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Abstract. There are abundant scenarios for applications of similarity
search in databases where the similarity of objects is defined for a subset
of attributes, i.e., in a subspace, only. While much research has been done
in efficient support of single column similarity queries or of similarity
queries in the full space, scarcely any support of similarity search in
subspaces has been provided so far. The three existing approaches are
variations of the sequential scan. Here, we propose the first index-based
solution to subspace similarity search in arbitrary subspaces.

1 Introduction

In the last decade, similarity search in high-dimensional data has gained special
interest. Several studies for research on data structures [1–5] showed that the
suitability of the sequential scan [6] compared to methods using partitioning or
clustering based data structures is dependent of the characteristics of the data
distributions. However, this key message has been neglected in many research
contributions [7–12]. Thus, it still appears to be well worth noting that nearest
neighbor search is meaningful if and only if the nearest neighbor of the arbitrary
query object is sufficiently different from its farthest neighbor. This is in general
the case whenever a data set exhibits a natural structure in clusters or groupings
of subsets of data.

While much effort has been spent on studying possibilities to facilitate effi-
cient similarity search in high-dimensional data, scarcely ever the question arose
how to support similarity search when the similarity of objects is based on a sub-
set of attributes only. Aside from fundamentally studying the behavior of data
structures in such settings, this is a practically highly relevant question. It could
be interesting for any user to search, e.g., in a database of images represented
by color-, shape-, and texture-descriptions, for objects similar to a certain image
where the similarity is related to the shape of the motifs only but not to their
color or even the color of the background. An online-store might like to propose
similar objects to a customer where similarity can be based on different subsets
of features. While in such scenarios, meaningful subspaces can be suggested be-
forehand [13,14], in other scenarios, possibly any subspace could be interesting.



For example, for different queries, different regions of interest in a picture may
be relevant. Since there are 2D possible subspaces of a D-dimensional data set,
it is practically impossible to provide data structures for each of these possible
subspaces in order to facilitate efficient similarity search. Another application
where efficient support of subspace similarity queries is required are many sub-
space clustering algorithms [15] that rely on searching for clusters in a potentially
large number of subspaces (starting with all 1D subspaces, many combinations of
1D subspaces to 2D subspaces etc.). If efficient support of subspace range queries
or subspace nearest neighbor queries were available, virtually all subspace cluster
approaches could be accelerated considerably. Note that this problem is essen-
tially different from the feature selection problem [15,16].

In this paper, we facilitate efficient subspace similarity search in large and
potentially high-dimensional data sets where the user or the application can de-
fine an interesting subspace for each query independently (that is, similarity is
defined ad hoc based on an arbitrary subset of attributes only). To this end,
we extend our preliminary approach addressed in [17] with more thorough ex-
perimental evaluation and we propose a top-down indexing method to support
subspace similarity search.

In the remainder, we formally define the problem of subspace similarity search
in Section 2. We discuss related work and the algorithmic sources of inspiration
to our new solution in Section 3. We propose an index-based top-down approach
as an adaptation of the R-tree in Section 4 and, additionally, give a general and
theoretical comparison of this approach with [17]. An experimental evaluation
of all methods is presented in Section 5. Section 6 concludes the paper.

2 Subspace Similarity Search

A common restriction for the small number of approaches tackling subspace sim-
ilarity search (see Section 3) is that Lp-norms are assumed as distance measures.
Hence we will also rely on this restriction in the problem definition. In the fol-
lowing, we assume that DB is a database of N objects in a D-dimensional space
R

D and the distance between points in DB is measured by a distance function
dist : RD × RD → R

+
0 which is one of the Lp-norms (p ∈ [1,∞)). In order

to perform subspace similarity search, a d-dimensional query subspace will be
represented by a D-dimensional bit vector S of weights, where d weights are 1
and the remaining D − d weights are 0. Formally:

Definition 1 (Subspace). A subspace S of the D-dimensional data space is
represented by a vector S = (S1, . . . , SD) ∈ {0, 1}D, where Si = 1, if the ith
attribute is an element of the subspace, and Si = 0, otherwise. The number d of
1 entries in S, i.e., d =

∑D
i=1 Si is called the dimensionality of S.

For example, in a 3D data space, the 2D subspace representing the projection
on the first and third axis is represented by S = (1, 0, 1).

A distance measure for a subspace S can then be figured as weighted Lp-
norm where the weights can either be 1 (if this particular attribute is relevant to
the query) or 0 (if this particular attribute is irrelevant to the query), formally:



Definition 2 (Subspace Distance). The distance in a subspace S between

two points x, y ∈ DB is given by distS(x, y) = p

√∑d
i=1 Si |xi − yi|p, where xi,

yi, and Si denote the values of the ith component of the vectors x, y, and S.

Thus, a subspace k-nearest neighbor (k-NN) query can be formalized as:

Definition 3 (Subspace k-NN Query). Given a query object q and a d-
dimensional (d ≤ D) query subspace represented by a corresponding vector S
of weights, a subspace k-NN query retrieves the set NN (k, S, q) that contains k
objects from DB for which the following condition holds: ∀o ∈ NN (k, S, q),∀o′ ∈
DB \NN (k, S, q) : distS(o, q) ≤ distS(o′, q).

Some of the rare existing approaches for subspace similarity search focus on
ε-range queries. This is a considerable lack because choosing the number k of
results that should be returned by a query is usually much more intuitive than
selecting some query radius ε. Furthermore, the value of ε needs to be adjusted
to the subspace dimensionality in order to produce meaningful results. This is a
non-trivial task since recall and precision of an ε-sphere become highly sensitive
to even small changes of ε depending on the dimensionality of the data space.
In addition, many applications like data mining algorithms that further process
the results of subspace similarity queries require to control their cardinality [15].

3 Related Work

Established index structures (such as [18–21]) are designed and optimized for
the complete data space where all attributes contribute to partitioning, cluster-
ing etc. For these data structures, the space of queries facilitated by the index
structure must be fixed prior to the construction of the index structure. While
the results of research on such index structures designed for one single query
space are abundant [22], so far there are some variations of the sequential scan
addressing the problem of subspace similarity search, implicitly or explicitly.

The Partial VA-File [23] as an adaptation of the VA-file [6] is the first ap-
proach addressing the problem of subspace similarity search explicitly. The basic
idea of this approach is to split the original VA-file into D partial VA-files, where
D is the data dimensionality, i.e. we get one file for each dimension containing the
approximation of the original full-dimensional VA-file in that dimension. Based
on this information, upper and lower bounds of the true distance between data
objects and the query are derived. Subspace similarity queries are processed by
scanning only the relevant files in the order of relevance, i.e. the files are ranked
by the selectivity of the query in the corresponding dimension. As long as there
are still candidates that cannot be pruned or reported using the upper and lower
distance bounds, the next ranked file is read to improve the distance approxi-
mations or (if all partial VA-files have been scanned) the exact information of
the candidates accessed to refine the exact distance.

Another approach to the problem is proposed in [24], although only ε-similarity
range queries are supported. The idea of this multi-pivot-based method is to



derive lower and upper bounds for distances based on the average minimal and
maximal impact of a possible range of d dimensions, d ∈ [dmin, dmax]. The bounds
are computed in a preprocessing step for a couple of pivot points. To optimize
the selection of pivot points, also a distribution of possible values for ε is re-
quired. The lower and upper bounds w.r.t. all pivot points are annotated to
each database object. Essentially, this approach allows to sequentially scan the
database reading only the information on lower and upper bounds and to refine
the retrieved candidates in a postprocessing step.

The solution to subspace similarity search we are proposing in this paper
is based on the ad hoc combination of 1D index structures. The combination
technique is algorithmically inspired by top-k queries on a number of different
rankings of objects according to different criteria. Let us assume that we have
a set of objects that are ranked according to m different score functions (e.g.
different rankings for m different attributes). The objective of a top-k query is
to retrieve the k objects with the highest combined (e.g. average) score. In our
scenario, if we assume the objects are ranked for each dimension according to
the distance to the query object, respectively, we can apply top-k methods to
solve subspace k-NN queries with the rankings of the given subspace dimensions.
For the top-k query problem, there basically exist two modes of access to the
data given by the m rankings, the sequential access (SA) and the random access
(RA) [25]. While the SA mode accesses the data in a sorted way by proceeding
through one of the m rankings sequentially from the top, the RA mode has
random access to the rank of a given object w.r.t. a given ranking.

4 Index-Based Subspace Similarity Search – Top-Down

In this section, we propose the projected R-tree, a redefinition of the R-tree to
answer subspace queries. Let us note, though, that our solution can be integrated
into any hierarchical index structure and is not necessarily restricted to R-trees.

The idea of the top-down approach is to apply one index on the full-dimensional
data space. The key issue is that for a subspace similarity query, the minimum
distance between an index page P and the query object q in subspace S is prop-
erly defined because then, we can just use the best-first search algorithm without
any changes. The minimum distance between an index page P and the query
object q in subspace S can be computed as

mindistS(q, P ) = p

√√√√√ D∑
i=1

si ·

Pmin
i − qi if Pmin

i > qi

qi − Pmax
i if Pmax

i < qi

0 else
, (1)

where Pmin
i and Pmax

i are the lower and upper bound of the page P in the ith
dimension, respectively. It should again be noted that Eq. 1 is designed for the
rectangular page region of R-trees. For the implementation in this paper we used
an R*-tree [19] as underlying tree index.
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(b) Processing of a sample query.

Fig. 1: Subspace query using a projected R-Tree.

4.1 Query Processing

When a query q arrives, it is processed in a best-first manner. The algorithm
maintains an active page list (APL) which contains pages of the index structure
ordered ascending by their mindist to the query. Note that since a subspace
query is processed, only the dimensions defined by the query are taken into
account for the calculation of the mindist . The algorithm starts inserting the
root of the index structure into the APL. In each iteration, the first page from
the APL is processed. If it is a directory node, its children are inserted into the
APL. If it is a leaf node, the distance of each point contained in the page to the
query is computed. Each point may therefore update the maxKnnDist, which
is the distance of the kth-nearest point found so far. The process stops if the
mindist of the first entry of the APL is larger than the maxKnnDist. In this case
none of the pages in the APL can contain an object being part of the k-nearest
neighbors of the query. Figure 1 illustrates an example of a subspace query.

4.2 Discussion

The top-down approach is a relatively straightforward adaptation and can be
regarded as complementary to the bottom-up approach discussed in [17]. In con-
trast to the bottom-up approach using one index per dimension, the top-down
approach just needs one index applied to the full-dimensional data space. As a
result, the top-down approach does not need to merge the partial results of the
rankings performed for each dimension in the corresponding subspace. Relying
on the full-dimensional indexing of a data set, the top-down approach can be
expected to perform better than the bottom-up approach where the dimension-
ality of the query subspace is approaching the dimensionality of the data set, if
the latter does not disqualify methods based on full-dimensional indexing. On
the other hand, as the index used in the top-down approach organizes the data
w.r.t. the full-dimensional space, the locality property of a similarity query which



might hold for the full-dimensional space does not necessarily hold for the sub-
space the query relates on. Generally, the more the dimensionality of the original
data space differs from that of the query subspace, the smaller is the expected
effectiveness of the index for a given subspace query. In summary, depending on
the dimensionality of the query subspace, both indexing approaches qualify for
subspace similarity search. While the bottom-up method is more appropriate for
lower-dimensional subspace queries, the top-down approach should be used when
the dimensionality of the query subspace approaches that of the data space.

5 Evaluation

In this section, we evaluate the proposed methods. In particular, Section 5.1
compares the different algorithms for subspace indexing on real-world data sets,
whereas Section 5.2 focuses on the performance of the different heuristics for
the bottom-up approach proposed by the authors in [17] on synthetic data sets
having different characteristics (cf. Table 1).

Table 1: Data sets
Data set Type Size Dims

CLOUD meteorological data > 1, 000, 000 9

ALOI-8/ALOI-641 color histograms 110,250 8/64

UNIFORM synthetic, uniform 100,000 20

CLUSTERED synthetic, multivariate Gaussian clusters 100,000 20

5.1 Evaluation of Methods for Subspace Indexing

In this section, we compare the approaches DMI (Dimension-Merge-Index [17]),
PT (Projected R-Tree proposed in Section 4), PVA (Partial VA-File [6]) and
MP (Multi-Pivot-Based algorithm [24]) for subspace indexing. Unless stated
otherwise, we compare the different approaches on a data set with k = 1 and
k = 10 with increasing subspace dimension displayed on the x-axis.

In order to compare the different approaches, we performed between 1, 000
and 10, 000 k-NN queries for each data set. For DMI, PT and MP, we measured
all page accesses that could not be served by the LRU-cache. PVA does not
only perform random page accesses for reading data, but also implements a
heuristic that switches to a block read of pages if it turns out that multiple
subsequent pages have to be read. Therefore, we measured block read pages and
randomly accessed pages of PVA separately. In order to make the results of PVA
comparable to the results of the other approaches, we combined the amount of
block read pages with the amount of randomly accessed pages and calculated
an estimated read time. To achieve this, we assumed a seek time of 8 ms and a
transfer rate of 60 MB/s.

1 Amsterdam Library of Object Images
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(c) 1-NN on ALOI-8.
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(d) 10-NN on ALOI-8.
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(f) 10-NN on ALOI-64.

Fig. 2: Queries with different subspace dimensions. Due to the long runtime and
due to the high amount of disc accesses of MP, we only executed tests on ALOI-8
and omitted MP from the remaining experiments.

In Figure 2, we compare the proposed methods on real-world data sets. For
CLOUD (cf. Figures 2a and 2b) it can be seen clearly that DMI is superior or
equal to the other approaches up to a subspace size of 4 dimensions. For ALOI-8,
DMI is better or equal for a subspace size of up to 3 dimensions. In ALOI-64,
DMI outperforms PVA and PT up to 4 dimensions until it reaches a break even
point with PVA at a subspace size of 5 dimensions. Regarding the dimensionality
of the data set and the subspace dimensions where DMI is better or equal to
one of the other methods (3 on ALOI-8, 4 on CLOUD (9D) and 5 on ALOI-64),
we can state that DMI - such as PVA - performs better on data sets with higher
dimensionality, depending on the parameter k (exemplarily shown in Figure 3a
for ALOI-64). The obtained results confirm the discussion from Section 4.2. In all
tested settings DMI performs best as long as the dimensionality of the subspace
query is moderate. When the dimension increases, PT becomes superior to DMI.
PVA is a scan-based approach and well suited if a data set is hard to index (e.g.
very high-dimensional). CLOUD seems to be well indexable by the R*-Tree,
therefore PT performs better than PVA. The ALOI data sets in contrast are
rather hard to index (in particular ALOI-64 having a very high dimensionality).

5.2 Evaluation of Heuristics

The proposed heuristics for the bottom-up approach (cf. [17]) address different
problems of the data distribution. To accurately show their behavior we tested
the heuristics Round-Robin (RR), Global-MinDist (GMD) and MinScore (MS)
on synthetic data sets with different characteristics. We performed 1,000 10NN
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queries on a 3D subspace and measured the page accesses needed by each di-
mension using our bottom-up approach and averaged the outcomes. The results
are illustrated in Figure 3b. On UNIFORM and CLUSTERED the more sophis-
ticated heuristics (GMD and MS) are superior to the näıve RR method, since
they try to find a better dimension instead of more or less randomly picking one.
If the dimensions are scaled randomly, the GMD heuristics favors the dimension
with the minimal scale factor. However, this dimension does only increase the
minimum distance of all other objects by a small value. Therefore it can stop
the filter step very late, which results in many unnecessary page accesses.

6 Conclusions

In this paper, we proposed and studied new, index-based solutions for support-
ing k-NN queries in arbitrary subspaces of a multi-dimensional feature space.
Therefore, we studied two different approaches. One of the main problems we
addressed is how to schedule the rankings from the various dimensions in order
to get good distance approximations of the objects for an early pruning of can-
didates. The evaluation shows that our solutions perform superior to the most
recent competitors. As future work, we plan to study further heuristics based on
our results and to perform a broad evaluation to study the impact of different
data characteristics on all existing approaches for subspace similarity search.
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