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Abstract. A probabilistic similarity query over uncertain data assigns
to each uncertain database object o a probability indicating the likeli-
hood that o meets the query predicate. In this paper, we formalize the
notion of uncertain time series and introduce two novel and important
types of probabilistic range queries over uncertain time series. Further-
more, we propose an original approximate representation of uncertain
time series that can be used to efficiently support both new query types
by upper and lower bounding the Euclidean distance.

1 Introduction

Similarity search in time series databases is an active area of research usually
with a focus on certain data. No work has been done so far to support query
processing on uncertain time series. Uncertainty is important in emerging ap-
plications dealing e.g. with moving objects or object identification as well as
sensor network monitoring. In all these applications, the observed values at each
time slot of a time series exhibit various degrees of uncertainty. Due to the
uncertainty of the data objects, similarity queries are probabilistic rather than
exact: we can only assign to each database object a probability that it meets
the query predicate. As a consequence, there is a need to adapt storage models
and indexing/search techniques to deal with uncertainty [1–4]. Furthermore sev-
eral approaches for probabilistic query processing have been proposed recently
including probabilistic range queries [5, 6], probabilistic kNN and top-k queries
[7–9, 2, 10] and probabilistic ranking [10–14]. Applications where the analysis of
time series has to cope with uncertainty are e.g. traffic measurements in road
networks, location tracking of moving objects or measuring environmental pa-
rameters as temperature.

When looking at the above sketched applications, we can extract two types of
uncertain time series model uncertainty using a sampling approach rather than
probability density functions (pdfs). In the first two applications, the sample
values of different time slots are uncorrelated, i.e. there is no relationship between
a given sample observation at time slot i and another sample observation at time
slot (i+ 1). On the other hand, in Application 2, each observed sample at time
slot i is correlated to an observation at time slot (i+1) and vice versa. Since both
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types require different and complex solutions in order to support probabilistic
similarity queries, we only focus on uncorrelated uncertain time series throughout
the rest of the paper. As indicated above, we assume that uncertainty is modelled
using sample observations rather than pdfs.

To the best of our knowledge, this is the first paper, that formalizes the
problem of probabilistic queries on uncertain time series, focusing on two types
of probabilistic range queries (cf. Sec. 2). Furthermore, this paper proposes a
novel compact approximation of uncertain time series and shows how upper
and lower bounding distance estimations for Euclidean distance can be derived
from these representations (cf. Sec. 3). Third, it illustrates how these distance
approximations can be used to implement a multi-step query processor answering
probabilistic similarity queries on uncertain time series efficiently (cf. Sec. 3).

2 Probabilistic Queries Over Uncertain Time Series

Usually, time series are sequences of (certain) d-dimensional points. Uncertain
time series are sequences of points having an uncertain position in the d-dimensional
vector space. This uncertainty is represented by a set of sample observations at
each time slot.

Definition 1 (Uncertain Time Series). An uncertain time series X of length
n consists of a sequence 〈X1, . . . , Xn〉 of n elements, where each element Xt con-
tains a set of s d-dimensional points (sample observations), i.e. Xt = {xt,1, . . . , xt,s}
with xt,i ∈ Rd. We call s the sample size of X . The distribution of the points in
Xt reflects the uncertainty of X at time slot t.

We will use the term regular time series for traditional, non-uncertain (i.e.
exact) time series consisting of only one d-dimensional point at each time slot 1.

In order to measure the similarity of uncertain time series we need a distance
measure for such uncertain time series. For regular time series, e.g. any Lp-
norm is commonly used to measure the distance between pairs of time series.
Due to the uncertainty of the time series, also the distance between two time
series is uncertain. Instead of computing one unique distance value such as the
Lp-norm of the corresponding sequences, the distance between uncertain time
series rather consists of multiple distance values reflecting the distribution of
all possible distance values between the samples of the corresponding uncertain
time series. This intuition is formalized in the following definition.

Definition 2 (Uncertain Lp-Distance). For a one-dimensional uncertain time
series X of length n, let sX be the sample size of X and TSX be the set of all
possible regular time series that can be derived from the combination of different
sample points of X by taking one sample from each time slot, i.e.

TSX = {〈x1,1, x2,1, . . . , xn,1〉, . . . , 〈x1,sX , x2,sX , . . . , xn,sX 〉}.

1 For presentation issues, we assume 1-dimensional uncertain time series, the extension
to the general d-dimensional case is straightforward.
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The Lp-distance between two uncertain time series X and Y, denoted by d̃istp,
is a collection containing the Lp distances of all possible combinations from TSX
and TSY , i.e. d̃istp(X ,Y) = {Lp(x, y) |x ∈ TSX , y ∈ TSY}.

Based on the distance function d̃istp we define two query types for uncertain
time series. Thereby, we define the probability Pr(d̃istp(X ,Y) ≤ ε) that the
distance between two uncertain time series X and Y is below a given threshold
ε as

Pr(d̃istp(X ,Y) ≤ ε) =
|{d ∈ d̃istp(X ,Y)|d ≤ ε}|

snX · snY
.

Definition 3 (Probabilistic Bounded Range Query). Let D be a database
of uncertain time series, ε ∈ R+, and τ ∈ [0, 1]. For an uncertain time series Q,
the Probabilistic Bounded Range Query (PBRQ) returns the following set

RQε,τ (Q,D) = {X ∈ D | Pr(d̃istp(Q,X ) ≤ ε) ≥ τ}.

Definition 4 (Probabilistic Ranked Range Query). Let D be a database
of uncertain time series and ε ∈ R+. For an uncertain query time series Q, the
Probabilistic Ranked Range Query (PRRQ) returns an ordered list:

RQε,rank(Q,D) = (X1, . . . ,Xm),

where Pr(d̃istp(Q,Xi) ≤ Pr(d̃istp(Q,Xi+1) (1 ≤ i ≤,m−1) and Pr(d̃istp(Q,Xi) ≤
ε) for all i = 1, . . . ,m. For efficiency reasons, we assume a function getNext on
the set RQε,rank(Q,D) that returns the next element of the ranking, i.e. the
first call of getNext returns the first element in RQε,rank(Q,D), the second call
returns the second element in RQε,rank(Q,D), and so on.

Let us note that in the database context where we have long time series (high
value of n) and high sample rates, the naive solution for both query types are
CPU-bound because for all X ∈ D we need to compute all distance observations
in d̃istp(Q,X ) in order to determine Pr(d̃istp(Q,X ) ≤ ε). This means that a
naive solution requires to compute for each X ∈ D exactly |d̃istp(Q,X )| = snQ ·snX
distances. For large values of n, sQ, and sX , this is obviously much more costly
than sequentially scanning the disk to access all X ∈ D.

3 Multi-Step Probabilistic Range Query Processing

Obviously, the CPU cost (and thus, the overall runtime) of our probabilistic
similarity queries are dominated by the number of distance calculations necessary
to determine the probability Pr(d̃istp(Q,X ) ≤ ε) for a query object Q and
all X ∈ D. This high number results from the combination of the observed
distance values between Q and X at each time slot. A first idea for runtime
reduction is that we only need to determine the number of distance observations
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(c) Second level.

Fig. 1. Different levels of approximating uncertain time series.

d ∈ d̃istp(Q,X ) with d ≤ ε because |d̃istp(Q,X )| = snQ · snX . We can further
improve the runtime by calculating lower and upper bounds for the probability
that further reduce the number of distance computations. For that purpose,
we have to calculate an upper and a lower bound for the number of distance
observations d ∈ d̃istp(Q,X ) with d ≤ ε.

3.1 Approximative Representation

Intuitively, we construct the approximative representation of an uncertain time
series X by aggregating the observations xi,j ∈ Xi at each time slot i into groups
and use these groups to calculate the distance between uncertain time series. Ob-
viously, this reduces the sample rate and thus, the overall number of possible
distance combinations. The groups are represented by minimum bounding inter-
vals2.

Definition 5 (Approximative Representation). The approximative repre-
sentation Xa of an uncertain time series X of length n consists of a sequence
〈{I1,1, . . . , I1,m1}, . . . , {In,1, . . . , In,mn}〉 of interval sets. Each interval Ii,j =
[li,j , ui,j ] minimally covers a given number |Ii,j | of sample points of Xi, i.e.
li,j and ui,j are sample points of Xi, at time slot i.

We use two levels of approximation. The first level describes all sample points
at time slot i by one minimal bounding interval (cf. Figure 1(b)), i.e. mi = 1 for
all time slots i and Xa = 〈I1,1, . . . , In,1〉. For the second level approximations,
the sample observations at time slot i are grouped into k clusters by applying
the algorithm k-means [15] on all xi,j ∈ Xi (cf. Figure 1(c)), i.e. mi = k for all
time slots i and Xa = 〈{I1,1, . . . , I1,k}, . . . , {In,1, . . . , In,k}〉.

3.2 Distance Approximations

Using approximative representations Xa and Ya of two uncertain time series X
and Y we are able to calculate lower and upper bounds for Pr(d̃istp(X ,Y) ≤ ε).

Analogously to Definition 2, let TSXa be the set of all possible approximated
regular time series derived from the combination of different intervals of Xa by

2 or minimum bounding hyper-rectangles in the d-dimensional case

Proc. 21st Int. Conf. on Scientific and Statistical Database Management (SSDBM'09), New Orleans, LA, 2009.



taking one interval from each time slot, i.e.

TSXa = {〈I1,1, I2,1, . . . , In,1〉, . . . , 〈I1,l1 , . . . , In,ln〉}.

Let Xa ∈ TSXa
and let [lxi

, uxi
] be the interval of Xa at time slot i. The distance

LLp
(Xa, Ya) = p

√∑n
i=1 (max{0,max{lxi

, lyi
} −min{uxi

, uyi
}})p is the smallest

Lp-distance between all intervals of Xa ∈ TSXa
and Ya ∈ TSYa

, whereas the
distance
ULp(Xa, Ya) = p

√∑n
i=1 (max{uxi − lyi , uyi − lxi})p is the largest Lp-distance

between all intervals of Xa ∈ TSXa and Ya ∈ TSYa . Aggregating these distance
values by means of the distance function d̃istp, we obtain an interval of distances
bound by Ldist and Udist. Now, we can lower bound each distance observation
in d̃istp(X ,Y) by
LBp(Xa,Ya) = {(Ldist(Xa, Ya))|Xa|·|Ya||Xa ∈ TSXa , Ya ∈ TSYa}.
Analogously, we can upper bound each distance observation in d̃istp(X ,Y) by
UBp(Xa,Ya) = {(Udist(Xa, Ya))|Xa|·|Ya||Xa ∈ TSXa

, Ya ∈ TSYa
}.

Lemma 1. Let Xa = 〈Ix1 , . . . , Ixn〉 ∈ TSXa and Ya = 〈Iy1 , . . . , Iyn〉 ∈ TSYa be
approximated regular time series. For all x = 〈x1, . . . , xn〉, xi ∈ Ixi and for all
y = 〈y1, . . . , yn〉, yi ∈ Iyi , the following inequalities hold:

LLp
(Xa,Ya) ≤ Lp(x, y).

ULp(Xa,Ya) ≥ Lp(x, y).

A lower bound of the probability Pr(d̃istp(X ,Y) ≤ ε) can be defined as

PrLB(d̃istp(X ,Y) ≤ ε) =
|{d ∈ UBp(Xa,Ya)|d ≤ ε}|

snX · snY

and an upper bound as

PrUB(d̃istp(X ,Y) ≤ ε) =
|{d ∈ LBp(Xa,Ya)|d ≤ ε}|

snX · snY

Lemma 2. For any uncertain time series X and Y, the following inequations
hold:

(1) PrLB(d̃istp(X ,Y) ≤ ε) ≤ Pr(d̃istp(X ,Y) ≤ ε)

(2) PrUB(d̃istp(X ,Y) ≤ ε) ≥ Pr(d̃istp(X ,Y) ≤ ε)

The proofs of Lemma 1 and 2 can be found in [16], but are omitted here due
to space limitations.

The two following query types are based on an iterative filter-refinement
policy. A queue QRef is used to organize all uncertain time series sorted by
descending upper bounding probabilities PrUB(d̃istp(Q,X ) ≤ ε) w.r.t. the query
object Q.
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3.3 Probabilistic Bounded Range Queries (PBRQ)

In an iterative process we remove the first element X of the queue Qref , com-
pute its lower and upper bounding probabilities PrLB(d̃istp(Q,X ) ≤ ε) and
PrUB(d̃istp(Q,X ) ≤ ε), and filter X according to these bounds. If PrLB(d̃istp(Q,X ) ≤
ε) ≥ τ , then X is a true hit and is added to the result set. If PrUB(d̃istp(Q,X ) ≤
ε) < τ , then X is a true drop and can be pruned. Otherwise, X has to be refined.
Let us note that we do not immediately refine the object completely. Rather,
the refinement is performed in several steps (1st level to 2nd level, 2nd level
to exact representation). Details on the strategies for the step-wise refinement
are presented below in Section 3.5. After the partial refinement step, X is again
inserted into QRef if it cannot be pruned or reported as true hit according to
the above conditions and is not refined completely yet. If an object X is refined
completely, then obviously PrLB(d̃istp(Q,X ) ≤ ε) = PrUB(d̃istp(Q,X ) ≤ ε) =
Pr(d̃istp(Q,X ) ≤ ε). The iteration loop stops if QRef is empty, i.e. all objects
are pruned, identified as true hits before complete refinement, or are completely
refined.

3.4 Probabilistic Ranking Range Query (PRRQ)

After initialization, the method getNext() can be called, returning the next ob-
ject in the ranking. Obviously, an object X is the object with the highest proba-
bility if for all objects Y ∈ D the following property holds: PrLB(d̃istp(Q,X ) ≤
ε) ≥ PrUB(d̃istp(Q,Y) ≤ ε). Since the candidate objects of the database are
ordered by descending upper bounding probabilities in QRank, we only need to
check if the lower bounding probability of the first element in QRank is greater
or equal to the upper bounding probability of the second element. If this test
returns true, we can report the first object as the next ranked object. Otherwise,
we have to refine the first object in QRank in order to obtain better probability
bounds. As discussed above, this refinement is step-wise, i.e. several refinement
steps are necessary in order to obtain the exact probability. The idea of the
method getNext() is to iteratively refine the first object in QRank as long as the
lower bounding probability of this element is lower than the upper bounding
probability of the second element in QRank.

3.5 Step-Wise Refinement of Probability Estimations

The aim for each refinement step is to be able to identify an uncertain time
series as true hit or true drop. This aim is reached for an uncertain time series
X if the probability interval [PrLB(d̃istp(Q,X ) ≤ ε), PrUB(d̃istp(Q,X ) ≤ ε)]
is above or below τ . For this reason, we try to increase the lower bound of the
probability PrLB(d̃istp(Q,X ) ≤ ε) in the case that

τ − PrLB(d̃istp(Q,X ) ≤ ε) ≤ PrUB(d̃istp(Q,X ) ≤ ε)− τ

Proc. 21st Int. Conf. on Scientific and Statistical Database Management (SSDBM'09), New Orleans, LA, 2009.



holds. Otherwise, we try to decrease PrUB(d̃istp(Q,X ) ≤ ε).
For increasing the lower bounds of the probabilities for X we have to refine

those intervals which are intersected by the ε value such that we refine first that
approximated distance which probably will be resolved into a set of approxi-
mated distances that are clearly below ε and approximates as many distances
d ∈ d̃istp(Q,X ) as possible. Here we use the following heuristic: The increase of
the number of detected distances d ∈ d̃istp(Q,X ) that are clearly below ε can
be estimated by

w̃ = (1− su
maxi=1..n{du,i − dl,i}

) · |Xa| · |Qa|,

where su = Udist(Qa, Xa)−ε, du,i = max{uqi
−lxi

, uxi
−lqi
}, dl,i = max{0,max{lqi

, lxi
}−

max{uqi , uxi}} and |Xa| · |Qa| corresponds to the number of distances which are
approximated by Udist(Qa, Xa) and Ldist(Qa, Xa). The example depicted in Fig-
ure 2 shows the situation of the approximated distance d̃ = (LL1(Qa, Xa), UL1(Qa, Xa))
before (top) and after (bottom) the refinement step. The approximated distance
d̃ is refined by refining exactly one of the n distance intervals in the time domain
that correspond to d̃. Obviously, the number of distances approximated by d̃ is
the product of the number |Qa| of regular time series approximated by Qa and
the number |Xa| of regular time series approximated by Xa. In order to estimate
the number of approximated distances that fall below ε after refining d̃, we have
to look at the distance intervals in the time domain. When refining a distance
interval in the time domain, e.g. (dl,5, du,5) in our example, then all resulting
distance intervals that are clearly below du,i−su correspond to the resulting ap-
proximated distances that are below ε. Since w̃ has to be maximized, we should
refine d̃ by refining the largest time interval in the time domain. Finally, based
on the described estimation, we refine the approximated distance for which w̃
is maximal. In the case we want to decrease the upper bound of the probability
PrUB(d̃istp(Q,X ) ≤ ε) we can use a very similar refinement strategy.

4 Summary of Experimental Results

In this short proposal, we just want to give a brief summary of our experimental
results due to limited space. For the interesting reader we refer to [16] where a
broader discussion of our experiments can be found. Our datasets are based on
several artificial and real-world benchmark datasets derived from a wide range,
including CBF , GunX, SynCtrl and Leaf from the UCI Time Series Data
Mining Archive3. The time series are modified to get uncertain time series by
means of sampling around the given exact time series values according to spe-
cific distribution functions (e.g. uniform and Gaussian). As discussed above, the
computation of probabilistic similarity queries is CPU-bounded. To achieve a
fair comparison which is independent of the implementation, we measured the

3 http://kdd.ics.uci.edu/
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Fig. 2. Refinement heuristics.

efficiency by the average number of required calculations required to execute a
query.

At first we measured the speed-up factor our approach yields compared to
the straightforward approach naively computed as defined in Section 2. In the
first experiment, we examine how our approach can speed up PBRQ and PRRQ
for different datasets and varying sample rates. The speed-up factor of both
query types is between 1075 and 10300 and increases exponentially with linearly
increasing the sample rate. The rational for this is that the number of possible
time-series instances increases exponentially with the time series length and the
number of samples used for each time slot. Furthermore, we could show that
our approach scales significantly better than the competitor w.r.t. the database
size. Finally, we could experimentally show that our refinement strategy clearly
outperforms more simple refinement strategies and that this superiority of our
approach is robust w.r.t. all query parameters.

5 Conclusions

To the best of our knowledge, we propose the first approach for performing
probabilistic similarity search on uncertain time series in this paper. In partic-
ular, we formalize the notion of uncertain time series and introduce two novel
probabilistic query types for uncertain time series. Furthermore, we propose
an original method for efficiently supporting these probabilistic queries using a
filter-refinement query processing.
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