.5 and t = 0.75 for all 4 meth-

ods. The results indicate that all indexing techniques were

capable to answer the given queries significantly faster than

the sequential scan. However, all three index structures used

almost exactly the same number of accessed pages for each

1available at http://www.census.gov/geo/www/tiger

threshold Sequ. Scan x-b. tree GX-tree Gauss-tree

0.5 200.3 140.0 139.0 137.6

0.75 258.1 101.4 101.6 101.1

Table 1. Comparison average query time on
DS1 for PTQs.

query and used very similar CPU times. Therefore, we can

conclude that the more exact approximations of the Gauss-

tree do not yield an advantage when answering PTQs and

the x-bounds are an efficient method for this type of queries.

The main part of our experiments was examining the

performance of the Gauss-tree when answering PRQs. To

process PRQs on the x-bounds-tree, we had to find a way

to rank pages w.r.t. this maximum probability. This is a

problem because the described method only determines if

a page can contain a pfv having a larger probability than

some threshold. In order to apply ranking, we had to find a

way to determine the largest probability any object in a node

could have in the query interval. We solved this problem by

searching the proposed ratio table for the closest x-bound

to the query interval which is still outside the interval. The

x corresponding to this bound was used to rank the entry

queue. Let us note that the decision about pruning a node

was done as proposed for PTQs in [5].

In our first experiment for PRQs, we tested all four meth-

ods for varying values of k on both data sets. The results are

displayed in figure 5. The upper row of figure 5 displays

the average elapsed time per query, i.e. CPU time together

with calculated IO costs, and the lower row displays the ob-

served CPU time only. As a result it can be observed that

the Gauss-tree and the GX-tree retrieved the query results

between 8 to 10 times faster than the sequential scan. Our

adapted version of the x-bound tree worked even worse than

the sequential scan w.r.t to the all over query time. How-

ever, the x-bound-tree clearly beats the sequential scan w.r.t.

CPU time. Finally, the better selectivity of the Gauss-tree

related methods achieves an average CPU time which again

is orders of magnitudes smaller than the comparison partner

on both data sets.

Due to the overwhelming speed up compared to the se-

quential scan, the figure cannot display the difference be-

tween the Gauss-tree and the GX-tree. To still demon-

strate that our new split heuristic was capable to improve the

structure of the tree, we display figure 6 which is a zoomed

version of figure 5(a). As it can be seen the new split heuris-

tic additional decreased the average complete query time by

an additional msec..

To demonstrate that our method scales well even for

larger data sets, we posed PRQs with k = 3 on data set

DS1 and increased the size of the data base from 10.000 to

500.000. The results are displayed in figure 7. Again our

adaption of the x-bound tree for PRQs did not function very

10

110

210

310

410

510

610

710

810

0 10 20 30 40 50 60
K

A
vg

.
Ti

m
e

pe
r Q

ue
ry

, m
se

c.

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(a) average query time DS1

0

100

200

300

400

500

600

0 10 20 30 40 50 60
K

A
vg

. T
im

e
pe

r Q
ue

ry
, m

se
c. Seq.Scan

X-Bound Tree
GX-Tree
Gauss-Tree

(b) average query time DS2

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60
K

A
vg

. C
PU

 T
im

e
pe

r Q
ue

ry
, m

se
c

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(c) average cpu time DS1

0

50

100

150

200

250

300

0 10 20 30 40 50 60
K

A
vg

. C
PU

 T
im

e
pe

r Q
ue

ry
, m

se
c.

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(d) average cpu time DS2

Figure 5. Complete runtime (above row) and CPU time (lower row) for PRQs for varying values of k.

well. However, the Gauss-tree and the GX-tree again dis-

play a considerable speed up which is growing with the size

of the database. Thus, we can conclude that the Gauss-tree

is especially well suited for very large datasets of uncertain

objects modeled by Gaussians.

To conclude, the performance of the Gauss-tree for an-

swering PTQs was rather similar to the x-bound tree in its

original use. However, when answering PRQs the Gauss-

tree outperformed all comparison partners by orders of

magnitude. Furthermore, our novel split heuristic further

improved the structure of the tree when answering PRQs.

6 Conclusions

In this paper, we introduced the Gaussian uncertainty

model for describing uncertain spatial data objects. This

model describes an uncertain data object as probabilistic

feature vector (pfv) consisting of a mean value and a stan-

dard deviation for any uncertain feature value. Assuming a

Gaussian density distribution based on these parameters, we

can now determine the probability for any data object for

being contained in a certain interval or (hyper-) rectangle.

Applications for spatially uncertain objects are databases of

sensor networks and moving objects where the exact feature

value cannot be constantly monitored. To query databases

of uncertain objects, we can pose probabilistic queries like

probabilistic threshold queries (PTQs). A PTQ retrieves all

data objects in a database that are contained in the query

rectangle with a larger probability than some probability

threshold t. Since the threshold is often difficult to decide,

we introduced probabilistic ranking queries (PRQs) which

retrieve the k data objects in a database that are contained

in the query rectangle with the highest probability. To an-

swer both types of queries in efficient time, we developed

the Gauss-tree an index structure from the R-Tree family.

The idea is of the Gauss-tree is to index the parameter space

of the pfvs in the database. A node in the Gauss-tree con-

tains pfvs having mean values and standard deviation being

20

21

22

23

24

25

0 10 20 30 40 50 60
K

A
vg

.
Ti

m
e

pe
r Q

ue
ry

, m
se

c. GX-Tree

Gauss-Tree

Figure 6. Average time for a PRQs for the
Gauss-tree and the GX-tree.

0

200

400

600

800

1000

1200

0 100000 200000 300000 400000 500000 600000
DB Size

A
vg

. T
um

e
pe

r Q
ue

ry
, m

se
c. Seq.Scan

X-Bound Tree
GX-Tree
Gauss-Tree

Figure 7. Average time for a PRQs for DS1
with increasing database size.

contained in a certain mean range and a certain range of

standard deviations. Based on these ranges, a conservative

approximation for a node and a given query rectangle can be

calculated. This tight approximation is the basis of the de-

scribed algorithms for answering PTQs and PRQs. The split

and the insertion algorithm of the Gauss-tree is based on the

density hull curve of a node. If the integral of this curve is

rather small the indexed Gaussians are rather similar. Thus,

the algorithm favors the splits resulting in nodes having a

rather small integral over the density hull. In our experi-

mental evaluation, we compare the Gauss-tree on both types

of queries to 3 comparison partners on one artificial and

two real world data sets with artificial uncertainty. The re-

sults demonstrates that the Gauss-tree achieves a query per-

formance which is comparable to state-of-the-art methods

on PTQs. For the new query type of PRQs the Gauss-tree

clearly outperforms established methods which were modi-

fied to answer PRQs.

References

[1] S. Berchtold, D. A. Keim, and H.-P. Kriegel. ”The X-

Tree: An Index Structure for High-Dimensional Data”.

In Proc. 22nd Int. Conf. on Very Large Data Bases
(VLDB’96), Bombay, India, pages 28–39, 1996.

[2] C. Böhm, S. Berchthold, and D. Keim. ”Searching

in High-dimensional Spaces: Index Structures for Im-

proving the Performance of Multimedia Databases”.

ACM Computing Surveys, 3(33), 2001.

[3] C. Böhm, A. Pryakhin, and M. Schubert. ”The Gaus-

Tree: Efficient Object Identification of Probabilistic

Feature Vectors”. In Proc. 22nd Int. Conf. on Data En-
gineering (ICDE’06)),Atlanta,GA,US, 2006.

[4] R. Cheng, D. Kalashnikov, and S. Prabhakar. ”Eval-

uating Probabilistic Queries over Imprecise Data”. In

Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’03), San Diego, CA, USA, pages 551–

562, 2003.

[5] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter.

”Efficient Indexing Methods for Probabilistic Thresh-

old Queries over Uncertain Data”. In Proc. 30th Int.
Conf. on Very Large Data Bases (VLDB’04), Toronto,
Cananda, pages 876–887, 2004.

[6] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis.

”Probabilistic Spatial Queries on Existentially Uncer-

tain Data”. In Proc. 9th Int. Symposium on Spatial
and Temporal Databases (SSTD2005), Angra dos Reis,
Brazil, pages 400–417, 2005.

[7] A. Guttman. ”R-trees: A Dynamic Index Structure for

Spatial Searching”. In Proc. ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD’84), Boston, MA,
USA, pages 47–57, 1984.

[8] G. Hjaltason and H. Samet. ”Ranking in Spatial

Databases”. In Proc. 4th Int. Symposium on Large Spa-
tial Databases, SSD’95, Portland, USA, pages 83–95,

1995.

[9] Y. Tao, R. Cheng, X. Xiao, W. Ngai, B. Kao, and

S. Prabhakar. ”Indexing Multi-Dimensional Uncertain

Data with Arbitrary Probability Density Functions”.

In Proc. 31st Int. Conf. on Very Large Data Bases
(VLDB’05), Trondheim, Norway, pages 922–933, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

