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Abstract. This paper introduces a scalable approach for continuous inverse rank-
ing on uncertain streams. An uncertain stream is a stream of object instances with
confidences, e.g. observed positions of moving objects derived from a sensor. The
confidence value assigned to each instance reflects the likelihood that the instance
conforms with the current true object state. The inverse ranking query retrieves
the rank of a given query object according to a given score function. In this paper
we present a framework that is able to update the query result very efficiently,
as the stream provides new observations of the objects. We will theoretically and
experimentally show that the query update can be performed in linear time com-
plexity. We conduct an experimental evaluation on synthetic data, which demon-
strates the efficiency of our approach.

1 Introduction

Recently, it has been recognized that many applications dealing with spatial, tempo-
ral, multimedia, and sensor data have to cope with uncertain or imprecise data. For
instance, in the spatial domain, the locations of objects usually change continuously,
thus the positions tracked by GPS devices are often imprecise. Similarly, vectors of
values collected in sensor networks (e.g., temperature, humidity, etc.) are usually inac-
curate, due to errors in the sensing devices or time delays in the transmission. Finally,
images collected by cameras may have errors, due to low resolution or noise. As a con-
sequence, there is a need to adapt storage models and indexing/search techniques to
deal with uncertainty.

Special formulations of queries are required in order to take the uncertainty of the
data into account. In this paper, we focus on the probabilistic inverse ranking (PIR)
query on uncertain streaming data, i.e. the data change with elapsing time. While PIR
queries have been studied for static data [1], to the best of our knowledge, there is no
previous work in the context of dynamic data or data streams. Given a stream of uncer-
tain objects, a user-defined score function S that ranks the objects and a user-defined
(uncertain) query object q, a PIR query computes all the possible ranks of q associated
with a probability. The PIR query is important for many real applications including fi-
nancial data analysis, sensor data monitoring and multi-criteria decision making where
one might be interested in the identification of the rank (significance) of a particular
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Fig. 1. Chances and risk predictions by three analysts for three stocks.

object among peers. Consider the exemplary application illustrated in Figure 1(a): A fi-
nancial decision support system monitors diverse prognostic attributes of a set of three
stocks, e.g. predicted market trend (chances) and volatility (risk), which are used to rate
the profitability of the stocks according to a given score function. As it can be observed,
the chance and risk estimations are not unique among different analysts and each ana-
lyst is given a different confidence level. Figure 1(b) shows graphically the three stocks
with their respective analyst predictions and the query object q. Here we assume that
we are given a score function defined as S = (Chances − Risk). The dotted line in
Figure 1(b) denotes all points x where S(x) = S(q), i.e. all points with the same score
as q. Any instance located to the right of this line has a higher score than q, while any
instance to the left has a lower score. Therefore, we can safely assume that Stock II has
a lower score than q while Stock III certainly has a higher score than q. However, the
relative ranking of Stock I with respect to q is uncertain. While two of three analysts
(with a total confidence of 80%) would rank Stock I higher than q, the third analyst
would rank it lower. Thus, the PIR query for q returns that q is on rank two with a
probability of 20%, on rank three with a probability of 80% and definitely not on rank
one or four. This result can be used to answer questions like “Given a score function,
what is the likelihood that a query stock q is one of the global top-3 best stocks?”. The
problem we study in this paper is how to efficiently update these likelihoods when the
analysts release new estimations on a ticker stream.

As another example (taken from [2]), for a newborn, we may be interested in his/her
health compared with other babies, in terms of height, weight, and so on. In this case,
we can infer the newborn’s health from his/her rank among others. Note that data of
newborn babies in a hospital are confidential. Thus, for the sake of privacy preserva-
tion, such information is usually perturbed by adding synthetic noise or generalized
by replacing exact values with uncertain intervals, before releasing them for research



purposes. Thus, in these situations, we can conduct a PIR query over uncertain data
(perturbed or generalized) in order to obtain all possible ranks that a newborn may have
with high confidence. In addition, we may want the distribution of possible ranks of
the baby to be dynamically updated, as new data arrive, in order to be confident that
the baby’s status remains good compared to new cases. Therefore, rank updates for the
query (baby) have to be applied, as new measurements arrive from a stream.

The rest of the paper is organized as follows: In the next section, we survey existing
work in the field of managing and querying uncertain data streams. In Section 3, we for-
mally define the problem of probabilistic inverse ranking on data streams. Our approach
for solving the problem efficiently is described in Section 4. In Section 5, we generalize
the problem by additionally considering uncertain queries. We experimentally evaluate
the efficiency of our approach in Section 6 and conclude the paper in Section 7.

2 Related Work

In this paper, we focus on inverse similarity ranking of uncertain vector data. A lot of
work was performed in the direction of ranking among uncertain data [3–7], but there
is limited research on the inverse variant of ranking uncertain data [1]. In a nutshell,
there are two models for capturing uncertainty of objects in a multi-dimensional space.
In the continuous uncertainty model, the uncertain values of an object are represented
by a continuous probability density function (pdf) within the vector space. This type
of representation is often used in applications where the uncertain values are assumed
to follow a specific probability density function (pdf), e.g. a Gaussian distribution [5].
Similarity search methods based on this model involve expensive integrations of the
pdf’s, thus special approximation techniques for efficient query processing are typically
employed [8]. In the discrete uncertainty model, each object is represented by a discrete
set of alternative values, and each value is associated with a probability. The main mo-
tivation of this representation is that, in most real applications, data are collected in
a discrete form (e.g., information derived from sensor devices). The uncertain stream
data, as assumed in this paper, correspond to the discrete uncertainty model which also
complies with the x-relations model used in the Trio system [9].

In order to deal with massive datasets that arrive online and have to be monitored,
managed and mined in real time, the data stream model has become popular. Surveys
of systems and algorithms for data stream management are given in [10] and [11]. A
generalized stream model, the probabilistic stream model, was introduced in [12]. In
this model, each item of a stream represents a discrete probability distribution together
with a probability that the element is not actually present in the stream. There has been
interesting work on clustering uncertain streams [13], as well as on processing more
complex event queries over streams of uncertain data [14]. [15] presents algorithms that
capture essential features of the stream, such as quantiles, heavy-hitters, and frequency
moments. To the best of our knowledge, this paper is the first addressing the processing
of inverse ranking queries on uncertain streams.

The inverse ranking query on static data was first introduced by Li [2]. Chen et
al. [1] apply inverse ranking to probabilistic databases by introducing the probabilistic
inverse ranking query (PIR). Apart from considering only static data, their PIR query



definition varies from ours, since its output consists of all possible ranks for a query
object q, for which q has a probability higher than a given threshold. Another approach
for answering PIR queries has been proposed by [16] which computes the expected
inverse rank of an object. The expected inverse rank can be computed very efficiently,
however, it lacks from a semantic point of view. In particular, an object that has a very
high chance to be on rank one, may indeed have a expected rank far from one, and
may not be in the result using expected ranks. Thus, no conclusion can be made about
the actual rank probabilities if the expected rank is used, since the expected rank is an
aggregation that drops important information.

3 Problem Definition

In this work, we adopt the discrete x-relation model proposed in the TRIO system [9],
in which an uncertain database D consists of n uncertain objects which are each mod-
elled by exactly one x-tuple. Each x-tuple T includes a number of tuples, which we
call (possible) instances, as its alternatives. Each tuple t ∈ T is associated with a prob-
ability p(t), representing a discrete probability distribution of T . Thus, an x-tuple T
is a set of a bounded number of instances, subject to the constraint that

∑
t∈T p(t) ≤

1. Independence is assumed among the x-tuples. For simplicity, we also assume that∑
t∈T p(t) = 1.3 Following the popular possible worlds semantics, D is instantiated

into a possible world with mutual independence of the x-tuples. An uncertain database
D is instantiated into a possible world as follows:

Definition 1 (Possible Worlds). LetD = {T1, ..., Tn} and letW = {t1, ..., tn} be any
subset of tuples appearing in D such that ti ∈ Ti. The probability of this world W
occurring is P (W ) =

∏n
j=1 p(tj). If P (W ) > 0, we say that W is a possible world,

and we denote byW the set of all possible worlds.

Without loss of generality, we consider uncertain vector objects L in a d-dimensional
vector space. That is, each object is assigned tom alternative locations l associated with
a probability value. For example, the m alternative positions of an uncertain object are
associated with observations derived from m sources of information (sensors). In our
stock example the sources correspond to the assessments of the analysts and in the baby
ranking example, the sources correspond tom uncertain values uniformly sampled from
the corresponding uncertain measurement range.

Definition 2 (Probabilistic Stream). We define an uncertain data stream, analogously
to [12]. A probabilistic stream is a data stream A = [x0, . . . , xt, . . . ] in which each
item xt encodes a random variable reported at time t from the stream, corresponding
to an object update. In particular, each xt has the form 〈O,L〉, where O is an object
ID and L is a location vector of length |L|. Each element l ∈ L contains a location
l.loc ∈ Rd and a probability l.p. In addition, we assume that

∑
l∈L l.p = 1, i.e. we

assume that the object have no existential uncertainty. i.e. that object O is existentially
certain.

3 For the problem of inverse ranking, this assumption means no loss of generality, since ex-
istential uncertainty can be modelled by simply adding to T an additional instance with a
probability 1−

∑
t∈T p(t) and a score of −∞ (that is a distance of∞ to the query).



Definition 3 (Probabilistic Stream Database). A probabilistic stream database is an
uncertain database connected to at least one probabilistic stream. Each stream item
xt = 〈O,L〉 at time t denotes an update of the uncertain object O ∈ DB.4 Therefore,
at time t, the x-relation describing object O is replaced by the new location distribution
L coming from the stream.

This probabilistic stream database model is very general and can be easily adapted
to simulate popular stream models:

The sliding window model of size m can be simulated by imposing the following
constraint to the probabilistic stream: For any two stream items xt = 〈O,Lt〉, xs =
〈O,Ls〉, t < s, of the same objectO, it holds that if there no other stream items between
time t and s concerning the same object, it holds that Lt+1 is derived from Lt by

– adding exactly one new instance to Lt, and
– removing the oldest instance of Lt if |Lt| > m

The probabilities p(l), l ∈ Lt are often set to p(l) = 1
|Lt| , but other distributions can be

used. In particular, more recently observed instances can be given a higher probability
to obtain the weighted sliding window model. Additionally, the infinite sliding window
model is obtained by setting k = ∞. In this work, the stream model is left abstract, as
the proposed solutions are applicable for any such model.

Next we define the problem to be solved in this work.

Definition 4 (Probabilistic Inverse Ranking Query). Given an uncertain databaseD
of size n, a query object q and a score function

S : D → R+
o .

Assuming that only the top-k ranks are of interest, a probabilistic inverse ranking query
PIR(q) returns for each i ∈ [1, ..., k] the probability P t

q (i) that q is on rank i w.r.t. S,
i.e. the probability that there exist exactly i − 1 objects o ∈ D such that S(o) > S(q)
at time t.

Given a set of n uncertain objects and a probabilistic streamA as defined above, our
problem is to compute and update, for a given query object q and a given score function
S the result of PIR(q) at each time t, i.e. after each object update. The challenge is to
ensure that this can be done correctly in terms of the possible world semantics, and
highly efficiently to allow online processing of the probabilistic stream A. Since the
number of possible worlds at a time t is exponential in the number n of uncertain stream
objects at time t, these two challenges are conflicting. In the following we will propose
an approach to compute PIR(q) in O(n2) from scratch, and to update it in O(n) when
a new update is fetched from the stream. In addition, we will show how the result of
PIR(q) can be efficiently updated, if the query object q is itself a stream object that
changes frequently.

4 O may also be a new object.



Table of Notations
D An uncertain stream database.
n The cardinality of D.
q A query vector in respect to which a probabilistic inverse ranking is computed.
k The ranking depth that determines the number of ranking positions of the inverse rank-

ing query result.
ox An uncertain stream object corresponding to a finite set of alternative vector point in-

stances.
pt

o The probability that object o has a higher score than q at time t.
P t(i) The result of the inverse ranking at time t: The probability that q is at rank i at time t.
P t

i,j The probability that, out of j processed objects, exactly i objects have a higher score
than q at time t.

P t
PBR(i) The result of the Poisson binomial recurrence at time t: The probability that i objects

have a higher score than q at time t, if all objects o for which pt
o = 1 are ignored.

P̂ t
PBR(i) The adjusted result of the Poisson binomial recurrence at time t: Identical to P t

PBR(i)
except that the effect of the object that changes its position at time t + 1 is removed
from the calculation.

Ct The number of objects o at time t for which pt
o = 1.

Table 1. Table of notations used in this work.

4 Probabilistic Inverse Ranking

Consider an uncertain stream database D of size n, a query object q, a score function S
and a positive integer k. Our algorithm basically consists of two modules:

– The initial computation of the probabilistic inverse ranking that computes for each
rank i ∈ [1, ..., k] the probability P t(i) that q is ranked on position i at the initial
time t, when the query is issued. We show how this can be performed in O(k · n)
time.

– The incremental stream processing that updates PIR(q) at time t + 1, given the
probabilistic inverse ranking at time t. Therefore, the probabilities P t+1(i) that Q
is ranked on position i at time t+ 1 have to be computed given the P t(i). We show
how this update can be done in O(k) time.

4.1 Initial Computation

For each object oj ∈ D let pt
oj

be the probability that oj has a higher rank than q at
time t, i.e. pt

oj
= P (S(oj) > S(q)). These probabilities can be computed in a single

database scan. We can process the pt
oj

successively by means of the Poisson binomial
recurrence [17], as proposed in [18]. Therefore, let P t

i,j be the probability that, out
of the j objects processed so far, exactly i objects have a higher score than q. This
probability depends only on the two following events:

– i− 1 out of the first j − 1 processed objects have a higher score than q and oj has
a higher score than q.

– i out of the first j − 1 processed objects have a higher score than q and oj does not
have a higher score than q.



This observation and the assumption of independence between stream objects can be
used to formulate the following Poisson binomial recurrence:

P t
i,j = P t

i−1,j−1 · pt
oj

+ P t
i,j−1 · (1− pt

oj
) (1)

with P t
0,0 = 1 and P t

i,j = 0 for i < 0 or i > j.

When the last object of the database is processed, i.e. j = n, thenP t
i,j = P t

i,n
Definition

=
P t(i+ 1).5 Computing the P t

q (i+ 1) for 0 ≤ i ≤ k− 1 yields the probabilistic inverse
ranking. In each iteration, we can omit the computation of any P t

i,j where i ≥ k, since
we are not interested in any ranks greater than k, and thus, are not interested in the cases
where at least k objects have a higher score than q. In total, for each 0 ≤ i < k and
each 1 ≤ j ≤ n, P t

i,j has to be computed resulting in an O(k · n) time complexity.
Equation 1 is only required for objects oj for which 0 < pt

oj
< 1. Objects oj for

which pt
oj

= 0 can safely be ignored in the initial computation, since they have no
effect on the P t(i). For objects oj for which pt

oj
= 1, we use a counter Ct that denotes

the number of such objects. Thus, when oj is encountered in the initial computation,
the Poisson binomial recurrence is avoided and Ct is incremented. The probabilities
obtained from the Poisson binomial recurrence by ignoring objects for which pt

oj
= 1

are denoted as P t
PBR(i), 0 ≤ i ≤ k.

The probabilistic inverse ranking can be obtained from the P t
PBR(i), 0 ≤ i ≤ k

and Ct as follows:

P t(i) = P t
PBR(i− 1− Ct), for Ct + 1 ≤ i ≤ Ct + 1 + k (2)

P t(i) = 0 otherwise

Example 1. Assume that a database containing objects o1, ..., o4 and an inverse ranking
query with query object q and k = 2. Assume that pt

o1
= 0.1, pt

o2
= 0, pt

o3
= 0.6 and

pt
o4

= 1. To compute the initial inverse ranking, we first process o1 using Equation 1:

P t
0,1 = P t

−1,0 · pt
o1

+ P t
0,0 · (1− pt

o1
) = 0 · 0.1 + 1 · 0.9 = 0.9

P t
1,1 = P t

0,0 · pt
o1

+ P t
1,0 · (1− pt

o1
) = 1 · 0.1 + 0 · 0.9 = 0.1

Next we process o2, but notice that pt
2 = 0, so o2 can be skipped. Then, object o3

requires an additional iteration of Equation 1:

P t
0,2 = P t

−1,1 · pt
o3

+ P t
0,1 · (1− pt

o3
) = 0 · 0.6 + 0.9 · 0.4 = 0.36

P t
1,2 = P t

0,1 · pt
o3

+ P t
1,1 · (1− pt

o3
) = 0.9 · 0.6 + 0.1 · 0.4 = 0.58

P t
2,2 does not need to be computed since 2 = i ≥ k = 2.

Next we process o4. Since pt
o4

= 1, only Ct has to be incremented to 1. At this
point, we are done. We have obtained:

P t
PBR(0) = 0.36 and P t

PBR(1) = 0.58
5 The event that i objects have a higher score than q corresponds to the event that q is ranked on

rank i+ 1.



To get the final inverse ranking at time t, we use Equation 2 to obtain

P t(1) = P t
PBR(1− 1− 1) = P t

PBR(−1) = 0

P t(2) = P t
PBR(2− 1− 1) = P t

PBR(0) = 0.36

4.2 Incremental Stream Processing

A naive solution would apply the Poisson binomial recurrence (cf. Equation 1) when-
ever a new object location ox is fetched from the stream. However, the expensive up-
date which is linear in the size of the database would make online stream processing
impractical for large databases. In the following, we show how we can update P t+1(i)
for 1 ≤ i ≤ k in constant time using the results of the previous update iteration.

Without loss of generality, let ox be the object for which a new position information
is returned by the stream at time t+1. pt

ox
(pt+1

ox
) denotes the old (new) probability that

ox has a higher score than q.
Our update algorithm uses two phases:

– Phase 1: Removal of the effect of the old value distribution of the uncertain object
ox. That is, removal of the effect of the probability pt

ox
from the resultP t

PBR(i), 0 ≤
i < k. This yields an intermediate result P̂ t+1

PBR(i), 0 ≤ i < k.
– Phase 2 Incorporation of the new value distribution of the uncertain object ox.

That is including the probability pt+1
ox

in the intermediate result P̂ t+1(i), 0 ≤ i < k
obtained in Phase 1.

Phase 1 The following cases w.r.t. pt
ox

have to be considered:
Case I: pt

ox
= 0. This case occurs if ox is a new object or if it is certain that ox

has a lower score than q at time t. Thus nothing has to be done to remove the effect of
pt

ox
= 0: P̂ t

PBR(i) = P t
PBR(i).

Case II: pt
ox

= 1, i.e. if it is certain that ox has a higher score than q at time t.
In this case we just have to decrement Ct by one to remove the effect of pt

ox
. Thus

P̂ t
PBR(i) = P t

PBR(i) and Ct+1 = Ct − 1.
Case III: 0 < pt

ox
< 1, i.e. it is uncertain whether ox has a higher score than q at

time t. To remove the effect of pt
ox

on all P t
PBR(i) (1 ≤ i ≤ k) we look at the last

iteration of Equation 1, that was used to obtain P t
PBR(i), 0 ≤ i ≤ k. Let ol be the

object that was incorporated in this iteration:

P t
PBR(i) = P t′

PBR(i− 1) · pt
ol

+ P t′

PBR(i) · (1− pt
ol

),

where P t′

PBR(i) describes the probability that i objects have a score higher than q,
if (in addition to all objects oi for which pt

oi
= 1) ol is ignored. Now we observe

that the P t
PBR(i)’s (1 ≤ i ≤ k) are not affected by the order in which the objects

are processed within the recursion. In particular, the P t
PBR(i)’s do not change, if the

objects are processed in an order that processes ox last, thus we obtain:

P t
PBR(i) = P̂ t

PBR(i− 1) · pt
ox

+ P̂ t
PBR(i) · (1− pt

ox
),



This can be resolved to

P̂ t
PBR(i) =

P t
PBR(i)− P̂ t

PBR(i− 1) · pt
ox

1− pt
ox

. (3)

With i = 0 we obtain

P̂ t
PBR(0) =

P t
PBR(0)
1− pt

ox

, (4)

because the probability P̂ t
PBR(−1) that exactly -1 objects have a higher score than q

is zero. Since the P t
PBR(i)’s for 0 ≤ i ≤ k − 1 are known from the previous stream

processing iteration, P̂ t
PBR(0) can be easily computed using Equation 4. Now we can

inductively compute P̂ t
PBR(i+ 1) by using P̂ t

PBR(i) for any i and exploiting Equation
3.

Phase 2 In Phase 2, the same cases have to be considered:
Case I: pt+1

ox
= 0: Object ox has no influence on the result at time t + 1. Nothing

has to be done. Thus P t+1
PBR(i) = P̂ t

PBR(i).
Case II: pt+1

ox
= 1: Object ox certainly has a higher score than q. Thus Ct+1 =

Ct + 1 and P t+1
PBR(i) = P̂ t

PBR(i).
Case III: 0 < pt+1

ox
< 1: We can incorporate the new probability for ox to be

ranked higher than q, i.e. pt+1
x , to compute the new probabilistic inverse ranking by an

additional iteration of the Poisson binomial recurrence:

P t+1
PBR(i) = P̂ t

PBR(i− 1) · pt+1
ox

+ P̂ t
PBR(i) · (1− pt+1

ox
).

Example 2. Reconsider Example 1 where, at time t, we obtained Ct = 1, P t
PBR(0) =

0.36 and P t
PBR(1) = 0.58. Now, assume that at time t+ 1 object o3 changes its prob-

ability from 0.6 to 0.2, i.e. pt
o3

= 0.6 and pt+1
o3

= 0.2. Phase 1 starts using Case III.
Using Equation 4 we get:

P̂ t
PBR(0) =

P t
PBR(0)
1− pt

o3

=
0.36
0.4

= 0.9

Using Equation 3 we also get:

P̂ t
PBR(1) =

P t
PBR(1)− P̂ t

PBR(0) · pt
o3

1− pt
o3

=
0.58− 0.9 · 0.6

0.4
= 0.1

This completes Phase 1. In Phase 2, Case III is chosen and we get:

P t+1
PBR(0) = P̂ t

PBR(−1) · pt+1
o3

+ P̂ t
PBR(0) · (1− pt+1

o3
) = 0 · 0.2 + 0.9 · 0.8 = 0.72

P t+1
PBR(1) = P̂ t

PBR(0) · pt+1
o3

+ P̂ t
PBR(1) · (1− pt+1

o3
) = 0.9 · 0.2 + 0.1 · 0.8 = 0.26

This completes the update step (Ct remains unchanged, i.e. Ct+1 = Ct). The result is
obtained analogously to Example 1 using Equation 2:

P t+1(1) = P t+1
PBR(1− 1− 1) = P t+1

PBR(−1) = 0



P t+1(2) = P t+1
PBR(2− 1− 1) = P t+1

PBR(0) = 0.72

Now assume, that at time t + 2 object o4 changes its probability from 1 to 0: In
Phase 1, Case II is used and Ct is decremented from 1 to 0 to obtain Ct+1 = 0. In
Phase 2, Case I is used and nothing is done. We get:

P t+2
PBR(0) = P̂ t+1

PBR(0) = P t+1
PBR(0) = 0.72

P t+2
PBR(1) = P̂ t+1

PBR(1) = P t+1
PBR(1) = 0.26

We obtain the result using Equation 2:

P t+2(1) = P t+2
PBR(1− 1− 0) = P t+2

PBR(0) = 0.72

P t+2(2) = P t+2
PBR(2− 1− 0) = P t+2

PBR(0) = 0.36

The latter example shows why we need to maintain k probability values at each
point of time: Even though some of the k probabilities may not be required to obtain
the result, they may be required to obtain the result at a later time.

Regarding the computational complexity, the following holds for both Phase 1 and
Phase 2: Case I and II have a cost of O(1) since either nothing has to be done, or only
Ct has to be incremented or decremented. Case III has a total cost of O(k) leading to a
total runtime of O(k) in the update step.

5 Uncertain Query

In the previous section we have assumed that the query object q is fixed, i.e. has a
certain position in Rd. We now consider the case in which the query is also given as an
uncertain stream object. Similar to the database objects, we now assume that the query
object Qt is represented by a set of m alternative instances Q = {qt

1, ..., q
t
m} at time t.

The probabilistic inverse ranking query PIR(Q) w.r.t. an uncertain query object Q can
be computed by aggregating the probabilistic inverse ranking query results w.r.t. each
instance qj of Q. Formally,

P t
Q(i) =

∑
j=1..m

P t
qj

(i) · p(qj)

for all j ∈ {1, . . . ,m}, where p(qj) denotes the probability that the query object is
located at qj and P t

qj
(i) is the probability that instance qj us located at rank i. P t

qj
(i)

can be computed and updated as proposed in Section 4.
In this scenario, the stream may return new position information of the query object

as well. Generally, when the stream returns new position information of the query q,
the probabilities of all objects being ranked before q may change. Consequently, the
inverse ranking result usually needs to be recomputed from scratch, using the technique
shown in Section 4.1. However, in most applications, the position of an object only
changes slightly. Therefore, the probability of other objects to have a higher score than
q normally does not change for most objects. We exploit this property as follows.



Let Q be the query object with alternative instances qt
1, ..., q

t
m ∈ Q at time t and let

St
min(Q) and St

max(Q) denote the minimum and maximum among all possible scores
derived from the instances of Q at time t. In the following we assume that new query
object instances are reported from the stream at time t+ 1:

Lemma 1. If St
min(Q) ≤ St+1

min(Q), then for any object ox with pt
ox

= 0 it holds that
pt+1

ox
= 0 assuming x has not been updated at time t+ 1.

Proof.
Assumption: St

min(Q) ≤ St+1
min(Q) (5)

Assumption: ∀i : St(xi) = St+1(xi) (6)

Assumption: pt
ox

= 0 (7)

(7)⇔ ∀q ∈ Q,∀xi ∈ x : St(q) > St(xi)⇔ ∀xi ∈ ox : St
min(Q) > St(xi) (8)

Def : ∀q ∈ Q,∀xi ∈ ox : St+1(q) ≥ St+1
min(Q)

5
≥ St

min(Q)

8
≥ St(xi)

6= St+1(x1)

⇒ ∀q ∈ Q,∀xi ∈ ox : St+1(q) ≥ St+1(x1)

⇔ pt+1
ox

= 0

Lemma 2. If St
max(Q) ≥ St+1

max(Q), then for any object ox with pt
ox

= 1 it holds that
pt+1

ox
= 1.

Proof. Proof analogous to Lemma 1.

With the above Lemmata we can reduce the number of objects that have to be con-
sidered for re-computation of the inverse ranking at time t+1. Especially, if St

min(Q) ≤
St+1

min(Q) ∧ St
max(Q) ≥ St+1

max(Q), then we have to compute pt+1
ox

for those objects
ox ∈ D for which pt

ox
/∈ {0, 1}. For the remaining objects o we have to update pt

o and
the inverse ranking probabilities considering the cases outlined in Section 4.2. Let us
note, that the effectiveness of this pruning scheme highly depends on the grade of un-
certainty of the objects. In our experiments, we show that the number of objects pruned
from the computation of the inverse ranking can be very large.

A very drastic change of the position of the query object may, in the worst case,
cause all probabilities pt

ox
, ox ∈ D to change. The incremental computation of Section

4 requires two computations: The removal of the effect of pt
ox

and the incorporation of
pt+1

ox
for any object ox ∈ D that changed its probability of having a higher score than q.

In contrast, a computation from scratch requires only one computation for each ox ∈ D:
the incorporation of pt+1

ox
. Therefore, it is wise to switch to a full re-computation of the

PIR if more than n
2 objects change their probability.
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Fig. 2. Scalability of the PIR approaches.

6 Experiments

In the bigger part of the experimental evaluation, we use a synthetic dataset modelling
a data stream with observations of 2-dimensional objects. The location of an object
ox at time t is modelled by m alternatives of a Gaussian distributed random variable
Xox maintained in an array called sample buffer. For each ox ∈ D, the mean E(Xox)
follows a uniform [−10, 10]-distribution in each dimension. The probabilistic stream A
contains, for each ox ∈ D, exactly 10 alternative positions, that are randomly shuffled
into the stream. Once a new alternative position of an object ox is reported by the
stream, it is stored in the sample buffer of ox by replacing the least recently inserted one.
We tune three parameters to evaluate the performance of the incremental PIR method
described in Section 4: the database size n (default n = 10, 000), the standard deviation
σ of uncertain object instances (default σ = 5), and the sample buffer size m. For the
scalability experiments, we chosem = 3. The evaluation of σ was performed withm =
10. In addition, we experimentally evaluate the influence of the degree of uncertainty
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Fig. 3. Runtime evolution w.r.t. the standard deviation σ.

on the performance of our incremental PIR method (cf. Section 5). Finally, in Section
6.5, we examine the scalability issues on a real-world dataset.

We denote our approach by EISP (Efficient Inverse Stream Processing). For com-
parison, we implemented the Poisson binomial recurrence based algorithm (abbreviated
by PBR) as proposed by [1] that uses Equation 1, at each point of time where the stream
provides a new observation. In addition, we evaluate the effect of the strategy proposed
in Section 4 to avoid computation of objects ox with a probability pt

ox
∈ {0, 1} of hav-

ing a higher score than q. This strategy will be denoted as 01-Pruning. EISP-01 and
PBR-01 denote the versions of EISP and PBR, respectively, that use 01-Pruning.

6.1 Scalability

In the first experiment, we evaluate the scalability of EISP, PBR, EISP-01 and PBR-01
w.r.t. the database size n. We choose k = n because if k is chosen constant and n is
scaled up, the number of objects that certainly have a higher score than q will eventually
reach k. In this case, 01-Pruning will immediately notice that q cannot possibly be at
one of the first k positions and will prune the computation. Then EISP-01 and PBR-01
have no further update costs. The results of these experiments are shown in Figure 2.

Figures 2(a) and 2(b) evaluate the total time required to process the whole stream,
i.e. all 10·n object updates. It can be observed that all four algorithms show a superlinear
time complexity to process the whole stream (cf. Figure 2(a)). In addition, the utilization
of 01-Pruning leads to an improvement in the runtime. As the number of uncertain
objects (i.e. the objects in the database for which it is uncertain whether they have a
higher score than q and thus cannot be removed by 01-Pruning) increases as well as the
number of certain objects, we obtain a linear speed-up gain using 01-Pruning.

For a more detailed evaluation of the update cost in each iteration, consider Fig-
ures 2(c) and 2(d): Here, the average time required for an update is shown. Note that
the update cost of both PBR and PBR-01 grows fast with n. This is explained by the
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Fig. 4. Runtime evolution w.r.t. the sample buffer size m.

quadratic cost of O(k · n) (recall that we chose k = n) of the Poisson binomial recur-
rence at each update step. On the other hand, the update cost of O(k) of EISP is linear
to the number of database objects in this experiments (due to k = n). Here, 01-Pruning
has high influence on PBR but smaller effect on EISP especially for n ≤ 5, 000. The
effect of 01-Pruning may seem low for EISP, but note that in our experiments we mea-
sured the total time required for an update: This includes the time required to fetch a
new location from the stream, compute its score, and recompute the total probability
that the respective object has a higher score than q. This overhead is naturally required
for any approach.

6.2 Standard Deviation σ

In the next experiment, we test the effect of the standard deviation σ on the distribution
of location instances. Here, the total time required to process the whole stream was
examined. The results are depicted in Figure 3. As PBR has to process all objects in
each iteration of the inverse ranking, there is no influence of σ when this method is
used (cf. Figure 3(a)). 01-Pruning is able to reduce the runtime complexity having low
values for σ, as many uncertain objects do not overlap with the score function and can
therefore be neglected in each iteration. However, with an increasing value of σ, the cost
of PBR-01 approaches that of PBR, as the uncertainty ranges are spread over a greater
range of the data space. EISP and EISP-01 outperform the other methods by several
orders of magnitude. Figure 3(b) shows that, for a small value of σ, there is a significant
effect of 01-Pruning. This becomes evident considering that the time overhead required
to process the stream is about 7000 ms in this experiment. The reason is that for σ = 0
01-Pruning there exists no uncertainty, and thus all objects always have a probability
of either 0 or 1 of having a higher score than q. Thus, Case I and Case II (cf. Section 4
are used in each update step and the Poisson binomial recurrence is never required. For
σ > 10 most objects ox have a probability 0 < pt

ox
< 1 of having a higher score than

q. Thus, Case III is used in each iteration and Ct approaches zero.



6.3 Sample Buffer Sizem

Next, the total stream processing time was evaluated w.r.t. the sample buffer size m.
Figure 4 shows thatm has an impact on all inverse ranking methods. Again, using PBR,
the number of considered alternatives only influences the required runtime if we apply
01-Pruning (cf. Figure 4(a)). If m increases, the probability that an object o has both
instances with a higher and smaller score than q increases, i.e. it is uncertain whether
S(q) > S(o). Figure 4(b) shows that even for m = 10, we obtain a relatively high
performance gain using 01-Pruning, since the alternatives remain in the extent of their
probabilistic distribution. Thus, for many objects o, S(q) > S(o) can be decided even
for a large m.

6.4 Uncertain Query

Finally, we evaluate the case that the query q is given as an uncertain stream object, now
denoted by Q. As described in Section 5, the whole inverse ranking has to be recom-
puted by the PBR method if a position update of Q occurs. We test the performance of
our adapted EISP method for this case.

For each time stamp t, we vary a probability value for Q of being updated and com-
pare the versions of PBR with EISP that use 01-Pruning in Figure 5(a). A value of 0
corresponds to the case that Q is certain, whereas a value of 1 assumes an update of Q
in each iteration and thus forces EISP-01 to always recompute the actual inverse rank-
ing. It can be observed that the runtime required for processing the whole stream when
using EISP-01 increases linearly with a growing probability of the query object of be-
ing uncertain. This effect is due to the fact that the number of updates of Q and thus the
number of complete re-computations have to be done according to the chosen probabil-
ity value. As PBR-01 does not depend on the uncertainty of Q because it recomputes
the inverse ranking in each iteration anyway, its curve defines an upper asymptote to the
curve of EISP-01.

6.5 Scalability Evaluation on Real-World Data

For an experimental evaluation of the scalability on real-world data, we first utilize the
International Ice Patrol (IIP) Iceberg Sightings Dataset6. This dataset contains informa-
tion about iceberg activity in the North Atlantic from 2001 to 2009. The latitude and
longitude values of sighted icebergs serve as 2-dimensional values positions up to 6216
probabilistic objects, where each iceberg has been sighted at different positions. The
stream consists of up to 10 positions of each iceberg which are ordered chronologically.
Here again, we chose m = 3. Figure 5(b) indicates that the observations made for syn-
thetic data can be transferred to real-world data. Note that for this dataset, 01-Pruning is
very effective, since the position of an iceberg has a very small variance. Many icebergs
even appear to hold their position over time.

6 The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site
(http://nsidc.org/data/g00807.html).
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Fig. 5. Additional experiments.

The next set of experiments uses the NBA Dataset7, containing information about
North American basketball players. Each of the 3738 records in this dataset corresponds
to the performance of one player in one season. In particular, each record contains a to-
tal of 17 dimensions representing the number of games played, the number of points
scored, etc. in one given season between the years 1946 and 2006. For our experiments,
we model players by uncertain stream objects, using a sliding window model of size
m = 3, that is, a player is described by his performance in the last three years. The
probabilistic stream contains all records of the dataset. For simplicity, the score func-
tion s(x) we use is simply the sum of all (normalized) attributes. In this scenario, the
semantic of a PIR query is to compute, for any given time, the rank of player Q with

7 The NBA dataset was derived from www.databasebasketball.com.



respect to all NBA players. First, we evaluated the scalability of our PIR algorithm in
Figure 5(c) using all 17 dimensions. It can be observed that the scalability is very sim-
ilar to the IIP dataset, despite of the increased dimensionality. This is further evaluated
in Figure 5(d) where we scale the number of dimensions. For the approach that do not
utilize 01-Pruning, the runtime appears to be constant in the number of dimensions.
This can be explained by the fact that the dimensionality only affects the computation
of the score of an object. Since we use the sum of all dimensions, we theoretically ex-
pect the algorithm to scale linearly in the number of dimensions, but the impact of this
linear computation can be neglected. It can also be observed that, using 01-Pruning,
the runtime increases for low dimensions, and then becomes constant for higher dimen-
sions. This can be explained by the uncertainty of the individual dimensions: The first
dimension represents the number of games played by a player, which is a variable with
a rather low deviation for each player. Even if a player has a very volatile performance,
the number of games he played may be about the same. Therefore, the one dimensional
dataset has a rather low uncertainty, and thus, a lower runtime (cf. Section 6.2). How-
ever, a bad player may be replaced, and thus not play the full time, which is covered by
the second dimension, that aggregates the number of minutes played in a year and has
a higher deviation. The third dimension has the highest uncertainty, as it describes the
number of points scored by a player in a year. After the third dimension, adding further
dimensions does not significantly increase the total deviation of the sum (i.e. the score)
of a player. In summary, increasing the dimensionality has no significant effect on the
runtime, but may increase the uncertainty of the object, thus indirectly increasing the
runtime.

7 Conclusions

In this paper, we proposed a general solution to efficiently answering probabilistic in-
verse ranking queries on streams. State-of-the-art approaches solving the PIR query
problem for static data are not applicable for stream data due to theO(k ·n) complexity
of the Poisson binomial recurrence. We have shown theoretically and experimentally
that the update cost of our approach is O(k) and thus applicable for stream databases.
Let us note that our framework can be easily adapted to tackle further variants of inverse
ranking/top-k queries on streams: the threshold probabilistic inverse ranking query, that
returns exactly those ranking positions i for which P t

q (i) is greater than a user-specified
parameter τ ∈ [0, 1], as proposed in [1], and the (threshold) probabilistic top-k query,
that returns the probability that q is one of the best k objects in the database. The latter
has many applications in decision-making environments.

One aspect of future work is to develop an approximate approach, which is able
to efficiently cope with continuous data models. The idea is to derive for each database
objectO, a lower and an upper bound of the probability thatO has a higher score thanQ.
Using these approximations, we can apply the concept of uncertain generating functions
[19] in order to obtain an (initial) approximated result of a PIR query, which guarantees
that the true result is bounded correctly. The problem at hand is to update these uncertain
generating functions efficiently when an update is fetched from the stream.
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