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Abstract. We present a novel graph embedding to speed-up distance-range and
k-nearest neighbor queries on static and/or dynamic objects located on a (weighted)
graph that is applicable also for very large networks. Our method extends an ex-
isting embedding called reference node embedding which can be used to compute
accurate lower and upper bounding filters for the true shortest path distance. In
order to solve the problem of high storage cost for the network embedding, we
propose a novel concept called hierarchical embedding that scales well to very
large traffic networks. Our experimental evaluation on several real-world data
sets demonstrates the benefits of our proposed concepts, i.e. efficient query pro-
cessing and reduced storage cost, over existing work.

1 Introduction

Similarity queries in large traffic networks are important database operations in appli-
cations such as location-based services, traffic network monitoring, traffic information
systems, etc. Typically, traffic networks such as road networks are modeled by graphs.
Nodes of the graph represent crossings such as road intersections or junctions, whereas
edges represent connections such as roads or railways between nodes. The data objects
representing points of interest such as cars, service stations, etc. are distributed over
this road network, i.e. are located at nodes or on edges or may move along the graph.
The distance between objects in the network is measured by means of the shortest path
distance which can be computed by the Dijkstra algorithm.

In today’s applications usually a high number of online queries on networks of
hundreds of thousands or even millions of nodes have to be answered in real-time. Ob-
viously, a more efficient solution than computing Dijkstra for all these query nodes is
utterly necessary for such scenarios. A filter/refinement approach is envisioned, apply-
ing a cheaper filter step in order to efficiently partition the data objects into a set of true
hits and/or true drops, and a set of candidates, that need to be further analyzed. In order
to decide about true hits, we need an upper bounding distance approximation, whereas
a lower bounding distance approximation is needed to decide about true drops. The re-
maining set of candidates that cannot be discarded from or included in the result set by
means of the filter step, need to be refined, i.e. the true network distance needs to be
computed.

Here, we propose a novel filter/refinement query processor for very large graph net-
works based on a hierarchical network graph embedding. Section 2 introduces prelim-
inary definitions and discusses related work. In Section 3, we show how the so-called
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reference node embedding can be extended to reduce the storage cost for very large
networks. We show how this novel embedding can be computed efficiently for static
and dynamic objects located on graph networks and derive efficient lower- and upper
bounds for the network distance from the hierarchical embedding. Section 4 sketches
our multi-step query processor. Section 5 presents an experimental evaluation of the
proposed concepts and Section 6 concludes the paper.

2 Preliminaries and Related Work

2.1 Preliminaries

Let D be a database of objects that are located in a traffic network, e.g. cars or pedestri-
ans in a network of streets. The traffic network is represented by an undirected weighted
graph G = (N, E, W ) called network graph, where N denotes the set of nodes, E ⊆
N × N denotes the set of edges and the function W : E → �

+ associates a weight
w(ni, nj) to each edge (ni, nj) ∈ E. The network distance between two nodes ni, nj ∈
N , denoted by dnet(ni, nj), equals w(ni, nj) if ni, nj are adjacent, i.e. (ni, nj) ∈ E,
else it equals the length of the shortest path from ni to nj . The length of a path is defined
as the sum of the weights of all participating edges.

If an object o is located on an edge (ni, nj) ∈ E, di(o) and dj(o) denote the distance
of o to the adjacent nodes ni and nj , respectively. The network distance between two
objects oi, oj ∈ D, dnet(oi, oj), is the length of the shortest path between oi and oj .
Thereby, we assume that oi and oj are additional “virtual” nodes of the graph. Thus,
if oi is located on edge (ni1 , ni2) we introduce additional “virtual” edges (oi, ni1) and
(oi, ni2) with weights w(oi, ni1) = di1(oi) and w(oi, ni2) = di2(oi), respectively. If
oi is located on a node n, we do not need to introduce additional edges or nodes but can
work with n instead of oi. Note, that by introducing the additional “virtual” nodes for
objects, the network distance is still a function N ×N → �. Whenever we use dnet as
a function on D × D in the following, we assume the introduction of virtual nodes for
the according objects if necessary.

Based on the network distance, proximity queries are given as follows. Given a
query object q located on G and a distance threshold ε ∈ �+, a distance range query
(DRQ) returns the set DRQ(q, ε) = {o ∈ D | dnet(q, o) ≤ ε}. Given a query object q
located on G and a number k ∈ �+, a k-nearest neighbor query (kNNQ) returns the
set NNQ(q, k) containing k objects such that ∀o ∈ NNQ(q, k), ô ∈ D\NNQ(q, k) :
dnet(q, o) ≤ dnet(q, ô).

2.2 Related Work

Proximity queries in traffic networks are based on network distances defined by the
shortest path between two objects, e.g. computed by the Dijkstra algorithm [1] and
its variants [2]. These algorithms expand the path from the starting node towards the
target node using a priority queue of visited nodes sorted by ascending distance from
the starting node. The A* algorithm [3] applies heuristics to prune the search space
and direct the graph expansion. Materialization techniques [4–6] suffer from increasing



storage cost. In [7] the authors divide the graph into regions and gather information
whether an edge is on a shortest path leading to a specific region. All these approaches
provide only a speed-up for the exact distance computation but cannot be used as a filter
step.

In [8] the Euclidean distance between graph nodes/objects is used as a lower bound-
ing filter in order to guide an incremental network expansion for refinement. This ap-
proach works well only for high-proximity queries (i.e. small query range ε or small
nearest-neighbor coefficient k) and dense object distributions, otherwise a large por-
tion of the network for distance computation need to be retrieved. Furthermore, this
approach does not provide an upper bounding distance function to filter out true hits,
resulting in a larger amount of refinements.

In [9] one of the graph embedding technique from [10] is applied in order to estimate
the network distance between two nodes. An extended dynamic embedding for moving
objects is presented. In addition, it is shown how the graph embedding can be used
to compute an approximate shortest path between two objects. The accuracy of the
approximation depends on the density and distribution of the objects in space. A severe
drawback of the approach is that the embedded space involves 40 to 256 dimensions. In
addition, it does not offer any solution for the computation of the exact distances of the
candidates in the refinement step.

In [11] distance signatures are computed and managed for each data object o in
the network graph containing a vector of distance approximations between o and all
other data objects in the network graph. These distance approximations are then used to
efficiently determine the candidates of a proximity query in a filter step. Subsequently,
the exact distances of the candidates are computed online in the refinement step. The
obvious drawback of this proposal is that the storage and query cost directly depend
on the number of objects. Furthermore, this approach does not support an efficient re-
embedding necessary to answer proximity queries on moving objects that frequently
change their positions.

The work of this paper is based on the network graph embedding originally pro-
posed independently by two research groups [12, 13] and [14]. While the work in [12,
13] only explores a lower bound, the authors in [14] also derive an upper bound for
the network distance. In addition, the authors in [12, 13] focus only on speeding up the
shortest path computations whereas in [14], the authors propose a multi-step query pro-
cessing framework for supporting proximity queries in traffic networks. The details of
the embedding is reviewed in Section 3.1.

In [15] a Voronoi diagram on the network space is computed and each Voronoi cell
that represents the region of the nearest neighbor in the network is represented by a
2D polygon. These Voronoi-cell polygons are indexed to support kNN queries. The
performance of this approach mainly depends on the density and distribution of the
objects in the network. Dense network graphs on which the data objects are sparsely
distributed lead to large Voronoi cells with a lot of adjacent neighbor cells. In this case,
the computation of the kNN would have a poor performance.

In this paper, we do not focus on another class of proximity queries in road networks
called continuous proximity queries (as studied e.g. in [16, 17]).
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Fig. 1. Network graph embedding.

3 Network Graph Embedding

3.1 Basics

Our approach is based on a special form of a Lipschitz embedding of the traffic network
using singleton reference sets which we call reference nodes according to [14] (in [12,
13], these reference nodes are called landmarks). The embedding transforms the nodes
of a given network graph and the objects located on that graph into a k-dimensional
vector space. Let G = (N, E, W ) be a network graph and N ′ = 〈nr1 , . . . , nrk

〉 ⊆ N
be a subsequence of k ≥ 1 reference nodes. The embedding, or transformation, of the
native space N into a k-dimensional vector space�k is a mapping FN ′

: N∪D → �
k,

where |N ′| = k is the dimensionality of the vector space. A reference node embedding
of G based on N ′ ⊂ N defines the function FN ′

as follows. For each n ∈ N , FN ′
(n) =

(FN ′
1 (n), . . . , FN ′

k (n))T, where FN ′
i (n) = dnet(n, nri

) for 1 ≤ i ≤ k. Objects can
be embedded analogously. For each o ∈ D located on a node n, FN ′

(o) = FN ′
(n).

For each o ∈ D located on an edge (n1, n2) ∈ E, FN ′
(o) = (F̂N ′

1 (o), . . . , F̂N ′
k (o))T,

where F̂N ′
i (o) = min{d1(o) + FN ′

i (n1), d2(o) + FN ′
i (n2)}.

In Figure 1 a reference node embedding of some objects located on a sample net-
work graph using reference nodes N ′ = 〈n8, n7〉 is illustrated.

The reference node embedding has two major advantages. First, if the graph struc-
ture remains fixed (which is obviously a realistic assumption) and the embedding of
the graph nodes (that do not change) is performed offline in a preprocesing step and
is then stored, a re-embedding of moving objects can be done very efficiently. Second,
the reference node embedding can be used to compute upper and lower bounds for the
network distance. In [14] it is shown that the distance D(x, y) = maxi=1..k |xi − yi| in
the embedded space lower bounds the distance dnet in the native space. In addition, it is
shown that the distance function D∗(x, y) = mini=1...k(xi + yi) is an upper bound of
dnet. In summary, the reference node embedding approach is very suitable to efficiently
support similarity queries over both static and dynamic objects in traffic networks.



3.2 The Idea of Hierarchical Network Embedding

Beside these two significant advantages, the reference node embedding proposed in
[12, 13] and [14] — in the following called flat embedding — has one major short-
coming. The performance gain of the embedding heavily depends on the number of
reference nodes used. Though it is shown in [14] that even a low number of refer-
ence nodes is sufficient in order to achieve significant performance boosts on small and
medium-sized networks, it is also indicated that on large-scale networks, the number
of reference nodes necessary to approximate the network distance sufficiently well and
to speed-up similarity query processing is considerably large. However, a large set of
reference nodes leads to high storage cost because we have to store O(|N | · |N ′|) dis-
tances for the embedding. In addition, also the computational cost of the embedding
and re-embedding process and of the query processor increases with increasing |N ′|.
Especially the increase of query processing cost (due to higher CPU cost to determine
the distance between |N ′|-dimensional points and due to higher I/O cost caused by the
fact that higher dimensional points can be indexed less efficiently) is a severe handicap
of the flat embedding approach.

Obviously, the reason for this bad scalability of the flat reference node embedding
on large networks is the increasing dimensionality of the resulting embedding vectors in
the vector space �|N ′|. This is somewhat arbitrary because finally only one reference
node is taken into account for a distance estimation as D and D∗ aggregate over the
distances to all reference nodes such that only the “best” reference node is taken. Usu-
ally a small subset of the reference nodes suffices for the distance estimation between
an object o and any other object in the graph. It is easy to see that the smaller is the
distance of a reference node to a particular object o, the better is this reference node for
all distance approximations w.r.t. o.

In this paper, we propose a solution to the limited scalability of the flat reference
node embedding that is inspired by these considerations. Given an object o there are
reference nodes that are more relevant and less relevant for o in N ′. So why not use
only the relevant reference nodes in N ′ for the embedding of o? This should decrease
the dimensionality of the resulting embedded vectors without downgrading the distance
approximations considerably.

3.3 Two-level Network Embedding

A first approach is to use for each object o only the K nearest reference nodes N ′
o ⊆ N ′,

where K << N ′. Obviously, the lower and upper bounding distance approximations
D and D∗ can still be used to approximate the network distance dnet(x, y) between two
objects x and y as far as the intersection of the corresponding reference node sets N ′

x

and N ′
y is not empty, i.e. N ′

x ∩ N ′
y �= ∅.

However, in large traffic networks with a large reference node set N ′, it is more
likely that this property does not hold for most of the pairs of objects, in particular for
those which are not very close to each other. To overcome this problem, we introduce
a further embedding level on top of the current embedding. A comprehensive graph
G′ = (N ′, E′, W ′) is built using all reference nodes N ′ as nodes and all shortest paths
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Fig. 2. Schema of a 2-level reference node embedding.

between these nodes in the original graph G as edges E′. The weights W ′ are deter-
mined analogously. The idea is illustrated in Figure 2.

Formally, let G = (N, E, W ) be the network graph and N ′ ⊆ N a set of reference
nodes (landmarks) with |N ′| ≥ K. For each node or object o ∈ N ∪ D let N ′

o =
〈ro

1, . . . , r
o
K〉, ro

j ∈ N ′ be the set of K local reference nodes relevant for o. The 2-level
embedding, or transformation, of the native space N ∪ D into a K-dimensional vector
space �k is a mapping F̃N ′

: N ∪ D → �
K together with a reference node graph

G′ = (N ′, E′, W ′). A 2-level reference node embedding of G and D based on N ′ ⊂ N
is a pair (F̃N ′

,M′) consisting of the mapping function F̃N ′
and the reference node

matrix M′ that is the weighted adjacent matrix of G′.
The function F̃N ′

is defined as follows.

F̃N ′
o(o) =




(dnet(ro
1, o), . . . , dnet(ro

K , o))T if o ∈ N is a node

F̃Nn(n) if object o ∈ D is located on n ∈ N

(SN ′
o

1 (o), . . . , SN ′
o

k (o))T if o ∈ D is located on (ni, nj) ∈ E

where S
N ′

o
i (o) = min{d1(o) + F̃

N ′
o

i (n1), d2(o) + F̃
N ′

o
i (n2)}.

Let us note that a re-embedding of moving objects using F̃ is still very efficient as
long as we assume that the graph structure remains fixed because then the embedding
of the graph nodes performed in a preprocessing step can be stored.

The reference node graph G′ = (N ′, E′, W ′) is a graph over all reference nodes
N ′, where E′ = {(ni, nj)|ni, nj ∈ N ′} is the set of all pairwise connections between
the reference nodes in N ′ and W ′(ni, nj) = dnet(ni, nj) is the shortest path between
the corresponding reference nodes ni, nj ∈ N ′ in the original graph G.

Because the set of edges is implicitly defined, we can store and represent this ref-
erence node graph by its weighted adjacency matrix which we call the reference node
matrix. This matrix has the following general form.
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Fig. 3. Illustration of the distance approximation derived from a reference node embedding.

M′ =




0 dnet(r1, r2) . . . dnet(r1, rk)
dnet(r2, r1) 0 . . . dnet(r2, rk)

...
...

. . .
...

dnet(rk, r1) dnet(rk, r2) . . . 0




In summary, the pair (F̃N ′
,M′) defines a 2-level reference node embedding of a

graph G.

3.4 Distance Approximations

Based on F̃N ′
and M′, we can now define a distance function D̃ for objects in x, y ∈ D

in the embedded space that lower bounds dnet as follows.

D̃(F̃Nx(x), F̃Ny (y)) = max
k∈Nx,l∈Ny




Mik,il
− F̃Nx

k (x) − F̃
Ny

l (y) (case A)
F̃Nx

k (x) − Mik,il
− F̃

Ny

l (y) (case B)
F̃

Ny

l (y) − Mik,il
− F̃Nx

k (x) (case C)
0 (case D)




where ip represents the index of the rn
p ∈ Nn in M′ and where the following cases

appear: case A: dnet(ri, rj) > dnet(na, ri) + dnet(nb, rj), case B: dnet(na, ri) >
dnet(ri, rj) + dnet(nb, rj), case C: dnet(nb, rj) > dnet(na, ri) + dnet(ri, rj) and case
D otherwise.

Figure 3 illustrates the definition of D̃. On the left hand side, case A (k = 1 and
l = 4, i.e. r1 and r4 determine the distance approximation) is visualized. On the right
hand side, case B and case C (symmetric) are depicted.

Lemma 1 (Lower bounding property). Let (F̃ ,M′) be a 2-level reference node em-
bedding of nodes and objects of a network G = (N, E, W ) w.r.t. a set of reference
nodes N ′ and local reference node sets No for all nodes or objects o ∈ N ∪ D. For
each x, y ∈ N ∪ D the following property holds.

D̃(F̃Nx(x), F̃Ny (y)) ≤ dnet(x, y).



Proof. Without loss of generality, let ri ∈ Nx und rj ∈ Ny be the reference nodes that
determine D̃. Since dnet is a metric, the following considerations hold.

Case A occurs if dnet(ri, rj) > dnet(na, ri) + dnet(nb, rj). Then,

D̃(F̃Nx(x), F̃Ny (y)) = Mii,ij − F̃Nx
i (x) − F̃

Ny

j (y)
= dnet(ri, rj) − dnet(x, ri) − dnet(y, rj)
≤ dnet(ri, na) − dnet(nb, rj)
= dnet(x, rj) − dnet(y, rj)
≤ dnet(x, y)

Case B occurs if dnet(na, ri) > dnet(ri, rj) + dnet(nb, rj). Then,

D̃(F̃Nx(x), F̃Ny (y)) = F̃Nx
i (x) − Mii,ij

− F̃
Ny

j (y)
= dnet(x, ri) − dnet(ri, rj) − dnet(y, rj)
= dnet(x, ri) − dnet(rj , ri) − dnet(y, rj)
≤ dnet(x, rj) − dnet(y, rj)
≤ dnet(x, y)

Case C occurs if dnet(nb, rj) > dnet(na, ri) + dnet(ri, rj). Then,

D̃(F̃Nx(x), F̃Ny (y)) = F̃
Ny

j (y) − Mii,ij − F̃
Ny

j (y)
= dnet(y, rj) − dnet(ri, rj) − dnet(x, ri)
≤ dnet(y, ri) − dnet(x, ri)
≤ dnet(x, y)

Otherwise, in case D, we have

D̃(F̃Nx(x), F̃Ny (y)) = 0 ≤ dnet(x, y)

Analogously, we can define a distance function D̃∗ for objects in x, y ∈ D in the
embedded space that upper bounds dnet as follwos.

D̃∗(F̃Nx(x), F̃Ny (y)) = min
k∈Nx,l∈Ny

{Mik,il
+ F̃Nx

k (x) + F̃
Ny

l (y)}

where ip is defined as above. Figure 3 illustrates the definition of D̃∗.

Lemma 2 (Upper bounding property). Let (F̃ ,M′) be a 2-level reference node em-
bedding of nodes and objects of a network G = (N, E, W ) w.r.t. a set of reference
nodes N ′ and local reference node sets No for all nodes or objects o ∈ N ∪ D. For
each x, y ∈ N ∪ D the following property holds.

D̃∗(F̃Nx(x), F̃Ny (y)) ≥ dnet(x, y).



Proof. Let x, y ∈ N ∪ D. Since dnet is a metric, for each pair of reference nodes
ri ∈ Nx und rj ∈ Ny the following holds:

D̃∗(F̃Nx(x), F̃Ny (y)) = Mii,ij
+ F̃Nx

i (x) + F̃
Ny

j (y)
= dnet(ri, rj) + dnet(x, ri) + dnet(y, rj)
= dnet(x, ri) + dnet(ri, rj) + dnet(rj , y)
≥ dnet(x, rj) + dnet(rj , y)
≥ dnet(x, y)

Let us note that for directed graphs, dnet is no metric distance function (it is not
symmetric). However, lower and upper bounds for the network distance on the 2-level
embedding can be defined analogously also for directed graphs. Since in this case
dnet(x, y) is not symmetric we have to distinguish between the two traversal direc-
tions (x → y and y → x) for which we have to take the corresponding directed edge
weights into account.

3.5 From Two-level to Multi-level Network Embeddings

The proposed 2-level reference node embedding scales very well even for very large
graphs as far as the number K of relevant reference nodes for each object is consider-
ably small. We will see this in our experiments (cf. Section 5). However, for very large
graph networks that require a high reference node density, K can again be large. In
addition, the storage cost for the reference node matrix M′ obviously scale quadratic
with the number of global reference nodes N ′. In such scenarios, M′ will no longer
fit into main memory. This will increase the query processing time dramatically since
for determining the distance approximations, we steadily need random access to the
elements in M′.

To solve this problem, we propose to introduce further embedding levels, i.e. to
generalize the 2-level reference node embedding to a multi-level reference node em-
bedding. Such a multi-level embedding can be constructed bottom-up starting with a
2-level embedding. The reference node set is partitioned at each level. Each of these
partitions is assigned to one of the objects/nodes in the network as the corresponding
relevant reference node set. The reference node partitions may overlap and neighbor-
ing nodes/objects should get nearly the same reference node partition assigned. For
each partition, a complete reference node graph is constructed on the second embed-
ding level. Thereby, the size of each partition should be chosen such that the reference
nodes on each level are completely connected (i.e. each reference node is reachable
from each other) when combining all reference node graphs on a level. Furthermore,
the reference node matrices of the corresponding reference node graphs should fit into
a memory page. From the resulting reference node graph on embedding level i a prede-
fined number of nodes is selected to form an embedding level i + 1 analogously. This
procedure is iterated until only one “graph” remains that is complete and fits into main
memory. The idea is illustrated in Figure 4.
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3.6 Choosing the Reference Node Set

It is easy to see that the choice of the reference node set affects the quality of the
distance approximations. The problem of how to choose the reference nodes is two-
fold. First, the global set N ′ has to be chosen adequately, and second, for each node or
object o ∈ N ∪ D, the local set of relevant reference nodes N ′

o needs to be selected,
too. Obviously, the choice of the global set N ′ affects the possibilities for the selection
of the local sets N ′

o.
For a flat embedding, D(x, y) = dnet(x, y) for two objects x, y ∈ D, i.e. the ap-

proximation error is zero, if there is at least one ri ∈ N ′ such that either x ∈ Pbest(ri, y)
or y ∈ Pbest(ri, x), where Pbest(a, b) denotes the shortest path between nodes/objects
a and b. On the other hand, the approximation obtained from reference node ri is very
coarse if ri is located such that dnet(x, ri) ≈ dnet(y, ri) and ri ∈ Pbest(x, y). On the
other hand, D∗(x, y) = dnet(x, y) for two objects x, y ∈ D, i.e. the approximation
error is zero, if there is at least one ri ∈ N ′ such that ri ∈ Pbest(x, y). The more
disconnected a reference node ri is from Pbest(x, y), the coarser is the approximation
obtained from this reference node. The same considerations hold true for a 2-level or
even for a multi-level reference node embedding.

Intuitively, the probability that these conditions for accurate distance approxima-
tions are fullfilled is higher if the reference nodes are close to the objects. Thus, if the
distribution of the objects in the network is unknown, the set of global reference nodes
N ′ should be evenly distributed over the network because then, the probability that all
objects have at least one reference node in their local vincinity is maximized. In addi-
tion, for each node or object o ∈ N ∪ D, the set of relevant reference nodes N ′

o should
be selected as the K-nearest reference nodes of o from N ′. This further ensures that the
reference nodes N ′

o are in proximity of o.



On the other hand, if information about the object distribution, the characteristics of
object movement, and/or the distribution of query locations is known, the set of local
relevant reference nodes N ′

o for all nodes or objects o ∈ N ∪ D could be selected
individually. Ideally, hot spots, i.e. nodes that are often part of shortest paths during
query execution, should be chosen as reference nodes. Since the set N ′

o of reference
nodes relevant for node/object o can be dynamically adjusted rather easily, we can even
learn the location of hot spots by monitoring for each node how often it is visited during
a shortest path computation.

3.7 Efficient Shortest-path Computation

Analogously to the flat embedding, our hierarchical reference node embedding can be
successfully applied as heuristics for the A*-search algorithm to compute the true net-
work distance. The A*-search method is a special case of a best-first search algorithm
using heuristics. In contrast to the Dijkstra algorithm whose search is only backward-
oriented (blind search), the A*-search method is an informed search method, i.e. it also
looks in the forward direction using a lower bounding network distance approximation,
e.g. the Euclidean distance. Here, we propose to use the distance function D̃ of the
vector space resulting from our multi-level K-closest reference node embedding as es-
timator function. In addition, we can use the upper bounding distance estimation D̃∗ in
order to identify the branches of the search tree that do not need to be expanded. Since
these branches do not need to be considered throughout the remaining search steps, we
do not need to maintain them which reduces the memory cost.

4 Multi-step Query Processing

The upper and lower bounding distance estimations introduced above can be used in a
filter step as well as for speeding-up the refinement step using the modified A* algo-
rithm. In the following, we present the multi-step DRQ and kNNQ using our embed-
ding function FN ′

implementing a multi-level K-closest reference node embedding. As
mentioned above, for static objects, the graph embedding has to be performed only once
in a preprocessing step before any query is launched. The re-embedding for dynamic
objects can be computed rather efficiently on the fly (cf. Section 3).

The DRQ over the embedded objects and nodes can directly prune all objects for
which the distance approximation D̃ is greater than ε as true drops without refining
them. All objects are added to the result list if the distance estimation D̃∗ is lower or
equal to ε. Only the remaining candidates need to be refined.

For the kNNQ we use the algorithm proposed in [18] which is shown to be optimal
w.r.t. the number of candidates that are refined. The algorithm is illustrated in Figure 5.
It uses a ranking of the objects in ascending order of their lower bounding filter distance
D̃ and performs an iterative refinement as long as the lower bound of the next object in
the ranking is smaller or equal to the current K-th nearest neighbor distance.



kNNQ(q,k,G)

SortedList results,candidates;
initialize ranking := RQ(q,D);
candidates←first k objects from ranking;
dmin = kth smallest D(F N′

(q), F N′
(o)) of o ∈candidates;

dmax = kth smallest D∗(F N′
(q), F N′

(o)) of o ∈candidates;
df next = D(F N′

(q), F N′
(o)) of o=ranking.top element;

do {
update dmin, dmax, and df next;

if dmin ≥ df next then
candidates.add(ranking.top element);
update dmin, dmax, and df next;

for all c ∈ candidates do
if D∗(F N′

(q), F N′
(c)) < dmin then add c to result ;

if D(F N′
(q), F N′

(c)) > dmax then prune c;

if |results|+|candidates| > k ∨ df next ≤ dmax then
for all c ∈ candidates with D(F N′

(q), F N′
(c)) ≤ dmin

∧ dmax ≤ D∗(F N′
(q), F N′

(c)) do
if dnet(q, c) ≤ dk−nn(q, result) then add c to result ;

else add all remaining c ∈ candidates to result ;

} while (df next ≤ dmax ∨ |candidates| > 0)

return result ;

Fig. 5. The kNNQ algorithm.

5 Experimental Evaluation

Due to space limitations, we focus on a two-level embedding in our experiments. We
used real road networks of San Joaquin County (“TG”, 18,300 nodes) and San Fran-
cisco (“SA”, 175,000 nodes). The network objects were simulated through randomized
samples of the graph nodes. The graph was stored on disk implementing the approach
proposed in [8] using R∗-trees with a block size of 8 KB and an average storage load of
70% each. The R∗-trees are used to manage the nodes, the edges and the street segments
in form of polylines. An embedding vector is a further attribute of a node. The refer-
ence nodes were chosen by spatially ordering all graph nodes along a Hilbert curve.
We then uniformly distributed the reference nodes along this curve. Datasets without an
embedding are denoted by REF, flat embeddings by 1RNE and two-level embeddings
by 2RNE. All experiments were performed on a workstation featuring a 1.8 GHz CPU,
2GB RAM, a random disk with page access time of 6 ms, and a transfer rate of 86MB/s.
The cache size was set to 5% of the dataset size. In all experiments, we performed 1,000
random queries and averaged the results.
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Fig. 6. Size of the embedding, w.r.t. size of the network graph.

5.1 Storage Requirements

Figure 6 shows the storage requirements of different embeddings. We compared a flat
embedding (1RNE) with an object density of rho = 0, 0001 (rho = # objects / # graph
nodes) with several two-level embeddings (2RNE) using different numbers K of rele-
vant reference nodes1 per node and object. For each 2RNE we assumed a considerably
higher object density of rho = 0, 01. In addition, the size of the reference node matrix
M′ is depicted. In the following, M denotes the size of the reference node matrix M′,
i.e. about

√
M (1st-level) reference nodes are used for M′. It can be observed, that us-

ing a 2RNE we can use approximately two orders of magnitude more reference nodes
compared to a 1RNE with quite similar storage cost. Obviously, using more global ref-
erence nodes increases the quality of the distance approximations, and, thus boosts the
overall performance.

5.2 Multi-Step Query Processing

In this experiment, we assumed a capacity of 80 byte per embedded node and object of
the network graph. We used K = 3 relevant reference nodes per node and object result-
ing in an overall number of 400 and 700 reference nodes for TG and SF, respectively.
The reference node distance matrix M′ thus required 0.61 MB (TG) and 1,88 MB (SF)
RAM, respectively. Because of its small size, the distance matrix M′ was kept in main
memory in all experiments. The results of distance range query processing on the SF
dataset are depicted in Figure 7. The most important advantage of the 2RNE over the
1RNE approach is that it can use significantly more reference nodes which increases the
quality of the filter distances. Especially for less selective queries, the filter selectivity
is significantly better than using a 1RNE with comparable storage requirements. The
scalability of the 2RNE approach w.r.t. the object density is linear similar to the 1RNE
approach. The results on the TG dataset are similar (not shown due to space limitations).
In summary, the results show that the 2RNE approach is superior to 1RNE especially

1 The number K of relevant reference nodes corresponds to the number of reference nodes
assigned to each graph node on each embedding level.
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Fig. 7. Performance of DRQ w.r.t. the object density rho on SF dataset.

on large graphs with comparable storage requirements. The results of kNNQ processing
on the TG dataset are depicted in Figure 8. On the SF dataset we made similar observa-
tions (not shown due to space limitations). Here, especially for high object densities, the
2RNE approach outperforms the 1RNE approach on large datasets. Again, the higher
number of reference nodes that can be used in the 2RNE approach yields a significantly
better distance approximation.

5.3 Shortest Path Algorithm

In this experiment, we concentrate on the cost required for the refinement step, i.e. the
cost of the exact distance computation. The benefits of our novel distance approxima-
tions for computing the shortest path can be observed in Figure 9. A sample shortest
path (marked in blue) is computed by four different methods. For each method, the
corresponding search space containing all visited edges is marked in orange. While the
Dijkstra algorithm (cf. Figure 9(a)) needs to access nearly the complete displayed part
of the graph, the A* algorithm using the Euclidean distance as lower bounding distance
estimation (cf. Figure 9(b)) requires a considerably reduced search space. The novel
A* algorithm with upper and lower bounding distance estimations derived from a flat
reference node embedding with |N ′| = 50 reference nodes (cf. Figure 9(c)) further re-
duces the search space. Finally, our 2-level reference node embedding with |N ′| = 100
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Fig. 8. Performance of kNNQ w.r.t. the object density rho on TG dataset.

global reference nodes and K = 5 relevant reference nodes per object (cf. Figure 9(d))
requires the smallest search space of all competitors.

Figures 10(a) and 10(b) show the average number of disk page accesses required
for one distance computation between two objects (nodes) w.r.t. the size of the ref-
erence node matrix M′ and the number K of reference nodes used for the two-level
embedding. As can be observed, our novel shortest path algorithm again significantly
outperforms the A* search using the Euclidean distance and Dijkstra (not shown for
clarity reasons). We also observed, that increasing the number K of relevant reference
nodes per object does not significantly increase the quality of the distance approxima-
tion (not shown due to space limitations). Our experiments suggest that K = 5 is a
reasonable choice despite it is a rather small value. As a consequence, the storage re-
quirements for each object are rather low. In turn, this allows us to use a higher number
of global reference nodes.

5.4 Comparison with other Approaches

Finally, we compare the performance of our approach to that of state-of-the art ap-
proaches. We chose the distance signature (DS) approach [11] as comparison part-
ner because it outperforms other methods such as the network voronoi diagram [15].
The DS method was parameterized as described in [11]. For the comparison, we com-
puted a two-level (2RNE) embedding for M = 256 and K = 5. For an object density
rho = 0.01, the 2RNE embedding occupies half of the space required by DS. Please
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Fig. 9. Search space (orange) for computing a sample shortest path (blue).

note that the object density linearly influences the memory footprint of our technique, in
contrast to the DS approach where the relationship between object density and memory
consumption is quadratic. The DRQ experiments in Figure 11 show that the signature
approach is significantly outperformed by our approach. The two-level embedding is
able to outmatch DS although it occupies significant less memory, i.e. needs far less
precomputed distance information.

In summary, our experimental evaluation empirically showed the following facts:
First, the integration of our novel upper and lower bounding distance approximations
into the A* algorithm is superior to state-of-the-art methods for shortest path computa-
tion. Second, our novel two-level (or even multi-level) embedding outperforms the flat
embedding on large graphs because it allows an even more accurate lower and upper
bounding distance approximation.
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6 Conclusions

We proposed a hierarchical graph embedding of very large networks that is suitable for
static and dynamic objects. From the embedding, we derived accurate upper and lower
bounds for the network distance that can be used to implement a filter/refinement archi-
tecture for similarity search in large traffic networks. In addition, our embedding allows
an acceleration of the refinement step by applying an informed A*-search using our
novel distance approximations. Our experiments show that our novel approach outper-
forms a simple flat embedding and other existing competitors in terms of pruning power
in the filter step and overall performance. Furthermore, it turned out that our informed
search in the refinement step is much more efficient than comparable approaches due to
a dramatically reduced search space.
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