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ABSTRACT
The analysis of social media data poses several challenges: first of
all, the data sets are very large, secondly they change constantly,
and third they are heterogeneous, consisting of text, images, geo-
graphic locations and social connections. In this article, we focus
on detecting events consisting of text and location information, and
introduce an analysis method that is scalable both with respect to
volume and velocity. We also address the problems arising from
differences in adoption of social media across cultures, languages,
and countries in our event detection by efficient normalization.
We introduce an algorithm capable of processing vast amounts of
data using a scalable online approach based on the SigniTrend event
detection system, which is able to identify unusual geo-textual pat-
terns in the data stream without requiring the user to specify any
constraints in advance, such as hashtags to track: In contrast to
earlier work, we are able to monitor every word at every location
with just a fixed amount of memory, compare the values to statis-
tics from earlier data and immediately report significant deviations
with minimal delay. Thus, this algorithm is capable of reporting
“Breaking News” in real-time.
Location is modeled using unsupervised geometric discretization
and supervised administrative hierarchies, which permits detecting
events at city, regional, and global levels at the same time. The use-
fulness of the approach is demonstrated using several real-world
example use cases using Twitter data.

CCS Concepts
•Information systems→ Data streaming; Data stream mining;
Summarization; •Theory of computation → Bloom filters and
hashing; •Computing methodologies→ Anomaly detection;

Keywords
Local event detection; bursty topic detection; change detection;
online control charts; time-series analysis; anomaly detection; trend
detection; geo-social media; rich geo-spatial data; scalable real-
time data analysis; streaming algorithm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’16, July 18-20, 2016, Budapest, Hungary
c© 2016 ACM. ISBN 978-1-4503-4215-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2949689.2949699

1. INTRODUCTION AND MOTIVATION
Social media such as Twitter produces a fast-flowing data stream

with thousands of new documents every minute, containing only a
short fragment of text (up to 140 characters), some annotated en-
tities and links to other users as well as web sites, and sometimes
location information on where the message originated from. Many
traditional analysis methods do not work well on such data: the in-
formal language with many special abbreviations, emoji icons and
constantly changing portmanteau words prevents many advanced
linguistic techniques from understanding the contents. Further-
more, many methods in topic modeling need to visit data multiple
times to optimize the inferred structure, which is infeasible when
thousands of new documents arrive every minute. Thus, algorithms
for such data sets are usually designed around simple counting, or
require the data set to be reduced via predefined keywords and lo-
cation filters. Such algorithms often yield unsatisfactory results
because the output is determined too much by quantity: the most
frequent terms usually contain well-known information such as the
popularity of Justin Bieber on Twitter, “good morning” in the morn-
ing and “dinner” at night, and the TV series currently on air. As
a result, interesting events are hard to discover due to the sheer
quantity of everyday chat. Furthermore, when users are not evenly
distributed such “mainstream” behavior in large countries tends to
obscure interesting developments in other parts of the world. Using
absolute counting for event detection only works if the events have
already been reported on TV and other mass media and we observe
the global echo in social media. Instead, we need approaches that
can identify significant patterns without reporting the obvious. Due
to spam and noise identifying the interesting subset is hard.

When the attack on Charlie Hebdo occurred at around 11:30,
it still took 45 minutes to yield a significant number of mentions
of the hashtag #CharlieHebdo, all of them originating in Paris. By
13:00, the news then had spread to the U. K. and by 13:30 most Eu-
ropean countries were discussing the attacks on social media. By
14:00, the new hashtag #JeSuisCharlie had emerged. These obser-
vations demonstrate how geographic locality may help gauge the
importance —add interesting detail—to understanding an event. It
also demonstrates the usefulness of a tool capable of analyzing such
developments with little delay, without having to neither rerun the
analysis, nor specify the topics of interest in advance. While Char-
lie Hebdo yields an obvious portmanteau keyword to use as hash-
tag on Twitter, this is not always the case, and we need to monitor
words that have not been manually chosen as a keyword by the user.

Thus, we are interested in a system capable of tracking unusual
occurrences of arbitrary words at arbitrary locations in real-time,
without having to specify the terms of interest in advance. Ab-
solute counts—and the absolute increase—need to be adjusted for
differences in usage.

http://dx.doi.org/10.1145/2949689.2949699


1.1 Problem Definition
Given a high-throughput textual data stream (too large to be ef-

fectively stored and queried) with geographic metadata, the goal
is to identify terms that receive a unusual strong increase in their
frequency as well as the locations and time associated with this
unusual increase. The resulting events should not include spuri-
ous events that do not exhibit above characteristics, so that they
can be used as unsupervised input for a “Breaking News” detection
system. The user must not be required to specify a limited set of
candidate terms or locations, but instead the system must be able to
learn the relevant vocabulary and locations from the data.

1.2 Challenges

Velocity and Volume: When processing a Twitter feed, the ob-
vious challenges are the velocity and volume of the data. The
statuses/sample endpoint of Twitter is reported to include
1% of all tweets (4–5 million per day, along with 1–2 million dele-
tions; about 15 GB of uncompressed raw data per day). Only the
surprisingly small percentage of 1.5% of these tweets include geo-
graphic coordinates: Retweets never contain coordinates, and often
users only check in with an approximate location such as a point
of interest. We use a different feed which both has a larger volume
and a higher rate of tweets with coordinates (at the cost of having
no retweets), so that we have to process over 5 million geo-tagged
tweets per day, between 3000 and 5000 tweets per minute. The
number of tweets is not the sole parameter affecting scalability: the
complexity of the analysis also influences the scalability a lot. Per-
forming pairwise comparisons or computing a distance matrix is
impossible if the data is too large to visit multiple times.

Spam: Twitter contains various kinds of spam in large quan-
tities. There are advertisements for products, services, and Twit-
ter followers, and some spammers try to manipulate the trending
topics. But there are also teenagers sending mass love messages
to their idols; bots announcing trending topics, earthquakes, and
weather forecasts; and “follow sprees” where users mass-follow
each other to raise their follow count to appear more popular. We
found the analysis results to become much more interesting when
ignoring tweets that either include “follow” or “trend”. We utilize
a basic near-duplicate filter to drop most spam and thus remove
many false-positives. This filter is robust to randomly generated
words often used to defeat Twitters built-in duplicate detector. Af-
ter removing such garbage words we compare every tweet to the
last 10,000 tweets and skip those that are duplicate. Due to space
limitations, we do not provider further details in this article.

Handling of geography: Tweets may come with either coor-
dinates, or points of intererest (“check ins”). Neither information
is very trustworthy, and we do not have precision information on
the location. Both spammers and bots may fake their location on
Twitter. For example, we have observed one large spammer to use
locations randomly sampled from [0; 1], in the ocean south-west of
Africa. Earthquake and weather bots also do not use their physical
location for their tweets, but an estimate of the earthquake location
or the city the weather forecast is produced for. For simplicity, we
only use the tweets with coordinates, but not the points of inter-
est. It is easy to remove the false locations at [0; 1], but we do not
remove the earthquake and weather bots.

Variation of Tweet Density: Twitter adoption varies heavily
from country to country: Twitter is popular e.g. in the USA, Brazil,
Argentina, Indonesia, and Turkey. On the other hand, users from
China, India, and Germany (where apparently Twitter usage and lo-
cation sharing raise privacy concerns) are underrepresented in this
data set. Table 1 shows the distribution of countries and locations

Table 1: Geographic distribution of twitter data.
region mil. share
u. s. a. 287.7 25.4%
brazil 165.6 14.6%
argentina 73.6 6.5%
indonesia 72.0 6.4%
turkey 59.3 5.2%
japan 52.4 4.6%
united kingdom 49.3 4.4%
são paulo 40.6 3.6%
england 40.3 3.6%
california 38.6 3.4%
rio de janeiro 35.9 3.2%
spain 34.8 3.1%
buenos aires 33.9 3.0%
philippines 32.1 2.8%
france 31.8 2.8%
malaysia 31.3 2.8%
texas 31.2 2.8%
marmara region 30.1 2.7%
istanbul 20.3 1.8%
rio grande do sul 20.0 1.8%
thailand 19.4 1.7%

region mil. share
russian fed. 18.2 1.6%
mexico 17.6 1.6%
florida 17.4 1.5%
new york 17.3 1.5%
kanto (japan) 17.2 1.5%
west java (ind.) 16.9 1.5%
saudi arabia 15.4 1.4%
colombia 14.1 1.2%
selangor (mal.) 14.1 1.2%
ohio 13.6 1.2%
kinki (japan) 13.5 1.2%
santa catarina 13.1 1.2%
los angeles 12.8 1.1%
ile-de-france 12.5 1.1%
minas gerais (br.) 12.3 1.1%
porto alegre (br.) 12.2 1.1%
manila (phil.) 11.9 1.1%
jakarta (indon.) 11.6 1.0%
pennsylvania 11.3 1.0%
aegean region 10.6 0.9%
italy 10.1 0.9%

selected further regions < 1%:
region mil. share
canada 9.4 0.83%
portugal 9.3 0.83%
uruguay 9.0 0.80%
london 7.6 0.67%
new york city 7.5 0.66%
tokyo 7.4 0.66%
chile 7.0 0.62%
scotland 5.5 0.48%
the netherlands 4.8 0.43%

region mil. share
india 4.8 0.43%
egypt 4.2 0.37%
australia 4.0 0.35%
ukraine 3.8 0.33%
germany 3.5 0.31%
nigeria 2.6 0.23%
pakistan 1.6 0.14%
china 1.2 0.11%
berlin 0.5 0.05%

within our data set from September 10, 2014 to February 19, 2015.
This demonstrates the need to look for relative increase of volume,
and to use geographic location for normalization. If we want to
obtain meaningful results for all areas of the world (including e.g.
Berlin), we need to design an algorithm that is capable of adapting
to local variations in the tweet density. Methods based solely on
counting the most popular terms will be biased towards countries
with many users and unable to detect events in less populated areas.

Streaming Analysis: Designing an algorithm that processes ev-
ery record only once and that has to perform under substantial
memory and time constraints—a streaming or “on-line” algorithm—
yields a different scalability challenge.

Many methods require the specification of a set of candidate
words to track, or only track hashtags to reduce the data size by fil-
tering. However, usage of Twitter changes over time, and hashtags
only emerge after an event has occurred. Events are even more in-
teresting if they are significant before people have agreed on which
hashtag to use. At the same time, single words may be not unique
enough to identify an event. If we want to produce the best possi-
ble results, we need to design a system capable of tracking all the
words at the same time.

2. RELATED WORK
As the daily flood of information available in social media is

continuously increasing and the commercial interest to obtain valu-
able information from this data grows, the field of emerging event
detection gains more and more attention. For this purpose, both
commercial systems and academic prototypes like the CMU sys-
tem [29], the UMass system [4], Blogscope [6], Meme-Detection
system [16], and SigniTrend [23] have been established. Appli-
cation scenarios in literature include the detection of earthquake
events [20] and the prediction of flu trends [14].



Approaches using text only: Most related work on event and
emerging topic detection does not use geographic metadata. Klein-
berg [13] uses an infinite state automaton to model frequency bursts
of incoming documents such as emails. This approach has also
been applied to blog posts [19] and to dynamic topic models [24].
TwitterMonitor [18] and EnBlogue [5] both use the increase in term
frequencies to detect topics. SigniTrend [23] tracks the average and
standard deviation of term and term pair frequencies and which is
thus able to quantify the significance of an event.

Geographical Approaches: Twitter publishes a list of trending
topics for a manually curated list of about 500 locations (with only
includes a limited choice of cities in each country). The exact al-
gorithm used is not published, but it does not include topics—like
#justinbieber—which are always frequent.1 We assume it is based
on a relative increase in frequency at a predefined location, i.e. the
geographical information is used as a filter to split the data, but
not in the actual analysis. Sakaki et al. [20] monitor Twitter users
to detect earthquake and typhoon events. However, this approach
requires that the user specifies query terms to select the topic of in-
terest. Crowd behavior is used to detect geo-social events in [15].
They partition the world into smaller regions of interest (RoI). For
each RoI, they monitored the number of tweets, number of users
and crowd movement. When unusual features are measured, tweets
belonging to the corresponding RoI are reported as an emerging
geo-social event. This approach does not track individual topics.
Points of interest (POIs) are analyzed in [17] to identify expert
users for predefined topics and POIs. Kim et al. [12] use prede-
fined topics such as Weather, TV, and Sport, and build a state level
correlation matrix for each. Wang et al. [26] identify local frequent
keyword co-occurrence patterns, but do not determine emerging or
trending ones. For a spatially limited subset it can still be feasible
to count—for every word and every location—the number of users.
Such approaches were used in [1, 2], but these approaches do not
scale to large data sets. EvenTweet [2] first identifies keywords by
exact counting and comparison to history information, then for ev-
ery keyword analyzes the spatial distribution. For this, it needs to
store large amounts of data and cannot operate on a live stream.

Our approach is motivated by GeoScope [8], which tries to solve
a similar problem (detecting events in geo-tagged tweets), but our
algorithm is built upon SigniTrend [23] to overcome the limita-
tions of GeoScope. GeoScope also uses Count–min sketch data
structures [10] for approximate counting, but they independently
use such tables for identifying the most frequent locations and the
most frequent hashtags (the most frequent words would be stop
words, thus the need to constrain their approach to hashtags; which
is not a problem for our significance-based approach). An event in
GeoScope is required to both having a unusually frequent term at
a single location, and an usually frequent single location for this
term. While this works well for extreme events that are observed in
a single location only, for example the Super Bowl is watched all
over the world, and will thus not be recognized as event. When de-
creasing the thresholds enough to capture less frequent topics and
locations, the number of reported results grows exponentially.

Our approach improves substantially over the capabilities of Geo-
Scope, because it is based on a notion of significance instead of
frequency. We can detect the most significant events in large-scale
regions (e.g. SuperBowl on TV) as well as neighborhood resolution
because we are not constrained to tracking the globally most pop-
ular words and locations only. Our approach also can distinguish
between local keywords that are always frequent (such as #nyc in
New York City), and local keywords that exhibit unusual activity.

1Source: https://support.twitter.com/entries/101125

Figure 1: Grid tokens for a location in Washington, DC
Background c© OpenStreetMap contributors, tiles by Stamen Design.

3. EVENT DETECTION APPROACH
In order to integrate textual data and geographic information, we

map both into a sequence of tokens. Textual data is processed by
Porter stemming, stop word removal, unification of emoji and hash-
tags, and a simple entity extraction approach trained on Wikipedia
that recognizes common phrases and maps them to DBPedia con-
cepts. For geographic information, we used a more complicated
approach to avoid boundary effects, yet remain scalable and retain
enough data to be able to achieve statistical significance. Figure 2
shows the tokenization process for an example tweet. After tok-
enization, documents are logically represented as a set of tokens
that either correspond to a word token w or a location token l.

3.1 Symbolic Representation of Location
We employ two different methods in parallel to generate a sym-

bolic representation of the tweet location. This dual strategy is nec-
essary because of the different strengths: the grid-based approach
covers the complete earth, with a uniform resolution and guaran-
teed coverage, whereas the OpenStreetMap approach provides ad-
ministrative boundaries at different resolutions; but does for exam-
ple not cover the oceans. Sometimes, administrative boundaries
may cut areas of interest into two distinct regions, e.g. the “Twin
Cities” Minneapolis and Saint Paul, or the Niagara Falls which are
partially in Canada and partially in the United States.

Grid-based token generation: The first token generator is based
on coordinate grids spaced at every even degree of latitude and lon-
gitude (i.e. using a grid width of 2◦), which is an empirically cho-
sen tradeoff between precision (the grid must not be too coarse)
and abstraction: a too fine resolution reduces the chance of seeing
a statistically significant number of mentions in the same location,
while a too coarse resolution results in too many false positives.
In order to avoid boundary effects (where the grid boundary would
split a city into two separate grid cells), we use three overlapping
grids, offset by one third and two thirds of the grid width. Chan [9]
used the pigeonhole principle to prove that it is impossible to be
closer than 1/6th of the grid width to all three grids at the same
time. Because of this, points within 1/6 · 2◦ = 1/3◦ degree must
be in the same grid cell in at least one of the grids (for details, see
Chan [9]). Points farther away than

√
2·2◦≈2.82◦ (the diagonal of

a grid cell) are guaranteed to be in different grid cells in every grid.
Due to the spherical nature of earth, the length of a degree varies: at
the poles, 1◦ ≈ 110km ≈ 69miles; at Oslo and Anchorage this re-
duces to approximately half (i.e. 55km ≈ 34miles). Further north,
we do not see many tweets anyway. Tweets within about 18 km or
11 miles will thus produce the same symbol at least once; the ex-
pected distance for a grid cell collision is about 90 km or 54 miles,
while events farther than 300 km or 200 miles have entirely differ-
ent symbols. In-between of this range, we still have a high chance
of at least one grid cell detecting the event.

https://support.twitter.com/entries/101125


Text: Presenting a novel event detection method at #SSDBM2016 in Budapest :-)
present novel event_detection method #ssdbm2016 Q1781:Budapest :)
(stem) (stop) (entity) (stop) (normalized) (stop) (entity) (norm.)

Location: 47.5323 19.0530
!geo0!46!18 !geo1!48!18 !geo2!48!20 !geo!Budapest !geo!Budapesti_kistérség !geo!Közép-Magyarország !geo!Hungary

(Overlapping grid cells) (Hierarchical semantic location information)
Figure 2: Tweet tokenization and generation of geo tokens of an example tweet

Figure 1 visualizes the geographic grid tokens produced for a
location in Washington, DC. This approach is an improvement over
both the Z-curve approach used by Wang et al. [26] and the grid-
based approach of Abdelhaq et al. [1]. These approaches would cut
e.g. Greenwhich into two halves. By using overlapping grids our
approach does not suffer from such boundary effects (proven [9] by
using the pigeonhole principle).

Our token generation process is designed for maximal perfor-
mance, but alternate designs could of course provide higher preci-
sion if necessary. For each grid i = 1, 2, 3 we apply the function
f(l, oi) = bl/2 + oic · 2 to each latitude and longitude, using the
grid offsets o1 = 0, o2 = 2/3 and o3 = 4/3. We then encode these
tokens as “!geo<i>!<lat>!<lon>” (cf. Figure 2). These to-
kens cannot occur in regular text, and thus we can subsequently
treat them as if they were regular words.

Tokens based on administrative boundaries: For aggregation
at coarser resolutions, we employ a different strategy. We use a fast
reverse geocoding library [22], for which we extracted polygons
from OpenStreetMap and built a fast lookup table with 0.01 de-
gree resolution, containing 64,597 regions while using just 30 MB
of RAM, and allowing constant-time lookups at a rate of 1.5 mil-
lion operations per second on a modern CPU. We reverse-geocode
each coordinate to a hierarchy of regions, such as Budapest (City
of Budapest), Budapesti_kistérség (Budapest subregion), Közép-
Magyarország (Central Hungary), and Hungary as seen in Figure 2.
We use each region returned by the lookup as a geographic token
for our process; and this hierarchy allows us to detect events at dif-
ferent levels such as cities, counties, states and countries.

Again, we encode these tokens and add them to the tweets (e.g.
“!geo!Hungary”). Subsequently we can treat them as regular
words, except that we do not need to track pairs of these geo tokens.

3.2 Significance of Events
Given a word token w and a location token l—candidates will be

obtained from a hash table detailed in Section 3.6—we use a classic
model from statistics to measure the significance: Let ft(w, l) be
the relative frequency of this pair of tokens within the documents
Dt = {d1, . . . , dn} at time t, i.e.

ft(w, l) :=
| {w ∈ d∧ l ∈ d | d ∈Dt} |

|Dt|
then we can use the series of previous values f1, . . . , ft−1 to com-
pute an estimated value and a standard deviation. To facilitate aging
of the data and to avoid having to store all previous values, we em-
ploy the exponentially weighted moving average (EWMA[f(w, l)])
and moving standard deviation (EWMVar[f(w, l)]). With these es-
timates, we can compute the z-score of the frequency:

zt(w, l) :=
ft(w, l)−EWMA[f(w, l)]√

EWMVar[f(w, l)]

To avoid instability if a pair (w, l) was not seen often before, we
employ a bias term β as introduced by SigniTrend [23].

zt(w, l) :=
ft(w, l)−max {EWMA[f(w, l)], β}√

EWMVar[f(w, l)] +β

The term β is a Laplace-style smoothing term motivated by the
assumption that there might have been β · |D| documents that con-
tained the term, but which have not been observed. For Twitter, the
suggested value for this term is β=10/|D|: intuitively we consider
10 occurrences to be a by chance observation. This also adjusts for
the fact that we do not have access to the full Twitter data.

The observed counts are standardized by subtracting the expected
rate, and normalizing with the (exponentially weighted) standard
deviation. The resulting “z-score” is a scale-free factor measuring
how unusual the observed frequency is.

This normalization is one key improvement of our method over
GeoScope. Because the pair (w, l) are the local occurrences with
respect to l only, we are more robust against geographic differ-
ences. If the frequency increases drastically at a location l it can
be detected as a significant event, even if the frequency is low
compared to more popular locations. GeoScope would miss such
events, because it only considers the most frequent locations. In
particular, our approach can detect the same word w at different
locations at the same time. We have observed such situations e.g.
with TV events that are on-air in neighboring countries.

This statistic works at different granularities (e.g. detecting Su-
per Bowl as trend in the whole U.S.A., but also very localized
events such as an earthquake in Guam), and for highly populated
areas as well as much less populated areas: in New York the ex-
pected rate, but also variance, will be much higher, than in Twitter-
agnostic Germany. This is an important improvement, since cities
like Istanbul, New York City, Tokyo and London have many more
tweets than all of Germany, as seen in Table 1. An approach that
does not take local tweet density into account would be unable to
detect an event in a city in Germany, because these locations are
never frequent with respect to the global Twitter volume.

3.3 Updating the Moving Averages
The statistics we use for normalization, EWMA and EWMVar,

are a weighted mean and variance. In contrast to their traditional
counterparts, we need to update them incrementally, based on the
previous statistic and the new observations only: we cannot afford
to store all previous values or revisit the data stream.

Welford [27], West [28] and Finch [11] provide update equations
for these statistics that suit our needs very well:

∆← ft(w, l)−EWMA[f(w, l)]

EWMA[f(w, l)]← EWMA[f(w, l)] +α ·∆
EWMVar[f(w, l)]← (1−α) · (EWMVar[f(w, l)] +α ·∆2)

These (numerically stable) equations only rely on the new frequency
ft(w, l), the old estimates EWMA and EWMVar, and an aging fac-
tor α which can easily be derived from the half-life time t1/2—the
time after which the influence of the data has reduced to half of the
initial influence—as α= 1− exp

(
log
(
1
2

)
/t1/2

)
.

The main requirement to use these equations is a good estimate
of ft(w, l), and we need to improve scalability because we cannot
afford to store these estimates for every pair (w, l).



3.4 Event Detection Algorithm
To obtain a smooth estimate of our frequency ft(w, l), we need

to aggregate the data over large enough time windows to not exhibit
random fluctuations, which would cause false alerts and a too high
variance. Experimentally 15–60 minutes work well on Twitter,
containing about 100,000 usable (non-spam, non-duplicate, geo-
tagged) documents. The statistics are slow-moving averages, there-
fore this update rate is sufficient as long as we can detect deviations
earlier: A delay of one hour is not acceptable to detect “Breaking
News”. Therefore, we split the process into two parts: a batch inter-
val (1 minute) for event detection and the “epoch” interval (15–60
minutes) for statistics updates. We will give details on the detection
process in Section 3.6.

In the batch interval of 1 minute tweets are tokenized, stemmed,
spam and duplicates are removed. We can afford to count the fre-
quencies of all pairs in this batch due to its small size. But com-
puting our statistics for every pair (w, l) is infeasible due to the
large number of different words and locations occurring in a fast-
flowing social media stream. SigniTrend provides an approach de-
rived from count-min sketches to efficiently maintain these statis-
tics for huge data sets via hashing, which we adopt for our needs.

The frequencies counted in the 1 minute window are then fed
into a count-min aggregation sketch, and at the end of the (15–60
minute) epoch, the statistics sketch with the moving averages is up-
dated from the frequencies in this sketch, and we can start a new ag-
gregation sketch for the next epoch. The old sketch is now used as
detection sketch during the next epoch. This sketch is also updated
from the 1 minute window counts; but because it is pre-filled with
the counts of the previous epoch, we obtain a less noisy estimate of
the average frequency: it contains both the new data and the data
of the previous epoch. This is important in particular during the
first minutes of each epoch: the detection sketch provides reliable
estimates for detecting a sudden increase in frequency; whereas the
new aggregation sketch is still too noisy and unreliable to be used.
This way we can reduce the amount of false positive alerts substan-
tially. At the end of the next epoch, this sketch is discarded and
replaced with the next aggregation sketch. We do not use the de-
tection sketch to update the statistics, because it contains redundant
data. Because we only update the statistics at the end of each epoch,
the aggregation sketch is better suited for this purpose. In order to
detect events, we compare the values of the detection sketch with
the estimates obtained from the statistics sketch. In order to filter
repeated alerts, we use another threshold sketch that simply stores
the last value that triggered an alert, and which slowly expires every
epoch. The last-seen sketch simply stores the last pair (w, l) that
was counted in each bucket, to be able to translate bucket numbers
into understandable pairs.

At the end of each epoch, the statistics sketch is updated from the
aggregation sketch. The observed absolute counts are normalized
with the number of documents |D| in the current epoch to obtain
relative frequencies, and the moving average and variances are up-
dated. Then, the aggregation sketch becomes the next detection
sketch, and a new aggregation sketch is started. In the threshold
sketch, the last reported values νi are decreased to slowly forget
earlier trends. These operations are designed so that they can be
vectorized to efficiently update the statistics table, as seen in Fig-
ure 3c. The overall process is summarized in Algorithm 1.

This procedure can be implemented in a watermarking stream
system such as Google’s Millwheel system [3]. Data is processed
and added to the counting and alerting sketches as it arrives (be-
cause within each Epoch we do not rely on the data order), but
statistics updates are delayed until the watermark guarantees the
data of the Epoch is complete. If we switch from a time-based to a

Algorithm 1: Event detection algorithm
aggregation sketch← new count-min sketch
detection sketch← new count-min sketch
last-seen sketch← new last-seen-word sketch
threshold sketch← new threshold sketch
statistics sketch← new SigniTrend sketch
while new batch D do

foreach document d in batch D do
Tokenize text of document d
Add geo-tokens for document d
foreach word w or pair (w, l) do

Compute h hash codes
Update aggregation sketch
Update detection sketch
if detection sketch was modified then

Update last-seen sketch
Compare detection sketch and threshold table
Report detected events
if end of epoch interval then

Update statistics sketch using aggregation sketch
detection sketch← aggregation sketch
aggregation sketch← new count-min sketch
Expire old events from threshold sketch

count-based epoch duration (e.g. every epoch has 100,000 tweets)
we may even want to not use watermarking at all and ingest data as
it arrives, not as it was generated.

3.5 Sketch Data Structures
The sketches (data structures to approximate the data with less

memory) used in SPOTHOT are inspired by bloom filters [7], count-
min sketches and similar heavy-hitters algorithms. Each sketch
consists of a table of size 2b, where b ≥ 20 produced excellent re-
sults as shown in Section 4. Tables with other sizes could be used,
but powers of two can be more efficiently handled with bit mask
operations. All sketches are indexed using the same hash functions
H1(x) . . . Hh(x) and thus must have the same size. The number
of hash functions h is a small integer, and the value h=3 was used
throughout our experiments.

The following sketches and update procedures are used:

1. The aggregation sketch and detection sketch: A simplified
count-min [10] sketch (using a single table, instead of a sep-
arate table for each hash function).
To update, read buckets H1(x) . . .Hh(x), compute the min-
imum, then increment buckets H1(x) . . .Hh(x) only if their
current value was the minimum. (cf. Figure 3a)

2. The last-seen sketch stores the latest word-location pair, word
or word pair seen in every bucket.
If we increment the counter in the detection sketch sketch,
we also update the entry attached to the bucket.

3. The statistics sketch is a SigniTrend sketch, which stores the
exponentially weighted moving average and variance.
At the end of every epoch, this sketch is updated using the up-
date equations for moving averages (EWMA) and variances
(EWMVar) discussed in Section 3.3 (cf. Figure 3c).

4. The threshold sketch caches the standard deviation and last
reported significance.
At the end of each epoch, the last reported significance is
heuristically reduced by multiplication with 0.75, to allow
events to recur after a pause. The standard deviation is ob-
tained by computing the square root of the variance stored in
the SigniTrend sketch, to avoid repeated calculations.



Old counts 3 2 2 5 7 7 3 5 7 5

Read minimum

Increment (min=3) +1

Write if min> v

New counts 4 2 2 5 7 7 4 5 7 5

Last seen w n a a b c c n b c b

(a) Count-min sketch update (new token: n)

Counts 4 2 2 5 7 7 4 5 7 5

Last seen w n a a b c c n b c b

Read minimum fi = 4/|D|

Check threshold fi−max{EWMAi,β}√
EWMVari+β

> τ + νi

Read minimum EWMAi = 0.17±
√

0.01

EWMA .17 .12 .12 .51 .62 .62 .17 .51 .62 .51

EWMVar .01 .02 .02 .03 .04 .04 .01 .03 .04 .03

(b) Check thresholds for new events

Counts 4 2 2 5 7 7 4 5 7 5

Old EWMA .17 .12 .12 .51 .62 .62 .17 .51 .62 .51

Old EWMVar

∆← x/|D| −EWMA

EWMA← EWMA +α ·∆
EWMVar← (1−α) · (EWMVar +α ·∆2)

.01 .02 .02 .03 .04 .04 .01 .03 .04 .03

New EWMA .28 .16 .16 .50 .66 .66 .28 .50 .66 .50

New EWMVar .02 .01 .01 .02 .02 .02 .02 .02 .02 .02

(c) Vectorized statistics table update

Figure 3: Hash table maintenance

These sketches have the following interesting properties:

1. Operations on the sketches are either confined to the affected
hash bucketsH1(x) . . .Hh(x), or affect all buckets the same
way, and can be efficiently executed in parallel with SIMD
instructions.

2. The sketches could be distributed to multiple machines by
horizontal partitioning, using the first bits of every bucket as
partition key. Aggregation sketches could also be partitioned
vertically, but then we would need to frequenly aggregate
these partitions. Because a single machine was already able
to process all data, we have not further explored options for
a parallel implementation.

3. The sketches used are lossy in the same way that a count-min
sketch can overestimate the count of an object: the majority
of word pairs in Twitter are unique combinations that will
never constitute a significant event. Collisions can occur, but
the more frequent entry is expected to win. So unless we
have h collisions, each with a more frequent entry, we will
not lose an event.

3.6 Detection of Events
Because computing the statistics for every pair of tokens would

quickly exhaust memory resources, we employ heavy-hitters style
sketches as introduced by SigniTrend [23]. This way, we are ca-
pable of monitoring all words and word pairs in a data stream by
probabilistic counting with constant memory. But this yields a new
challenge: we need to be able to infer the actual event detected from
the hash tables. For this purpose we introduce the last-seen sketch
into the model, and perform event detection as follows: At the end
of every batch (i.e. in 1 minute intervals) we have to computeHi(x)
for every observed combination x = (w, l) to update the sketches.
When updating the detection sketch, we get an estimated count,
which we can normalize with the number of documents added to
the sketch to get an estimated frequency f(x). From the statistics
sketch we can also read the corresponding estimates of EWMA[x]
and EWMVar[x], such that we can apply our significance model
explained in Section 3.2 to this combination. If the resulting sig-
nificance exceeds the last reported value (stored in the threshold
sketch, to filter repeated alerts) by at least the threshold τ , then
this combination is reported as an event, and the threshold sketch
is updated with its significance to temporary silence repeated noti-
fications.

At this point in our analysis pipeline, we can only detect sin-
gle word-location combinations (w, l). We also incorporate Signi-
Trend [23] to additionally obtain single-word and word-pair trends,
then cluster the results as explained in Section 3.7 to obtain more
complex event descriptions.

The hashing strategy ensures that we count frequent combina-
tions exactly (with high probability), and that we never underesti-
mate the frequency of rare combinations. Because rare combina-
tions do not constitute events in our model, hash collisions do not
effect event detection if the hash tables are large enough. To fur-
ther reduce the chance of missing an event, we use multiple hash
functions. Only if every hash function has a collision with a more
popular combination, then we may miss a true event. It was demon-
strated [23] that hash tables with 20 bit are sufficient to not lose im-
portant information, and our experiments in Section 4 indicate this
also holds for our extension despite tracking additional pairs. Hash
partitions can easily be parallelized, which allows this process to
be easily distributed onto multiple hosts if necessary.

In addition to the tables for counting, moving average, and mov-
ing standard deviation employed by SigniTrend, we also maintain
a threshold table which contains the alerting thresholds and the last
reported values ν. The 1-minute batch interval is used for counting,
and the resulting frequencies (aggregated over the active epoch)
are compared to these thresholds. If the observed count exceeds
the previously reported value ν by a significance threshold τ , the
event will immediately be reported. Every time it exceeds the previ-
ously reported value by another τ standard deviations, it will be re-
ported again. At the end of each epoch, the moving average table is
updated—the longer update interval yields more reliable frequency
estimates—and the last reported value ν is also exponentially de-
creased, to allow recurrent events.

By using moving averages, we also do not need to remove in-
dividual tweets from our statistics but the data “disappears” due
to exponential weighting. Other approaches such as GeoScope [8]
have to maintain a buffer storing the most recent tweets to be able
to remove them from their counts when they have expired, and
thus require much more memory and additional processing to clean
up their data structures. In our statistical approach, data expiry is
solely managed by the exponential weighting of the averages. as
introduced by SigniTrend [23].



Table 2: Recall and precision compared to exact counting.

Table Bits Recall Precision F1-Measure σ≥20
12 0.52% 100.00% 1.04% 5
13 4.47% 89.36% 8.51% 47
14 33.56% 89.64% 48.84% 338
15 66.96% 93.42% 78.01% 1717
16 87.52% 96.03% 91.57% 4604
17 97.54% 99.94% 98.16% 7493
18 99.16% 100.00% 99.54% 9330
19 99.22% 100.00% 99.61% 9791
20 99.23% 100.00% 99.61% 9929

3.7 Clustering
Reporting trends to users is an important step that needs a care-

fully chosen balance between fast notifications (a single term that
is currently exceeding its alerting threshold) and meaningful aggre-
gation into clusters containing multiple related terms. Clustering
trending terms will provide topics and help the user to better under-
stand the corresponding story. For our experiments, we choose an
hierarchical agglomerative clustering as we do not know the num-
ber of trending clusters (stories) in advance, but can specify a quali-
tative similarity threshold. We chose average linkage as our linkage
criteria to construct the cluster dendrogram, because the data may
be dirty, and individual terms may be correlated to multiple clus-
ters (albeit our clustering can only assign them to one). Average
linkage was returning the empirically most meaningful results.

Because we also track every word-pair (like SigniTrend does)
in addition to all word-geo pairs, we can estimate the frequen-
cies of any word combination at any given time from our count-
ing table. We can also include words that cooccur with the recent
event, but are still slightly below the regular trigger threshold τ , or
that have triggered early and are currently active, albeit not novel
events themselves. We first collect all active words that participate
in a current or recent event. For agglomerative clustering, we use a
simple combination of coocurrence frequency ft(wi,wj) and trend
significance zt(wi, wj). We then build a similarity matrix using a
modified Jaccard similarity J ′ based on the pair frequencies, but
use similarity 1 if the word pair is currently significant together:

J ′ (wi, wj) =

1 if zt(wi, wj)≥ τ
ft(wi,wj)

ft(wi)+ft(wj)−ft(wi,wj)
otherwise

Thus, we amplify words that did trend together by setting their sim-
ilarity to the maximum of 1. We then run hierarchical clustering
with average linkage, and cut the dendrogram at height 0.5. The
resulting clusters resemble topics as found by typical topic models:
At the day of the Scotland’s independence referendum voting the
terms poll, England, referendum, result and people formed a single
cluster. More example cluster can be found in Table 4.

4. EXPERIMENTS
To evaluate the approximation quality of our algorithm, we com-

pare to an implementation that uses expensive exact counting on
all pairs (old pairs are forgotten if they have not been observed for
several hours to reduce memory consumption, but we need 16 GB
of RAM nevertheless to be able to keep all candidates in memory).
In Table 2 we give recall and precision comparing our approach to
this ground truth, using all events with over σ≥20, and consider a
match positive if the event is also found by the other method with
at least σ≥10 and with at most 1 hour difference. Recall measures
how many events found by exact counting are also found by the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 12  14  16  18  20  22

P
re

c
is

io
n

 /
 R

e
c
a
ll

Table size (bits)

Recall

Precision

F1

Figure 4: Recall and precision compared to exact counting.

approximate methods, precision measures how many of the events
found using the approximate method can be confirmed using exact
counting. Figure 4 visualizes these results. Precision remains high
(i.e. few incorrect events are reported), but only very few events
are detected and the recall is thus very low. The ongoing increase
of σ≥20 events are mostly redundant reportings (the same event
reported multiple times with increasing σ). Similar to the exper-
iments using synthetic data in SigniTrend [23], we can observe a
saturation effect on Twitter data at a table size of 18 bits even with
the additional tokens we added for geographic information.

The data feed we use contains 5–6 million tweets per day (slightly
more than the popular statuses/sample endpoint; no retweets,
and all tweets are geo-tagged). The data period is September 10,
2014 to February 19, 2015. Due to the Twitter terms of service, we
are not allowed to make this data set available for download. Our
implementation is using Java, and we used a desktop PC with an
Intel Core i7-3770 CPU running Debian Linux and OpenJDK 1.8
with the fastutil and ELKI [21] libraries. Large parts of the im-
plementation were done using low-level data structures to achieve
high throughput.

Hash based counting is easy to distribute if additional scalability
is needed, because it is embarrassingly parallel. The sketch tables
can be split into multiple slices by a prefix of the hash key (i.e.
horizontal partitioning), and distributed onto multiple computers.
Furthermore, incoming Tweets can also be processed by multiple
nodes in parallel (vertical partitioning), if the tables are then ag-
gregated for example after each batch (this corresponds to a local
aggregation as often done using a “combiner” in MapReduce). We
did not use a distributed implementation, because we could already
run the full analysis of one hour of data in 9 seconds on a single
core. The overall lag from the live Twitter feed to the final output
is constantly less than 2 seconds, and we could process 400× as
much data without upgrading the CPU, adding additional cores, or
having the overhead of a distributed implementation. We estimate
that the 5–6 million geotagged Tweets we are receiving are up to
1/3 of the total geo-tagged tweets, and thus our method should be
able to process all of Twitter on a single node easily.

4.1 Most Significant Regional Events
In the first experiment, we inspect the most significant local events

detected in our data set, as this shows both the ability to detect
trends as well as the ability to locate them geographically. For pre-
sentation, we selected the most significant occurrence of each key-
word only, and of each locations only the most significant keyword.
The top 20 most significant events selected this way are shown in
Table 3. There are four events that we attribute to a highly active
Twitter spammer in Turkey, but all others can be attributed to ma-
jor media events or celebrities. Most of the events in Table 3 are
detected at country level, which makes sense as they are based on
events in TV, and did not happen at the users location. We observe
that Twitter users mostly comment on what they see on TV and on
the Internet, and much less on the physical world around them.



Table 3: Most significant events in their most significant location each

σ Time Word Location Explanation
2001.8 2014-10-29 00:59 #voteluantvz Brazil Brazilian Music Award 2014

727.8 2014-09-23 02:21 allahımsenbüyüksün Denizli (Turkey) Portmanteau used in spam wave
550.1 2015-02-02 01:32 Missy_Elliott United States of America Super Bowl Halftime Show
413.5 2014-09-18 21:29 #gala1gh15 Spain Spanish Big Brother Launch
412.2 2014-11-11 19:29 #murrayftw Italy Teen idol triggered follow spree
293.8 2014-10-21 12:05 #tarıkgüneşttyapıyor Marmara Region Hashtag used in spam wave
271.2 2015-02-02 02:28 #masterchefgranfinal Chile MasterChef Chile final
268.1 2015-01-30 19:28 #زيكرابس Saudi Arabia Amusement park “Sparky’s”
257.7 2014-11-16 21:44 gemma United Kingdom Gemma Collins at jungle camp opening
249.1 2014-10-08 02:56 rosmeri Argentina Rosmery González joined Bailando 2014
223.1 2015-01-21 18:51 otortfv Central Anatolia Region Keyword used in spam wave
212.7 2014-09-11 18:58 #catalansvote9n Catalonia Catalan referendum requests
208.4 2014-12-02 20:00 #cengizhangençtürk Northern Borders Region Hashtag used in spam wave
205.3 2015-01-04 15:56 hairul Malaysia Hairul Azreen, Fear Factor Malaysia
198.7 2014-12-31 15:49 あけましておめでとうございます Japan New Year in Japan
198.5 2015-01-10 20:19 Russian Federation “Russian Facebook” VK unavailable
179.7 2014-10-04 16:28 #hormonestheseries2 Thailand Hormones: The Series Season 2
174.7 2014-11-28 21:29 chespirito Mexico Comedian “Chespirito” died
160.9 2014-09-21 21:27 #ss5 Portugal Secret Story 5 Portugal launch
157.3 2014-09-24 01:57 maluma Colombia Maluma on The Voice Kids Colombia
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Figure 5: New Year around the world at σ≥3

4.2 New Year’s Eve
We analyzed trending topics on New Year’s Eve, and were able

to identify New Year greetings in several languages. Interesting
patterns emerge if we plot longitude versus time, as seen in Fig-
ure 5. In the first Figure, the x-axis is geographic, but the y-axis
is temporal, so we can see the arrival of the New Year in different
time zones. All events with σ≥3 were included, if we were able to
identify them as New Year related. To remove visual clutter, we did
not include other events, or festive emoji. Several cultural patterns
arise in this Figure: Chinese New Year and Hindu New Year are
on a different date, and thus neither China nor India does not show
a lot of activity. Some vocabulary such as “Silvester” refers to the
whole day before New Year. Italians started tweeting “capodanno”
in the afternoon, but wish “buon anno” after midnight. Despite the

fact that Twitter is not used much in Germany, our variance-based
approach however can account for this, and was still able to de-
tect some German New Year’s wishes, but the English greetings
were more popular in Germany on Twitter. Sydney has the first
fireworks at 9pm already (for the kids), and we can indeed observe
an event “fireworks” in Australia at 10:04 UTC. Throughout the
evening, we see New Year mentions, and the event at midnight is
rather small compared to other countries. In Québec, we observe
more French wishes around GMT than at midnight, but closer in-
spection revealed that most originate from the same user. In Russia,
we can see Yakutsk, Ulan-Ude and Irkutsk, and Novosibirsk cele-
brate in different time zones prior to the more densely populated
areas beginning with Yekaterinburg.

4.3 WikiTimes Events
We use the WikiTimes data set [25] to validate events found by

our detection system. Table 4 lists events validated by compar-
ing the resulting word cluster (using hierarchical clustering) with
Wikipedia headlines for the same day. Our algorithm was able to
identify several important events of contemporary history, and was
able to produce both meaningful geographical information as well
as related keywords. Only one of these events was detected with
a hashtag, indicating that restricting the input data to hashtags—
as required for GeoScope—may obscure important events. Named
entity recognition however helped in detection, as it can be used to
normalize different spellings and abbreviations of names. Due to
the higher frequency of the disambiguated terms, we have a more
stable signal and thus less variance and earlier detection.

4.4 Earthquakes
Natural disasters, such as earthquakes, are of broad interest to the

public. It has been proposed to detect them using Twitter [20], thus
we evaluate this scenario despite the fact that earthquakes are bet-
ter detected using seismic sensors, and the earliest tweets for most
quakes are automatic tweets by bots. The relative frequency of the
term “earthquake” regardless of its geographical origin is shown
in Figure 6a. This yields a noisy signal with a high background
activity and many low-significance events. The frequency shown
is normalized by the total number of tweets at each correspond-
ing day to avoid seasonal patterns (e.g. more tweets on weekends
than on workdays). If we narrow down the scope to a specific ge-



Table 4: Events validated via WikiTimes [25]
Date σ Event Terms Event description c© Wikipedia, The Free Encyclopedia
09-17 7.5 Scotland, U_K, poll, England, referendum, result, people Voters in Scotland go to the polls to vote on the referendum on independence.
09-17 5.6 house, rebel, arm, Syria, approv The United States Senate passes a budget measure authorizing President Barack

Obama to equip and train moderate rebels to fight ISIL in Syria.
09-18 12.4 England, Scotland, referendum, U_K, Greater_London, Lon-

don
Voter turnout in the referendum hits 84.5%, a record high for any election held in
the United Kingdom since the introduction of universal suffrage.

09-18 25.6 Scotland, U_K, uk, England, Greater_London, London,
David_Cameron

Prime Minister David Cameron announces plans to devolve further powers to
Scotland, as well as the UK’s other constituent countries.

09-18 15.0 England, referendum, Greater_London, U_K, Alex_Salmond,
Scotland, resign, London, salmond, Glasgow_City

Alex Salmond announces his resignation as First Minister of Scotland and leader
of the Scottish National Party following the referendum.

09-18 9.5 Philippines, cancel, flood, Metro_Manila, UK Manila is inundated by massive flooding causing flights to the international airport
to be cancelled and businesses to shut down.

09-22 40.1 Isis, U_S_A, Syria, airstrikes, bomb, target, islamic_state, u_s,
strike, air

The United States and its allies commence air strikes against Islamic State in Syria
with reports of at least 120 deaths.

09-23 17.7 Syria, strike, air, Isis The al-Nusra Front claims its leader Abu Yousef al-Turki was killed in air strikes.
09-24 3.1 Algeria, french, behead Algerian jihadist group Jund al-Khilafah release a video showing French tourist

Hervé Gourdel being killed.
09-26 3.5 Iraq, Isis, air, strike The Parliament of the United Kingdom approves air strikes against ISIS in Iraq

by 524 votes to 43.
10-08 60.5 di, patient, thoma, duncan, eric, dallas, hospital, diagnos,

texas
The first person who was diagnosed with Ebola in the United States, Thomas Eric
Duncan, a Liberian man, dies in Dallas, Texas.

10-10 44.7 kailash, satyarthi, India, Nobel_Peace_Prize, malala,
Malala_Yousafzai, congratul, #nobelpeaceprize, indian,
pakistani, peace

Pakistani child education activist Malala Yousafzai and Indian children’s rights
advocate Kailash Satyarthi share the 2014 Nobel Peace Prize.

10-12 11.0 texas, worker, posit, tests, health_care, supplement A Texas nurse tests positive for Ebola. The health care worker is the first person
to contract the disease in the United States of America.

10-14 34.4 Republic_of_Ireland, ireland, U_K, Germany, England,
John_O’Shea, Leinster, County_Dublin, Scotland

Ireland stuns world champion Germany in Gelsenkirchen, with Ireland drawing
the match at 1–1 when John O’Shea scores in stoppage time.

10-14 30.6 Albania, Serbia, U_K, England, London, match, drone, flag The game between Albania and Serbia is abandoned after a drone carrying a flag
promoting the concept of Greater Albania descends onto the pitch in Belgrade,
sparking riots, mass brawling and an explosion.

10-15 17.8 posit, worker, tests, Ebola_virus_disease, texas, health A second health worker tests positive for the Ebola virus in Dallas, Texas.
10-17 13.1 czar, Barack_Obama, klain, ron, Ebola_virus_disease, U_S_A,

Travis_County
Barack Obama names lawyer and former political operative Ron Klain as "ebola
czar" to coordinate US response to the Ebola outbreak.

10-22 26.4 soldier, Canada, Ottawa, shoot, Ontario, insid, canada, par-
liament

A gunman shoots a Canadian Forces soldier outside the Canadian National War
Memorial.

ographic region, we get a much cleaner signal. Figure 6b shows
the frequency only near Guam within latitude 144± 1 and longi-
tude 13 ± 1, where we can observe two events. To validate our
observations, we can use metadata from the United States Geolog-
ical Survey’s (USGS) Earthquake Hazards Program as our valida-
tion data source for earthquake events. The first peak in Figure 6b
at September 17, 2014 refers to a strong earthquake with a mag-
nitude of 6.7 located 47km northwest of Hagatna (Guam), which
was included in the USGS Significant Earthquake Archive.2 The
second, smaller peak on October 29, 2014 refers to a small earth-
quake 36km southeast of Hagatna with a lower magnitude of 4.7. In
Figure 6c we plotted the frequency for earthquake mentions around
Dallas, Texas within latitude −97± 1 and longitude 33± 1.

The total number of significant earthquakes included by the USGS
in their list during the time of our Twitter crawl is 30 (ranging from
the first earthquake reported on September 17, 2014 to February
13, 2015). By exact counting the tweets corresponding to these
events, we found that 19 of them received less than 10 mentions
because they happened far away from cities. Because such low
frequencies are too little to be statistically significant, we excluded
them from our evaluation. While detecting earthquakes is a popular
use case for event detection on Twitter, it cannot be used as a re-
placement for seismic sensors: 19 out of 30 significant earthquakes
were not significantly discussed on Twitter. The explanation is that
most earthquakes happen off-shore, such as the last (Sacramento)
earthquake in this list, which was 40 miles off-shore south-west of
Eureka, CA. It was mostly reported by Twitter earthquake bots, and
did not cause many additional Tweets. If a substantial earthquake
2http://earthquake.usgs.gov/earthquakes/

happens, we must even assume the network to become unavailable.
Many earthquakes would also have been detected by SigniTrend

without our extension using geo locations, because people men-
tion their location in the text: only the 1st (Oklahoma) and 9th
(Texas) earthquake would have been missed otherwise. By in-
cluding the geo information and tracking statistics for the term-
location pairs (earthquake, Oklahoma) respectively (earthquake,
Texas) they were identified, furthermore our approach is able to
identify them earlier than SigniTrend. As shown in Table 5, we
are able to detect 9 out of 11 earthquakes that were classified as
significant by the USGS and present in our data set. GeoScope
only detected a single #earthquake hashtag at January 7, 2015. The
columns Time and M report the USGS reported earthquake date and
magnitude. ∆ contains the delay in minutes from the earthquake
to our first detected event that surpassed the threshold of 3σ. Tt,q
denotes the set of all tweets within a 1-hour window of the event
matching the query term q = “earthquake”. Tt,q,g ⊆ Tt,q denotes
the subset of tweets, which also match our geo token g of the earth-
quake’s location. Event Keywords are the terms and pairs that were
significant. In the last columns we indicate whether GeoScope and
Our method were able to identify this event.

We did not configure our system specifically for this purpose
by specifying query terms beforehand (in contrast to specialized
systems such as Sakaki et al. [20] that require keyword selectors).
For this experiment, we later extracted earthquake related events
from the general trend report file, that also includes all other events
which occurred during this time period. The top other events de-
tected on each day are presented in Table 6, along with the tokens
clustered as explained in Section 3.7.

http://earthquake.usgs.gov/earthquakes/


(a) Mentions of term “earthquake” regardless of location

(b) Mentions of term “earthquake” in Guam matching at latitude 144± 1 and longitude 13± 1

(c) Mentions of term “earthquake” in Dallas, Texas matching at latitude −97± 1 and longitude 33± 1

Figure 6: Frequency of the term “earthquake” globally vs. locally.

Table 5: Significant earthquakes that exhibit a minimum of 10 tweets within 1 hour of the actual time.

Time Lat Lng Nearby City (distance) M ∆ σ
|Tt,q,g|
|Tt,q|

Event Keywords [8] Our
14-09-17 144.4 13.8 Hagatna, Guam (47km) 6.7 2.3 21.7 93/114 guam,{guam, earthquake},{guam_county, earthquake} 7 3
14-10-02 -98.0 37.2 Wichita, KA (73km) 4.3 - - 13/51 - 7 7
14-10-10 -96.8 35.9 Oklahoma, OK (86km) 4.2 53.7 3.0 41/54 oklahoma,{oklahoma, earthquake} 7 3
14-11-12 -97.6 37.3 Wichita, KA (53km) 4.9 2.0 18.0 138/322 kansas,{earthquake, felt},{kansas, earthquake} 7 3
14-11-20 -121.5 36.8 Santa Cruz, CA (65km) 4.2 0.2 18.7 134/148 california,{california, earthquake},{monterey_county, earthquake} 7 3
14-11-21 127.1 2.3 Bitung, Indon. (228km) 6.5 - - 13/19 - 7 7
14-12-01 -111.7 35.0 Phoenix, AZ (179km) 4.7 3.4 22.8 119/148 arizona,{arizona, earthquake},{earthquake, flagstaff} 7 3
14-12-30 -118.3 33.6 Long Beach, CA (21km) 3.9 0.7 22.5 213/245 california,{california, earthquake},{los_angeles, earthquake} 7 3
15-01-07 -96.9 32.8 Irving, TX (6km) 3.6 22.9 3.1 269/334 {denton_county, earthquake} 3 3
15-01-20 -121.0 36.4 Santa Cruz, CA (80km) 4.4 3.4 8.0 37/51 california,{california, earthquake},{monterey_county, earthquake} 7 3
15-01-28 -124.6 40.3 Sacramento, CA (330km) 5.7 51.1 3.0 25/37 earthquake 7 3

Note: data and method were not optimized for earthquake detection, but all events were tracked at the same time.
The detected earthquakes were significant at a significance level of σ ≥ 3 in the full Twitter feed.

Table 6: Top events detected at the same day as the earthquakes in Table 5.
Date σ event terms description

2014-09-17T02:50 247.8 #selfiesfornash, nash, #selfiefornash, #sefiesfornash Teenager star “Nash Grier” asked his fans for selfies
2014-12-01T02:56 223.0 United_States_of_America, #soultrainawards Soul Train Music Awards
2014-12-01T02:00 167.2 #thewalkingdead, beth, di, cry, #ripbeth, #asknorman, daryl TV Series “The Walking Dead”
2015-01-07T22:00 135.1 hopkins, kati, England, #cbb, United_Kingdom, London,

Greater_London, North_West_England
Katie Hopkins passes judgement in TV Show “Celebrity Big
Brother”

2014-11-12T23:00 122.2 #followmehayes, hay Fans send “folow me please” wishes to Teenager star “Hayes
Grier”

2014-09-17T20:00 113.1 England, yaya, #gbbo, United_Kingdom,
Greater_London, London, North_West_England

Famous TV Show “The Great British Bake Off" live

2014-11-20T04:05 102.3 United_States_of_America, #ahsfreakshow,
New_York, Massachusetts

Fans of TV show “American Horror Story” talking about new
Release Date

2014-09-17T20:51 98.0 boateng, goal Jerome Boateng (Bayern Munich) scored the winning goal
against Manchester City

2014-10-10T21:00 83.8 #5sosgoodgirls, #5sosgoodgirlsmusicvideo, 5so Famous Teenager Band release new video
2014-10-10T10:42 70.3 kailash, satyarthi, Nobel_Peace_Prize, malala, Malala_Yousafzai Malala and Kailash Satyarthi win Nobel Peace Prize
2014-11-12T04:38 66.1 #soa, #soafx, #finalride, abel TV Series “Sons of Anarchy”
2015-01-28T21:00 59.8 Lionel_Messi, Neymar, suarez Famous soccer players in Atlético Madrid against Barcelona.
2015-01-28T21:53 55.3 eriksen, Greater_London, London Christian Eriksen scored a soccer goal



(a) GeoScope performance for decreasing thresholds. (b) SPOTHOT with increasing significance threshold σ.

Figure 7: Scalability of GeoScope and SPOTHOT.
Left Y-axis: real-time performance. Right Y-axis: Average number of reported events per hour.

4.5 Scalability
In this section we demonstrate the efficiency of our algorithm.

The following experiments were executed on a laptop with a 2.4 GHz
Core i7 CPU and 8 GB RAM. We re-implemented GeoScope [8]
and using their suggested parameter values obtained similar results
to those reported by Budak et al. [8]. As long as we use only
hashtags (as done by Budak et al.), we obtained a performance of
around 480× real-time: Processing one day of tweets took about
3 minutes. Because concepts like hashtags are likely to be absent
in data sources other than Twitter, we then dropped this restric-
tion and instead process the complete stemmed text of each tweet,
as done in our approach. This makes the methods more compa-
rable, but the increased amount of data reduced the throughput of
GeoScope to around 130× real-time. In Figure 7a we compare
the performance of the method to the number of reported location-
topic events within a window size of one hour. If we decrease Geo-
Scope’s threshold parameters the total number of reported instances
increases exponentially from 261 to 15,599 whereas the runtime
performance decreases substantially from 136× to 32× real-time
because the thresholds are less selective. Because the hashing strat-
egy used by SPOTHOT focuses on the interesting combinations
directly (instead of tracking the most frequent words and locations
independently) the performance is both faster (at around 240× real-
time) and does not degrade as much for reasonable values of σ, as
seen in Figure 7b.

If a user wants to discover local events at geo-locations with low
Twitter activity (as noted before, all of Germany has less Tweets
than New York City alone; Table 1), GeoScope’s threshold parame-
ters have to be set to low values to enable tracking for less frequent
locations. For example on the day of the Guam earthquake (c.f.
Table 5) the location Guam County ranked only 834th most fre-
quent; thus GeoScope’s φ parameter needs to be much smaller than
φ≤ 1

834
≈ 0.001 in order to be included. With such low threshold

values, the number of reported instances increases to thousands of
reported location-topic combinations (c.f. Figure 7a).

GeoScope does not use a measure of unusual increase in fre-
quency, but focuses on top-k frequent words that occur in a single
top-k frequent location only. This includes many trivial combi-
nations such as the hashtags #ElPaso, #Milano, and #NYC being
reported as interesting “trends” for El Paso County, Milan, and
New York City respectively. Such trivial combinations account for a
large share of the instances reported by GeoScope, and make it hard
to find the really interesting events due to the result set size. The
significance score used by our new SPOTHOT method is normal-
ized by the expected (local) frequency and thus avoids such unin-
teresting combinations that occur every day at these locations, and
thus our result size remains much smaller.

5. CONCLUSION
We enhanced and refined the SingiTrend approach with the abil-

ity to use geographic information to detect events in fast and very
large data streams, and showed that

1. Mapping coordinates to a token representation allows effi-
cient and effective integration of geographic information in
an analysis pipeline originally designed for textual data.

2. While grid-based tokens give a guaranteed resolution, tokens
based on administrative boundaries allow detecting events at
different granularities.

3. Co-occurrence of terms and location yields insight into events
happening around the globe and enables data scientists to
study for example new years celebrations in a geo-temporal
context, or the influence of TV shows onto Twitter usage.

4. Variance-based normalization yields more interesting topics
and events by adjusting for differences in user density and
activity. By using incremental statistics, we remove the need
to expire old data and improve performance.

5. Decoupling data aggregation and statistics tracking permits
the use of short timeframes for counting and alerting, while at
the same time we can use larger timeframes for more robust
statistics.

6. Probabilistic counting using hash tables allows to scale this
approach to very large data sets, well capable of perform-
ing such an analysis in real-time on thousands of tweets per
second.

7. Due to the scalability improvements, the a priori specifica-
tion of interesting topics and regions of interest required by
earlier approaches is no longer necessary.

Future research directions include: (i) the classification of events
into categories such as sports and politics; (ii) the handling of recur-
ring events such as weekly TV shows; (iii) a visualization suitable
for non-expert users that integrate both the cluster structure of the
tokens as well as their geographic affinity; (iv) a drill-down func-
tionality to study a specific subset of the data only.
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