Proc. 20th Int. Conf. on Scientific and Statistical Database Management (SSDBM'08), Hong Kong, China, 2008.

ProUD: Probabilistic Ranking in Uncertain Databases

Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz
{bernecker, kriegel, renz}@dbs.ifi.lmu.de

Institute for Informatics, Ludwig-Maximilians-Universitdt Miinchen, Germany

Abstract. There are a lot of application domains, e.g. sensor databases, traffic
management or recognition systems, where objects have to be compared based
on vague and uncertain data. Feature databases with uncertain data require spe-
cial methods for effective similarity search. In this paper, we propose an effective
and efficient probabilistic similarity ranking algorithm that exploits the full in-
formation given by inexact object representations. Thereby, we assume that the
objects are given in form of discrete probabilistic object locations in particular
several object snapshots with confidence values. Based on the given object rep-
resentations, we suggest diverse variants of probabilistic ranking schemes. In a
detailed experimental evaluation, we demonstrate the benefits of our probabilis-
tic ranking approaches. The experiments show that we can achieve high quality
query results while keeping the computational cost quite small.

1 Introduction

Similarity ranking is one of the most important query types in feature databases. A sim-
ilarity ranking query iteratively reports objects in descending order of their similarity
to a given query object. The iterative computation of the answers is very suitable for
retrieving the results the user could have in mind. This is a big advantage of ranking
queries against the most prominent similarity queries, the distance-range (e-range) and
the k-nearest neighbor query, in particular if the user does not know how to specify the
query parameters € and k.

Many modern applications have to cope with uncertain or imprecise data. Exam-
ple applications are location determination and proximity detection of moving objects,
similarity search and pattern matching in sensor databases or personal identification and
recognition systems based on video images or scanned image data. The importance of
this topic in the context of database systems is demonstrated by the increasing inter-
est of the database research community in this topic. Several approaches coping with
uncertain objects have been proposed [2, 3, 8, 1]. All these approaches use continuous
probability density functions (pdfs) for the description of the spatial uncertainty while
the approaches proposed in [5, 6] use discrete representations of uncertain objects. The
approach proposed in [5] supports probabilistic distance range queries on uncertain ob-
jects. In [6] efficient methods for probabilistic nearest-neighbor queries are proposed.
However, in fact only one-nearest neighbor queries are supported.

Similarity search in conjunction with multimedia data like images, music, or data
from personal identification systems like face snapshots or fingerprints commonly in-
volves distance computations within the feature space. If exact features cannot be gen-
erated from uncertain objects, we have to cope with positionally uncertain vectors in

the feature space (i.e. objects are represented by ambiguous feature vectors). Basically,
there exist two forms of representations of positionally uncertain data: Uncertain posi-
tions represented by a probability density function (pdf) or uncertain positions drawn by
samples. In this paper we concentrate on uncertain objects represented by a set of sam-
ple positions, each associated with a confidence value. The confidence values indicate
how well the corresponding sample matches the exact object. This form of represen-
tation is motivated by the fact that we often have only discrete but ambiguous object
information as usually returned by common sensor devices, e.g. discrete snapshots of
continuously moving objects.

A probabilistic ranking on uncertain objects computes for each object o € D the
probability that o is the K-th nearest neighbor (1 < K < |D|) of a given query object
g. In the context of probabilistic ranking queries we propose diverse forms of ranking
outputs which differ in the order the objects are reported to the user. Furthermore, we
suggest diverse forms in which the results are reported (i.e. which kind of information
is assigned to each result).

2 Problem Definition

In this section, we formally introduce the problem of probabilistic ranking queries on
uncertain objects. We first start with the definition of (positionally) uncertain objects.

2.1 Positionally Uncertain Objects

Objects of a d-dimensional vector space R are called positionally uncertain, if they
do not have a unique position in R, but have multiple positions associated with a
probability value. Thereby, the probability value assigned to a position p € R? of an
object o indicates the likelihood that p is the best of all representations for o. A formal
definition is given in the following:

Definition 1 (positionally uncertain object). Let D be a database of objects located
in a d-dimensional feature space R%. An object o; € D is called positionally uncertain,
iff the object cannot be assigned to a unique position in R%. A positionally uncertain
object o; is represented by a set of M sample points S(0;) = {01, ..,0i M}, where
0;; €RY(1 << M)

Let us note that in many applications the positionally uncertain objects are already
given in the discrete representation, i.e. by a set of sample points, in particular if the
objects are derived from a sequence of sensor signals, e.g. in object tracking systems.
Otherwise, we use the generally applicable concept of Monte-Carlo sampling to gener-
ate the set of samples according to a given continuous probability density function.

In the remainder, we call positionally uncertain objects simply uncertain objects
and use both notions alternately.

2.2 Distance Computation for Uncertain Objects

Positionally uncertain objects involve uncertain distances between them. Like the un-
certain position, the distance between two uncertain objects (or between two objects

where at least one of them is an uncertain object) can be described by a probability den-
sity function (pdf) that reflects the probability for each possible distance value. However
for uncertain objects with discrete uncertainty representations we need another form of
distance.

Definition 2 (uncertain distance).

Let o; = {0i1,...,0i,m} € D and oj = {0j1,...,0;,m} € D be two uncertain
objects, each represented by M sample points and let dist : R? x R¢ — Rg be a
distance function. Then an uncertain distance d,certain between two uncertain objects
o; and oj is a collection of M? distance samples as defined below

duncertain(oi7 Oj) = {diSt(Oi,ma 0j,n)|1 <m<IM,1<n< M},

where dist() is a Ly-norm based similarity distance.
The probability that the distance dyncertain (0i,05) between two uncertain objects
0; and o; is smaller than a given range € € Rf{ can be estimated by:

d duncer ain\Y, V3 dgdt
Pltesanlon) < i) = 11 mnanton0,0 < i)
uncertain Ozaoj)|

Since distance computations between uncertain objects are very expensive, we need
computationally inexpensive distance approximations to reduce the candidate set in a
filter step. For this reason, we introduce distance approximations that lower and upper
bound the uncertain distance between two uncertain objects.

Definition 3 (minimal object distance).

Let 0; = {0;1,0i2,..,0i m} and 0j = {0j1,0} 2, ..,0; m7} be two uncertain objects.
Then the distance dp,in(0;,0;) = Ming—1_nr,s=1.. M/ {dist(0; s, 05 5)} is called mini-
mal distance between the objects o; and o;.

Likewise, we can define an upper distance bound for uncertain objects.

Definition 4 (maximal object distance).

Let 0; = {0;1,0i2,..,0i m} and 0j = {0j1,0} 2, ..,0; m'} be two uncertain objects.
Then the distance dynqz(0;,05) = MaxXs=1. m,s'=1..m'{dist(0; 5, 05,5) } is called max-
imal distance between the objects o; and o;.

2.3 Probabilistic Ranking on Uncertain Objects

The output of probabilistic queries is usually in form of a set of result objects, each asso-
ciated with a probability value indicating the likelihood that the object fulfills the query
predicate. However, in contrast to e-range queries and k-nn queries, ranking queries do
not have such an unique query predicate, since the query predicate changes with each
ranking position. In case of a ranking queries, to each result object a set of probability
values is assigned, one for each ranking position. We call this form of ranking output
probabilistic ranking.

Definition 5 (probabilistic ranking). Ler g be an uncertain query object and D be a
database containing N = |D| uncertain objects. An uncertain ranking is a function
probrankedy : (D x{L,..,N}) — [0..1] that reports for a database object o € D and
a ranking position k € {1, .., N} the probability which reflects the likelihood that o is at
the kth ranking position according to the uncertain distance dyncertain(0,q) between
o and the query object q in ascending order.

If the result of the probabilistic ranking is reported to the user in its raw form, the
user could be overstrained with ambiguous ranking results. For this reason, we suggest
an unambiguous ranking based on the information given by the probabilistic ranking.
The following proposed unambiguous ranking can be built in a post processing step.
Our unambiguous ranking PRQ_MAC assigns each object o a unique ranking position
k by aggregating over the confidences of all prior ranking positions ¢ < k according to
o.

Definition 6. A probabilistic ranking query based on maximal aggregated confidence
(PRQ_MAC) incrementally retrieves for the next ranking position v € Iy a result tuple
of the form (0, _;_, ;prob-rankedy(o,j)), where o € D has not been reported at
previous ranking iterations (i.e. at ranking positions j < i) and ¥'p € D which have not
been reported at previous ranking iterations, the following statement holds:

Z prob_rankedg (o, j) > Z prob_rankedqy(p, 7).

j=1..i j=1..

3 Probabilistic Ranking Algorithm

The computation of the probabilistic ranking is very expensive and is the main bottle-
neck of the probabilistic ranking queries proposed in the previous section. In the fol-
lowing, we assume that each object is represented by M sample points. Furthermore,
we assume that the object samples are stored in a spatial index structure like the R*-
tree [7], in order to organize the uncertain objects such that proximity queries can be
efficiently processed.

In the following, we concentrate on the computation of the probabilistic ranking
query according to one sample point ¢; € R? of the query object . The computation is
done for each sample point of the query object separately and, in a postprocessing step,
the results are then easily merged by building the average, to obtain the final result.

3.1 Iterative Probability Computation

Initially, an iterative computation of the nearest neighbors of ¢; w.r.t. the sample points
of all objects o € D (sample point ranking ranks(g;)) is started using the ranking
algorithm proposed in [4]. Then, we iteratively pick object samples from the sample
point ranking ranks(g;) according to the query sample point ¢;. For each sample point
0i,s (1 < s < M) returned from rank,(q;), we immediately compute the probability
that o, , is the k" nearest neighbor of gj for all k£ (1 < k < 7). Thereby, all other

samples o0; ; (t # s) of object o; have to be ignored due to the sample dependency
within an object as mentioned above.

For the computation of the probabilistic ranking we need a table called probability
table (PT) which is used to maintain the intermediate results w.r.t. 0; s and which finally
contains the overall results of the probabilistic ranking.

Probability Table (PT) The probability table stores for each object 0; and each k € N
(1 < k < N) the actual probability that o; is the k*"-nearest neighbor of the query
sample point g,. The entries of PT according to the s*" sample point of object o; are
defined as follows:

PTk][4][s] = P((k—1) objects o € D, (0 # 0;), are closer to ¢; than the sample point 0;).

We assume that object o; is the i*” object for which ranks (g;) has reported at least
one sample point. The same assumption is made for the sample points of an uncertain
object (i.e., sample point 0; 4 is the st -closest sample point of object o; according to
;). These assumptions hold for the remainder of this paper.

Now, we show how to compute an entry PT'[k][i][s] of the probability table using an
additional structure called sample table (S7T'). The sample table stores for each accessed
object [separately the portion of samples already returned from rank,(q;) denoted
by STYl][1], whereas ST[I][0] denotes the portion of the remaining not yet returned
samples, i.e. ST[I][0] = 1 — ST[!][1]. Let ST be a sample table of size N (i.e. ST
stores the information corresponding to all IV objects of the database D). Let oy (i) C
{o € D|o # o;} denote the set, called k-set of o;, containing exactly (k-1) objects.

If we assume £ < N, obviously different k-set permutations o, () exist. For

N
k
the computation of PT'[k][¢][s], we have to consider the set S, of all possible k-set
permutations according to o,. The probability that exactly (k-1) objects are closer to the

query-sample point g; than the sample point o; ,, can be computed as follows:

. ST[[1] .if o; € o,(4)
PTG = >,]I {sm 0] ifor ¢ (i)
Uk(z)esk l = lN
14

Let us assume that we actually process the sample point o; 5. Since the object samples
are processed in ascending order according to their distance to g;, the sample table entry
ST1][1] reflects the probability, that object o; is closer to g; than the sample point o; .
On the other hand, ST'[I][0] reflects the probability that o, , is closer to ¢; than o;.

In the following, we show how the entries of the probability table can be computed
by fetching iteratively the sample points from rank;(g;). Thereby, we assume that all
entries of the probability table are initially set to zero. Then the iterative ranking process
ranks(g;) which reports one sample point of an uncertain object in each iteration, is
started. Each reported sample point 0; s is used to compute for all £ (1 < k < N)
the probability value that corresponds to the table entry PT'[k][i][s]. After filling the
(i-s)-column of the probability table, we proceed with the next sample point fetched
from mnks(qj) in the same way as we did with o; ;. This procedure is repeated until
all sample points are fetched from rank,(g;).

ALGORITHM probability(ST,MIN,MAX k) {
result = 0;
N=MAX — MIN +1;
IF (k = 0) THEN result = [T,_y;n asax STI0];
ELSE IF (k > N) THEN result = [],_,,;x asax STI[1;
ELSE
MID = [(MIN + MAX)/2];
FOR (i = 0..min([(MAX — MIN)/2],k)) DO
left = probability(ST, MIN, MID — 1,i);
right = probability(ST, MID, MAX, (k — i));
result = result + (left * right);
END FOR
END IF
RETURN result;

Fig. 1. The sample point probability computation algorithm.

3.2 Accelerated Probability Computation

The computation of the probability table can be very costly in space and time. One
reason is the size of the table that grows drastically with the number of objects and the
number of samples for each object. The table size can be reduced as, in fact we need
only one value per object and ranking position which aggregates the results over the
object samples. Another problem is the very expensive computation of the probability
table entries PT[k][i][s]. In the following, we propose methods that reach a considerable
reduction of the overall query cost.

In fact, at a time we explicitly have to maintain table entries for those objects from
which at least one sample point has been reported from rank,(g;), whereas we can skip
those from which we already fetched all sample points.

The computational bottleneck of our probabilistic ranking algorithm is the compu-
tation of each table entry. for each computation of PT'[k][i][s] we have to compute the

Z]::[different k-set permutations which have to be summed
up to the final probability value. For example, if N = 100 and k£ = 20 we need to con-
sider about 1.73 - 10*3 k-set permutations.

In the case of subsequently fetching samples belonging to the same object, the rank-
ing probabilities according to this object doesn’t change. Hence, obviously only one
computation of the probability value is required. However, often the case where two ad-
jacent sample points reported from the ranking belong to different objects occurs. For
this case we suggest a divide and conquer method which is able to drastically reduce
the number of k-set permutations to be computed. Instead of considering all k& of N’
permutations, we first split the k-set into two subsets of equal size. Then we only need
to consider (k-7) of NTI permutations for ¢ = 1..k for the one subset, combined with

probabilities according to

the ¢ of N% permutations of the other subset. As a consequence, instead of considering

!

k

reduced to

k-set permutations, the number of k-set permutations to be considered can be

= ((=)+ (%)

The k-set split can be recursively repeated for each subset. The recursive decomposition
of a subset, from which we have to compute k£ (0 < k < N’) out of N’ permutations
stops if k& > N'. Otherwise, there exists only one permutation that can be immediately
computed and reported to the calling function of the recursion. The algorithm for the
computation of the sample point probability is depicted in Figure 1.

4 Experimental Evaluation

Due to space limitations, in this section we can only give a coarse summary of the ex-
perimental evaluation of our ranking methods. We applied our ranking methods on real
world datasets as well as on artificial datasets. The artificial datasets which are used
for the efficiency experiments contain 10 to 1000 3-dimensional uncertain objects. For
the evaluation of the effectiveness of our methods we used three real-world datasets
O3, NSPy, and NSPy,,. The O3 dataset is an environmental dataset consisting of 30
uncertain time series, each composing a set of measurements of O3 concentration in
the air measured within one month. The NSP datasets NS P, and N S Py, are chrono-
biologic datasets describing the cell activity of Neurospora! within sequences of day
cycles. These datasets are used to investigate endogenous rhythms.

In the first experiments, we evaluated the quality of our probabilistic ranking query
(PRQ_MAC) proposed in Section 2.3. We compare its quality with the quality of a
non-probabilistic ranking (MP) which ranks the objects based on the distance between
their mean positions. For these experiments, we used the three real-world datasets Os,
NSPy, and NSPy,q. The ranking quality is shown by the average precision over all
recall values for each dataset. The avg. precisions according to the dataset O3 are
prec(PRQ_MAC)=0.65 and prec(MP)=0.63, to the dataset N .S P, are prec(PRQ_MAC)=0.43
and prec(MP)=0.35 and to the dataset N S Py, are prec(PRQ_MAC)=0.70 and prec(MP)=0.60.
Obviously, the PRQ_MAC approach outperforms the non-probabilistic ranking approach.

In the next experiment, we evaluate the performance of our probabilistic ranking ac-
celeration strategies proposed in Section 3.2 w.r.t. query processing time. The results of
the experiments showed that the strategies are able to reduce the query cost by several
orders of magnitude. Interestingly, the recursive computation of the probability permu-
tations alone (i.e. without other strategies) yields an speed up of up to two orders of
magnitude compared to the other strategies.

5 Conclusions

In this paper, we proposed an approach that efficiently computes probabilistic rank-
ing queries on uncertain objects represented by sets of sample points. In particular,

! Neurospora is the name of a fungal genus containing several distinct species. For further in-
formation see The Neurospora Home Page: http://www.fgsc.net/Neurospora/neurospora.html.

we proposed methods that are able to break down the high computational complexity
required to compute for an object o the probability, that o has the ranking position k
(1 <k< N) according to the distance to a query object q. We theoretically and experi-
mentally showed that against straightforward solutions our approach is able to speed-up
the query by factors of several orders of magnitude. In the future we plan to apply prob-
abilistic ranking queries to improve data mining applications.

6 Acknowledgments

We would like to thank Jan Remis and Roselyn Santos from the Institute of Medi-
cal Psychology (IMP) at the Ludwig-Maximilians University of Munich for making
the neurospora dataset NSP available to us. Furthermore, we would like to thank U.
Boéllmann and M. Meindl for providing us with the environmental dataset TEMP from
the Bavarian State Office for Environmental Protection, Augsburg, Germany.

References

1. C. Bohm, A. Pryakhin, and M. Schubert. “Probabilistic Ranking Queries on Gaussians”. In
Proc. of the 18th Int. Conf. on Scientific and Statistical Database Management (SSDBM’06),
pages 169-178, 2006.

2. R.Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating Probabilistic Queries over Imprecise
Data”. In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’03), San Diego,
CA), pages 551-562, 2003.

3. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Efficient Indexing Methods for Prob-
abilistic Threshold Queries over Uncertain Data”. In Proc. 30th Int. Conf. on Very Large
Databases (VLDB’04), Toronto, Canada, pages 876—-887, 2004.

4. G. Hjaltason and H. Samet. “Ranking in Spatial Databases”. In Proc. 4th Int. Symposium on
Large Spatial Databases, SSD’95, Portland, USA, volume 951, pages 83-95, 1995.

5. H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. “’Probabilistic Similarity Join on Uncertain
Data”. In Proc. 11th Int. Conf. on Database Systems for Advanced Applications (DASFAA’06),
Singapore, Singapore, pp. 295-309, 2006, (Best paper).

6. H.-P. Kriegel, P. Kunath, and M. Renz. “Probabilistic Nearest-Neighbor Query on Uncertain
Objects”. In Proc. 12th Int. Conf. on Database Systems for Advanced Applications (DAS-
FAA’07), Bangkok, Thailand, pp. 337-348, 2007.

7. H.-P. Kriegel, B. Seeger, R. Schneider, and N. Beckmann. ”The R*-tree: An Efficient Access
Method for Geographic Information System”. In Proc. Int. Conf. on Geographic Information
Systems, Ottawa, Canada, 1990.

8. Y. Tao, R. Cheng, X. Xiao, W. Ngai, B. Kao, and S. Prabhakar. “Indexing Multi-Dimensional
Uncertain Data with Arbitrary Probability Density Functions”. In Proc. 31th Int. Conf. on
Very Large Data Bases (VLDB’05), Trondheim, Norway, pages 922-933, 2005.

