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Abstract. We propose an original solution for the general reverse k-nearest neigh-
bor (RkNN) search problem in Euclidean spaces. Compared to the limitations
of existing methods for the RkNN search, our approach works on top of Multi-
Resolution Aggregate (MRA) versions of any index structures for multi-dimensional
feature spaces where each non-leaf node is additionally associated with aggregate
information like the sum of all leaf-entries indexed by that node. Our solution out-
performs the state-of-the-art RkNN algorithms in terms of query execution times
because it exploits advanced strategies for pruning index entries.

1 Introduction

For a given query object q, a reverse k-nearest neighbor (RkNN) query returns all ob-
jects of a database that have q among their actual k-nearest neighbors. In this paper, we
focus on the traditional reverse k-nearest neighbor problem in feature databases and do
not consider recent approaches for related or specialized RkNN tasks such as metric
databases, the bichromatic case, mobile objects, etc. RkNN queries are important in
many applications since the reverse k-nearest neighbors of a point p reflect the set of
those points that are influenced by p. As a consequence, a considerable amount of new
methods have been developed that usually extend existing index structures for RkNN
search. The use of an index structure is mandatory in a database context because RkNN
query processing algorithms are — like all similarity query processing algorithms —
I/O-bound. The naı́ve solution for answering RkNN queries would compute for all ob-
jects of the database the k-nearest neighbors (kNN) and report those objects that have
the query object on their kNN list. In order to present efficient solutions for RkNN
search, most existing approaches make specific assumptions in order to design special-
ized index structures. Those assumptions include the necessity that the value of the
query parameter k is fixed beforehand or the dimensionality of the feature space is low
(≤ 3). So far, the only existing approach for RkNN search that uses traditional (non-
specialized) index structures and does not rely on the afore mentioned assumptions is
called TPL [1]. In fact, the TPL approach computes a set of candidate points which is a
superset of the result set in a first filter round. These candidates are used to prune other
index entries already in this filter round. In a second refinement round, the kNNs of the
candidates are computed to generate the final result.
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In this paper, we extend the TPL approach in two important aspects. First, we gen-
eralize the pruning strategy implemented by the TPL approach by considering also
other entries rather than only considering other objects. While the TPL approach usu-
ally needs to access several leaf nodes of the index although they may not include any
true hits in order to start pruning other entries, we can start the pruning earlier and can
save unnecessary refinements, i.e. disk accesses. Second, we show how entries may be
pruned by themselves, which is a completely new pruning strategy not yet explored by
the TPL approach. For this “self-pruning”, we use the concept of aggregated point ac-
cess methods like the aR-Tree [2, 3]. Furthermore, we show how both the enhanced and
the new pruning strategies can be integrated into the original TPL algorithm by altering
only a very limited number of steps. Because our novel RkNN search algorithm imple-
ments both the enhanced and the new pruning strategies, it is expected to prune more
entries than the TPL approach, i.e. it produces less I/O overhead and reduces query
execution times considerably.

The reminder of this paper is organized as follows. In Section 2 we formally de-
fine the RkNN problem and discuss recent approaches for solving this problem. Sec-
tion 3 presents our novel RkNN query algorithm. Our new approach is experimentally
evaluated and compared to the state-of-the-art approach using synthetic and real-world
datasets in Section 4. Last but not least, Section 5 concludes the paper.

2 Survey

2.1 Problem Defintion

In the following, we assume that D is a database of n feature vectors, k ≤ n, and dist
is the Euclidean distance1 on the points in D. In addition, we assume that the points are
indexed by any traditional aggregate point access method like the aR-Tree family [2, 3].

The set of k-nearest neighbors of a point q is the smallest set NN k(q) ⊆ D that
contains at least k points from D such that

∀o ∈ NN k(q),∀ô ∈ D −NN k(q) : dist(q, o) < dist(q, ô).

The point p ∈ NN k(q) with the highest distance to q is called the k-nearest neigh-
bor (kNN) of q. The distance dist(q, p) is called k-nearest neighbor distance (kNN
distance) of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of a point q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.
The naive solution to compute the RkNN of a query point q is rather expensive. For each
point p ∈ D, the kNN of p is computed. If the distance between p and q is smaller or
equal to the kNN distance of p, i.e. dist(p, q) ≤ nndistk(q), then q ∈ NN k(p) which
in turn means that point p is a RkNN of q, i.e. p ∈ RNN k(q). The runtime complexity
of answering one RkNN query is O(n2) because for all n points, a kNN query needs to
be launched which requires O(n) when evaluated by a sequential scan. The costs of an
RkNN query can be reduced to an average of O(n log n) if an index such as the R-Tree
[4] or the R*-Tree [5]) is used to speed-up the kNN queries.

1 Let us note that the concepts described here can also be extended to any Lp-norm.
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2.2 Related Work

Here, we focus on feature vectors rather than on metric data. Thus, we do not consider
approaches for metric data [6–9] as competitors. Usually, these approaches are less
efficient on Euclidean data because they cannot make use of the Euclidean geometry.
Existing approaches for the Euclidean RkNN search can be classified as self-pruning
approaches or mutual-pruning approaches.

Self-pruning approaches are usually designed ontop of a hierarchically organized
tree-like index structure. They try to estimate the kNN distance of each index entry E,
i.e. E can be a database point or an intermediate index node. If the kNN distance of
E is smaller than the distance of E to the query q, then E can be pruned. Thereby,
self-pruning approaches do usually not consider other points (database points or index
nodes) in order to estimate the kNN distance of an entry E but simply precompute
kNN distances of database points and propagate these distances to higher level index
nodes. The RNN-Tree [10] is an R-Tree-based index that precomputes for each point
p the distance to its 1NN, i.e. nndist1(p) and index for each point p a sphere with
radius nndist1(p) around p. The RdNN-Tree [11] extends the RNN-Tree by storing
the points of the database itself in an R-Tree rather than circles around them. For each
point p, the distance to p’s 1NN, i.e. nndist1(p), is aggregated. For each intermediate
entry E, the maximum of the 1NN distances of all child entries is aggregated. Since
the kNN distances need to be materialized, both approaches are limited to a fixed value
of k and cannot be generalized to answer RkNN-queries with arbitrary values of k. In
addition, approaches based on precomputed distances can generally not be used when
the database is updated frequently. Otherwise, for each insertion or deletion of points,
the kNN distances of the points influenced by the updates need to be updated as well
which is a considerably high computational overhead.

Mutual-pruning approaches use other points to prune a given index entry E. For
that purpose, they use special geometric properties of the Euclidean space. In [12] a two-
way filter approach for supporting R1NN queries is proposed that provides approximate
solutions, i.e. may suffer from false alarms and incomplete results. A different approach
is presented in [13] RkNN queries. Since it is based on a partition of the data space into
equi-sized units where the border lines of the units are cut at the query point q and
the number of such units increases exponentially with the data dimensionality, this ap-
proach is only applicable for 2D data sets. In [1] an approach for RkNN search was
presented, that can handle arbitrary values of k and may be applied to arbitrary dimen-
sional feature spaces. The method is called TPL and uses any hierarchical tree-based
index structure such as an R-Tree to compute a nearest neighbor ranking of the query
point q. The key idea is to iteratively construct Voronoi hyper-planes around q w.r.t. to
the points from the ranking. Points and index entries that are beyond k Voronoi hyper-
planes w.r.t. q can be pruned and need not to be considered for Voronoi construction.
The idea of this pruning is illustrated in Figure 1 for k = 1. Entry E can be pruned,
because it is beyond the Voronoi hyper-plane between q and candidate x. To decide
whether an entry E can be pruned or not, TPL employs a special trimming function
that examines if E is beyond k hyper-planes w.r.t. all current candidates. In addition, if
E cannot be pruned but one or more hyper-planes intersect the page region of E, the
trimming function trims the hyper-rectangular page region of E and, thus, potentially
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Fig. 1. TPL pruning (k = 1).

decreases the MinDist of E to q. As a consequence of such a trimming, E may move
towards the end of the ranking queue when reinserted into this queue. This increases the
chance that E can be pruned at a later step, because until then new candidates have been
added. The remaining candidate points must be refined, i.e. for each of these candidates,
a kNN query must be launched.

3 RkNN Search Using Multiple Pruning Strategies

3.1 Combining Multiple Pruning Strategies

As discussed above, we want to explore self-pruning as well as mutual pruning possibil-
ities in order to boost RkNN query execution. Our approach is based on an index struc-
ture I for point data which is based on the concept of minimal-bounding-rectangles,
e.g. the R-tree family including the R-tree [4], the R∗-tree [5] and the X-tree [14]. In
particular, we use multi-resolution aggregate versions of these indexes as described in
[2, 3] that e.g. aggregate for each index entry E the number of objects that are stored
in the subtree with root E. The set of objects managed in the subtree of an index en-
try E ∈ I is denoted by subtree(E). Note that the entry E can be an intermediate
node in I or a point, i.e. an object in D. In the case that the entry E ∈ I is an object
(i.e. E = e ∈ D) then subtree(E) = {e}. The basic idea of our approach is to apply
the pruning strategy mentioned above during the traversal of the index, i.e. to identify
true drops as early as possible in order to reduce the I/O cost by saving unnecessary
page accesses. The ability to prune candidates already at the directory level of the in-
dex implies that a directory entry is used to prune itself (self-pruning) or other entries
(mutual-pruning).

For an RNN k query with k ≥ 1, an entry E can be pruned by another entry E′ if
there are at least k objects e′ ∈ subtree(E′) such that E is behind the Voronoi hyper-
plane between q and e′, denoted by ⊥(q, e′). In general, we call a hyperplane ⊥(q, e)
associated with the object e. Note, that a hyperplane ⊥ (q, e) represents all points in
the object space having equal distances to q and to e, i.e. for all points p ∈⊥ (q, e)
dist(p, q) = dist(p, e) holds as shown in the example depicted in Figure 2. An object
or point is called to be behind a hyperplane ⊥(q, e) if it is located within the half space
determined by ⊥(q, e) which is opposite to the half space containing the query object
q. Consequently, objects which are behind a hyperplane ⊥(q, e) are closer to e than to
q, i.e. object o is behind ⊥(q, e) implies that dist(o, q) > dist(o, e). Furthermore, an
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Fig. 2. Voronoi hyperplane between two objects q and e determining the half space which can be
used to prune RkNN candidates.
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Fig. 3. Hyperplanes associated with all objects of an index entry E.

entry E (intermediate index node) is called to be behind a hyper plane ⊥(q, e), if all
points of the entire page region of E are behind ⊥(q, e). In our example, object x as
well as entry E are behind ⊥(q, e).

The key idea of the directory-level-wise pruning is to identify a hyperplane⊥(q, E)
which can be associated with an index entry E and which conservatively approximates
the hyperplanes associated with all objects e in the subtree of E, i.e. e ∈ subtree(E).
Figure 3 illustrates the idea of this concept. We say that the hyperplane associated with
an index entry E is related to the set of objects in the subtree of E. Since we assume
that the number of objects stored in the subtree of an index entry E is known, we
also know for the hyperplane associated with that index entry E, ⊥(q, E), how many
objects this hyperplane relates to. We can use this information in order to prune entries
according to E without accessing the child entries of E. For example, if the number
of objects that relate to ⊥(q, E) is greater than the query parameter k, we can prune
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all points and entries that are behind ⊥(q, E). In Figure 3, entry X can be pruned for
k ≤ 5 because |subtree(E)| = 5. As mentioned above, to obtain the number of objects
stored in a subtree of an entry, we can exploit the indexing concept as proposed in [2].
This concept allows to store for each index entry E the number of objects stored in
the subtree that has E as its root, i.e. the aggregate value |subtree(E)| is stored along
with each entry E. For example, the aggregate R-tree (aR-tree) [2, 3] is an instance of
this indexing concept. Then, the number of objects that are related to ⊥(q, E) equals
|subtree(E)|.

In addition, we can use these considerations also for the self-pruning of entries. If
an entry stores more than k objects in its subtree, i.e. |subtree(E)| > k, and E is be-
hind the hyperplane that is associated with itself, ⊥(q, E), then E can be pruned. The
rational for this is that |subtree(E)| > k objects relate to ⊥(q, E), i.e. more than k hy-
perplanes are approximated by⊥(q, E). As a consequence, each object o ∈ subtree(E)
is behind at least k hyperplanes. This self-pruning can be performed without consider-
ing any other entry. For example, for k ≤ 4, the entry E in Figure 3 can also be pruned
without considering any other entry because each point in the subtree of E is behind
the hyperplane of all four other points in E.

Figure 4 visualizes the benefits of using higher level mutual-pruning and self-pruning
on a fictive 2D Euclidean database indexed by an R-Tree-like structure. The hyperplane
associated with an index entry E is denoted by ⊥ (q, E). If we assume that each of
the entries E1, E2, and E5 stores more than k objects in its particular subtree, all three
entries can be pruned by the self-pruning strategy which does not consider any other en-
tries. This can be done because all three entries are lying behind those hyperplanes that
are associated with themselves. On the other hand, entries E1, E2 and E3 can be pruned
by the mutual-pruning strategy which is based on heuristics that consider other entries.
While E3 can only be pruned for k = 1 due to the hyperplane associated with object
x, both E1 and E2 even can be pruned for k ≥ 1 with the assumption that each of the
values of |subtree(E1)| and |subtree(E2)| is greater than or equal to k. Let us note that a
mutual-pruning approach like [1] needs at least one exact object to prune other entries,
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i.e. E1, E2 and E5 can neither prune themselves nor prune each other. In that case, only
entry E3 could be pruned and all other entries need to be refined. The extension of the
mutual-pruning strategy and the combination with the self-pruning strategy allows us
to prune all candidates except for E4 and object x. This simple example illustrates the
potential benefit of our approach. In other words, the aim of our novel method is to pro-
vide the advantages of the mutual-pruning and the self-pruning approaches by fading
out the drawbacks of both, thus, providing the “best of two worlds”. As a consequence
our solution is expected to outperform the existing approach [1] in terms of query ex-
ecution times because of the advanced pruning capabilities that are derived from the
combination of the self-pruning and mutual-pruning potentials on higher index levels.

3.2 Intermediate Index Entry Hyperplanes

The most important question is, how to derive a hyperplane ⊥(q, E) associated with an
entry E ∈ I. This hyperplane ⊥(q, E) associated with an index entry E is required to
constitute a conservative approximation of the hyperplanes associated with all objects
o in the subtree of E, i.e. o ∈ subtree(E). In fact, we will see that ⊥(q, E) is defined
by means of a set of hyperplanes rather than by only one hyperplane, depending on the
location in the feature space. In general, a set of hyperplanes H is called conservative
approximation of another set of hyperplanes H ′, if all objects related to the hyperplane
h ∈ H are definitely behind each hyperplane h′ ∈ H ′, formally:

(∀h ∈ H : o behind h)⇒ (∀h′ ∈ H ′ : o behind h′)

An example is shown in Figure 5, where the hyperplane ⊥(q, E) associated with the
index entry E forms a conservative approximation of all hyperplanes that are associated
with the objects covered by E. The hyperplane approximation consists of the three
hyperplanes h1, h2 and h3. Objects that are behind these three hyperplanes, e.g. object
o, are definitely behind all hyperplanes that are associated with the objects covered by
E, independent of their location in E. Such an approximation is sensible if we assume
that the set H is much smaller than the set H ′ and, thus, can be used to prune entries
more efficiently.

In the following, we show how we can define such a set of hyperplanes ⊥(q, E)
associated with an index entry E which conservatively approximates the hyperplanes
of all objects stored in the subtree of E. As mentioned above, a hyperplane associated
with an object o represents all points p which have the same distance to the query
point q and to o. In addition, we know that all objects stored in the subtree of an index
entry E are located inside the minimum bounding hyper-rectangle (mbr) that defines
the page region of E. Thus, we can determine a conservative hyperplane representation
of all points stored in the subtree of entry E if we replace the distances between the
hyperplane points p ∈⊥(q, E) and o ∈ subtree(E) by the maximum distance between
p and the mbr-region of E. Figure 6 illustrates the computation of such a conservative
approximation for a given index entry E in a two-dimensional feature space. First, we
have to specify the maximum distance between an mbr-region of the index entry E and
any point in the vector space. It suffices to find for each point p in the vector space the
point e within the mbr-region which has the maximum distance to p. This can be done
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the center of the mbr-region. As illustrated for the two-dimensional example
in Figure 4, we get partitions denoted by NW , NE, SE and SW . In each of
these partitions P , the vertex point of the mbr-region which lies within the
diagonal-opposite partition is the mbr-region point which has the maximum
distance to all points within P . In our example, for any point p in SW the
maximum distance of p to E is the distance between p and point b in partition
NE. Consequently, the hyperplane ⊥ (q, b) is a conservative approximation of
all hyperplanes between points within the mbr-region of E and the points within
the partition SW . This way, in our example the hyperplane associated with E
is composed by the three hyperplanes ⊥ (q, a), ⊥ (q, b) and ⊥ (q, c). The fact,
that the combination of these three hyperplanes, marked by the red dotted poly-
line in Figure 4 conservatively approximates the hyperplanes associated with all
points within E is illustrated in Figure 2. Each index entry X which lies behind
the hyperplane approximation ⊥ (q, E) associated with the entry E also lies
behind each of the hyperplane associated with each object in E.

3.3 Pruning Candidates

In the following, we show how the hyperplanes ⊥ (q, E) associated with an index
entry E can be used to prune itself or other entries. Here, we assume that an
RkNN-query with k ≥ 1 is issued. Since, the hyperplanes ⊥ (q, E) associated
with an index entry E approximate all hyperplanes associated with all objects
within the subtree of E, any index entry X which lies behind ⊥ (q, E) in fact
must lie at least behind |subtree(E)| many hyperplanes, and, thus can be pruned
by E if |subtree(E)| ≥ k. For this reason, we assign a weight w(⊥ (q, E)) ∈ N+

to each hyperplane ⊥ (q, E) associated with an index entry E. The weight w(⊥

Fig. 6. Computation of conservative hyperplane approximations.

by considering partitions of the vector space which are constructed as follows: in each
dimension the space is split paraxially at the center of the mbr-region. As illustrated for
the two-dimensional example in Figure 6, we obtain partitions denoted by NW , NE,
SE and SW . In each of these partitions P , the corner point of the mbr-region which lies
within the diagonally opposite partition is the mbr-region point which has the maximum
distance to all points within P . In our example, for any point p in SW the maximum
distance of p to E is the distance between p and point b in partition NE. Consequently,
the hyperplane ⊥ (q, b) is a conservative approximation of all hyperplanes between
points within the mbr-region of E and the points within the partition SW . This way,
in our example the hyperplane associated with E is composed of the three hyperplanes
⊥ (q, a), ⊥ (q, b) and ⊥ (q, c). Generally, the conservative approximation of an mbr-
region in a d-dimensional space consists of at most 2d hyperplanes. This is due to the
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index entry E.

fact that a d-dimensional space can be partitioned into 2d partitions according to an
mbr-region, such that the maximums distance between each point p in a partition and
an mbr-region E is defined by exactly one point within E.

In the following we will show that if we construct the hyperplane approximation
as mentioned above we achieve in fact a conservative hyperplane approximation. The
example illustrated in Figure 7 visualizes the scenario described in the following lemma.

Lemma 1. Let q be a (query) point, R be an mbr-region in a d-dimensional space and
p be any d-dimensional point. Furthermore, let P denote the space partition which is
generated by splitting the space paraxially at the center of the mbr-region R in each
dimension and let P be the partition containing the point p. Then, the hyperplane be-
tween q and the corner point r of R which lies within the diagonally opposite partition
builds a conservative approximation of all hyperplanes between q and all other points
in R within the partition P . In other words, all points in P that are behind ⊥(q, r) are
also behind each hyperplane between q and any other point in R.

Proof. By definition, each point p behind the hyperplane ⊥(q, r) has a smaller distance
to the point r than to q, i.e. dist(p, r) < dist(p, q). Furthermore, r is assumed to be
the point in R with the maximal distance to p, i.e. the distance from p to any point p′

in R is smaller or equal to dist(p, r). Consequently, the distance between p and p′ is
smaller than the distance between p and q. Since the hyperplane⊥(q, p′) associated with
any point p′ in R only contains points having equal distance to p′ and q by definition,
⊥(q, p′) cannot contain such a point p which is assumed to be behind ⊥(q, r). As a
consequence, no hyperplane associated with q and any point in R is behind ⊥ (q, r)
within the region P .

According to Lemma 1, we can combine all hyperplane approximations of all re-
gions associated with an mbr-region R into a set of hyperplanes that conservatively
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approximate the hyperplanes of all points in R w.r.t. the entire data space. The two-
dimensional example illustrated in Figure 5 shows that the combination of the three
hyperplanes, marked by the red dotted poly-line, conservatively approximates the hy-
perplanes associated with all points within E. Each index entry X which lies behind the
hyperplane approximation ⊥(q, E) associated with the entry E also lies behind each of
the hyperplanes associated with each object in E.

Note, that the shape of the hyperplane associated with an mbr-region depends on the
topology between the query point q and the mbr-region. Figure 8 exemplarily shows
four cases with different topologies in the two-dimensional space. Case 1 (cf. Figure
8(a)) shows the standard case where the hyperplane associated with E can be repre-
sented by three regular hyperplanes, i.e. three hyperplanes each associated with a sin-
gle point. As shown in case 2 (cf. Figure 8(b)), the hyperplane associated with E is
generally represented by four regular hyperplanes. Case 3 (cf. Figure 8(c)) shows the
special scenario where q is located at one of the corner points of the mbr-region. Here,
the hyperplane associated with E is represented by only two regular hyperplanes. An
interesting case is case 4 where none of the four regular hyperplanes of which the hy-
perplane associated with E is constructed are applicable. The reason is that none of the
four regular hyperplanes which are used to construct the hyperplane associated with E
intersects the region it relates to and, thus, cannot be used to prune any candidate.

3.3 Pruning Candidates

In the following, we show how the hyperplanes ⊥(q, E) associated with an index entry
E can be used to prune itself or other entries. Here, we assume that an RkNN-query
with k ≥ 1 is issued. Since, the hyperplanes ⊥(q, E) associated with an index entry
E approximate all hyperplanes associated with all objects within the subtree of E, any
index entry X which lies behind ⊥(q, E) in fact must lie at least behind |subtree(E)|
hyperplanes, and, thus can be pruned by E if |subtree(E)| ≥ k. For this reason, we
assign a weight w(⊥ (q, E)) ∈ N+ to each hyperplane ⊥ (q, E) associated with an
index entry E. The weight w(⊥(q, E)) denotes the number of hyperplanes which are
approximated by⊥(q, E). Since, we use aggregate index structures, we assume that the
number of objects managed by an index entry E is accessible without the need to refine
the entry E. Once, the hyperplanes ⊥(q, E) for an entry E are built, we can assign the
weight w(⊥(q, E)) = subtree(E) to them. Obviously, a hyperplane associated with an
object has the weight 1.

In summary, if we assume that we already determined a set of n hyperplanes S =
{⊥(q, E1),⊥(q, E1), · · · ,⊥(q, En)} behind which an index entry E lies, then, we can
prune E, if n ≥ k.

3.4 The RkNN Search Algorithm

The benefit of our formalization presented above is that the two pruning strategies,
general mutual-pruning and self-pruning, can now easily be integrated into the TPL al-
gorithm. In other words, our concepts allow us to use the TPL algorithm as a framework
for RkNN search. Thus, our novel algorithm also relies on a filter step and a refinement
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Fig. 8. Conservative hyperplane approximations associated with point q and mbr-region E for
different cases w.r.t. the topology of q and E.

step. Our filter step is very similar to the filter step of the TPL approach. We also man-
age a heap H to compute a nearest neighbor ranking, a set of candidates points Scnd

and a set of pruned entries Srfn. The key difference is that we call the trimming func-
tion in a different way. Instead of trimming an index entry or a database point w.r.t. the
candidate points in Scnd, we use all entries/points in H , Srfn, Scnd for trimming. This
implements the advanced mutual-pruning already on the directory level of the index as
well as the self-pruning of index entries. In addition, we have to generalize the trimming
function such that the clipping of page regions considers the weight of each hyperplane.
The clipping algorithm sketched in [1] can easily be adapted for this purpose. Finally,
our refinement step is algorithmically also very similar to the refinement step of TPL.
However, it is expected that it requires less disc accesses because usually less candi-
dates need to be refined. Intuitively, the refinement step tests for each point in Scnd if
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Name size dimension distribution
Synth1 3,500 2 uniform
Synth2 3,500 2 6 Gaussians
Synth3 1,000,000 2 6 Gaussians
Synth4 1,500 20 uniform

Table 1. Features of the synthetic data sets used for evaluation.

HPKRNN

Fig. 9. Comparison of HPKRNN and TPL processing R1NN queries.

the query q is among its kNN list by considering and iteratively refining the points and
index entries in Srfn.

4 Experimental Evaluation

We compared our novel approach for RkNN search, hereafter referred to as HPKRNN
(short for Hyper-Plane based RkNN), with TPL [1] the current state-of-the-art algo-
rithm. All experiments are based on an R*-Tree with a page sizes of 32 Byte and
1KByte. For all experiments, we executed 100 sample RkNN queries and averaged
the results.

Our experiments are conducted on four synthetic data sets with different features
that are summarized in Table 1.

Additionally, we conducted experiments on two real-word data sets. The “Genes”
data set contains appr. 5,000 points in a 5D space representing the expression levels of
genes. The data set “Cloud” contains 9D weather parameters recorded at appr. 17,100
different locations in Germany.

4.1 Evaluation of the I/O-Cost

Figure 9 displays the performance of the competitors on four data sets when process-
ing R1NN queries using an R*-tree with a page size of 32 byte. We used Synt1 and
Synt2 because they feature different characteristics, as well as the two real-world data
sets Genes and Cloud. It can be seen that our novel HPKRNN algorithm significantly
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Fig. 10. Benefit of different pruning strategies for HPKRNN.

outperforms the TPL approach in terms of I/O costs and, thus, query execution times.
The reason for this clear performance boost over the mutual-pruning approach TPL
can be derived from Figure 10 where the number of self-pruned objects, the number of
mutual-pruned objects on the leaf level, and the number of mutual-pruned objects on
higher levels in the index are displayed separately for our HPKRNN approach. As it
can be observed from this figure, the combination of the pruning strategies on multiple
levels as performed by HPKRNN is beneficial and superior over using only mutual-
pruning on the leaf level of the index as it is done by TPL. Especially when considering
pruned objects, the big positive effect of the mutual-pruning at the directory level be-
comes obvious (cf. Figure 10(b)). But also for pruning directory pages, especially the
mutual-pruning at the directory level erases a large number of candidates (cf. Figure
10(a)). It can also be observed from both charts in Figure 10, that contribution of the
self-pruning strategy seems to be less important on the applied data sets.

Next, we evaluated the scalability of the competitors w.r.t. the number of data ob-
jects n. Figure 11 displays the results for an R*-Tree with a pagesize of 32Byte and
Figure 12 reports the results for an R*-Tree with a pagesize of 1kB. Again, the perfor-
mance gain of our HPKRNN algorithm over the TPL method remains significant with
varying number of data objects. In particular for large databases our method outper-
forms the TPL method by up to two orders of magnitude.

In the next experiments, we evaluated the impact of the query parameter k on the
scalability of the competitors. The resulting performances are visualized in Figure 13.
Again, our method clearly outperforms the TPL approach on most data sets especially
for smaller values of k. With increasing k, the gap between both approaches decreases.
A reason for this might be that the self-pruning and the mutual-pruning at the directory
level becomes less selective in this case. Rather, with increasing k, most directory pages
and objects are pruned with the mutual-pruning at the leaf level. However, as observable
from the Synt1 and Gene data sets, this effect is only visible for rather high values of k.

Figure 14 shows the influence of the query parameter k when using an R*-Tree with
a larger page-size (in this case 1K). Here, we evaluated the number of page accesses (cf.
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Fig. 11. Scalability of the competitors w.r.t. the data set size using an R*-tree with a page size of
32 Byte.

Figure 14(a)) and the maximum size of the candidate set (cf. 14(b)) produced by each
method. The relatively large number of page accesses of the TPL algorithm (Figure
14(a)) can be explained by a rapidly growing number of entries in the candidate set of
the TPL algorithm, shown in Figure 14(b). Additionally, it can be observed in Figure
14(a) that the vast majority of page accesses in both approaches occur in the respective
filter steps whereas the refinement round requires only a small number of page accesses.
This is an interesting observation because HPKRNN is clearly superior to TPL in the
filter step (cf. Figure 14(a)) and additionally in the number of objects that need to be
refined (cf. Figure 14(b)), i.e. produces a considerably smaller number of candidates
with a significantly smaller amount of page accesses.

We also evaluated the scalability of our approach w.r.t. the number of dimensions d
of the data set using the 20-dimensional data set “Synth4” containing 1,500 data points.
Figure 15 shows the results of the experiment in which we subsequently increased the
number of relevant dimensions. In this experiment, we chose a fixed capacity of data
points that can be stored in an R*-Tree node to keep the results comparable, in particu-
lar, a capacity of 30 data points for directory nodes and a capacity of 60 data points for
data (leaf) nodes.

It can be observed that our HPKRNN algorithm outperforms the TPL method for
dimensions less or equal to five, i.e. d ≤ 5. For higher dimensions, both approaches
appear to perform very similar. This can be explained by the general bad performance of
R*-Trees on more than 5-dimensional data. In order for an minimal bounding rectangle
(mbr) to contain its minimal number of entries, it has to cover an increasingly large
fraction of space in each dimension.

4.2 Evaluation of the CPU-Cost

Next, we evaluated the time required to compute the results of RkNN-queries with re-
spect to the database size in terms of CPU-time. We also compared the CPU costs of our
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Fig. 12. Scalability of the competitors w.r.t. the data set size using an R*-tree with a page size of
1024.

HPKRNN approach to the CPU costs of the TPL approach. Here, we only compared
the time required for the refinement step, because, in [1], the CPU costs of the filter step
is boosted using heuristics based on Hilbert values. Since our TPL algorithm does not
implement this heuristic, we decided to omit experiments on the runtime of the filter
step of the TPL, in order to avoid unfair comparisons. Note that not using these heuris-
tics proposed in the TPL approach does not affect the I/O costs of the TPL approach.
The result of this experiment is shown in Figure 16 for different values of k. It can be
seen that our method is competetive with the TPL approach in terms of CPU runtime.
This indicates that, since we need more effort to compute hyper-planes between the
query and a directory node, a less number of hyper-planes is needed to prune objects
and nodes. This coincides directly with the observation made above that our HPKRNN
method produces less candidates in the filter step because the number of hyper-planes
computed is determined by the number of candidates we have during the filter step.

4.3 Summary

In summary, the conducted experiments confirm that our novel approach clearly out-
performs the current state-of-the-art approach because it combines multiple pruning
strategies rather than implementing only one pruning paradigm. Even though our novel
pruning strategies may produce an additional overhead at the CPU end, we also showed
that the CPU costs of our algorithm is competitive with the CPU costs of the existing
method. Furthermore, our approach saves a considerably number of page accesses dur-
ing the filter step and the refinement step. As a consequence, since the RkNN problem is
I/O-bound for large data sets, our new algorithm needs significantly less time to report
the results of RkNN queries than the current state-of-the-art approach for this problem.
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Fig. 13. Performance of the competitors in the number of pages accessed w.r.t. different values of
k using an R*-Tree with a pagesize of 32 Byte.

5 Conclusions

In this paper, we propose a generalization of the TPL algorithm which is the current
state-of-the-art approach to Euclidean RkNN search. Our solution extends the TPL
method in two important ways. First, the mutual-pruning strategy of TPL is generalized
so that it can be applied already on higher levels of the index. Second, we introduced
a new pruning paradigm called self-pruning. The generalization of the mutual-pruning
strategy and its combination with the new self-pruning strategy helps to explore the full
pruning potentials in order to reduce query execution times. Our experimental evalua-
tion confirms that our new solution outperforms the existing methods significantly in
terms of query execution times.
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Fig. 14. Performance of the competitors w.r.t. different values of k using an R*-Tree with a page-
size of 1024 Byte.
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