
Efficient Query Processing in Arbitrary Subspaces Using Vector Approximations

Hans-Peter Kriegel, Peer Kröger, Matthias Schubert, Ziyue Zhu
Institute for Informatics, University of Munich, Germany

{kriegel,kroegerp,schubert,ziyue}@dbs.ifi.lmu.de

Abstract

In this paper, we introduce the partial vector approxi-
mation file, an extension of the well known vector approx-
imation file that is constructed to efficiently answer partial
similarity queries in any possible subspace which is not
known beforehand. The idea of the partial VA-File is to
divide the VA-File into a separate file for each dimension
and only load the dimensions that are necessary to answer
the query. Thus, the partial VA-File is constructed to im-
prove the query performance for systems that have to cope
with a wide variety of previously unknown query subspaces.
We propose novel algorithms for partial kNN and ε-range
queries based on the new partial VA-File. In our experi-
ments, we demonstrate that our proposed partial VA-File
with the novel algorithms improves the average query per-
formance in comparison to the original VA-File when an-
swering partial similarity queries.

1. Introduction

Indexing large sets of high-dimensional feature vectors
is an important issue in many database applications. In re-
cent years, many applications evolved that require partial
similarity queries. A partial similarity query is a similar-
ity query where only a subset of the existing attributes of
the feature space is relevant, i.e. the query only specifies a
subset of the attributes and is posed against the correspond-
ing projection of the entire feature space. The projection
specified for a query is usually not known beforehand and
is subject to changes.

Established index structures are designed and optimized
for the full dimensional space, i.e. the feature space must be
fixed before index construction. However, if only a small
subset of the attributes is relevant for the query, the perfor-
mance of the index structures degenerates because of a very
poor pruning power. A solution to this problem might be
to use an optimized index structure for each query. How-
ever, since the relevant subset of attributes for the query is
not known in advance an optimized index structure for each

possible attribute subset would be necessary. Obviously,
this approach is unrealistic even for a moderate dimension-
ality. In this paper, we propose such a novel approach to ef-
ficiently support partial range queries and partial k-nearest
neighbor queries in arbitrary subspaces. In a broad experi-
mental evaluation, we show the applicability of our methods
for efficiently answering partial range and partial k-nearest
neighbor queries in arbitrary subspaces.

2. Related Work

Spatial index structures (e.g. [7, 2, 4, 8]) are optimized
for the entire feature space but are usually not applicable to
partial similarity queries because the larger the difference
between the dimensionality of the query subspace and the
dimensionality of the feature space is, the more the perfor-
mance of the indexes will decrease.

Tree-striping [3] uses several index structures to index
different subspaces of the feature space rather than one full-
dimensional index. The choice of the subspaces is data
dependent and must be fixed before the indexes are built.
Thus, tree striping has similar problems compared to full-
dimensional indexes.

Inverted files [6] index each attribute separately using a
1D index such as B+-Trees [5]. A partial similarity query
is passed to all 1D indexes that are relevant for the query
subspace. The result is aggregated from the corresponding
indexes.

The Vector Approximation File (VA-File) [9] is a data
structure for efficient similarity search in high-dimensional
feature vectors. Instead of a tree like data structure the VA-
File uses a simple but efficient filter-refinement approach to
save I/O cost. The actual VA-File is a sequential file con-
taining so-called ”vector approximations” for each feature
vector. These vector approximations are generated by lay-
ing a grid of 2b partitions per dimension over the feature
space. Thus, we can approximate the coordinate vd of a
feature vector v in dimension d by the partition p the co-
ordinate is placed in. Since there are only 2b partitions in
each dimension, this partition can be described by b bits.
The complete vector approximation of a feature vector has

in Proc. 18th Int. Conf. on Scientific and Statistical Database Management (SSDBM 06), Wien, Austria, 2006

a size of d · b bits instead of d ·sizeof(vd). Since in modern
applications numeric values are usually represented by 32
bit float values or even 64 bit double values and since the
number of bits b to encode a partition is about 4 to 8 bits,
a vector approximation is between 16 and 4 times smaller
than an exact feature vector. Thus, the VA-File, containing
the bit encoded vector approximations, is much smaller and
much faster to read from disk than the file containing the
complete feature vector.

3. The Partial Vector Approximation File

Principally, the VA file is applicable without further
modification to answer similarity queries in arbitrary sub-
spaces as well. The only difference is that the distances
need to be calculated on the basis of the queried subspace
instead of using all dimensions. However, since we always
have to load the complete VA-File regardless of the query
subspace, large parts of the loaded information may be use-
less. For example, in the case of a query in a 25 dimensional
subspace being part of a 100 dimensional feature space,
75% of the information is loaded from disk but not used
to answer the query.

The idea of the partial VA-File is to store each dimen-
sion i of a vector approximation in a separate file Fi rather
than storing all vector approximations in a single file. When
answering partial similarity queries, only the necessary di-
mensions are loaded. Thus, the transfer volume can be re-
duced to the necessary information. On the other hand, we
have to access each dimension separately causing several
additional disk accesses. In the following, we will introduce
efficient algorithms on the partial VA-File that are capable
to considerably speed up partial similarity queries despite
of these additional disk accesses.

3.1. Building the Partial VA-File

The partial VA-File consists of d approximation files Fi

(1 ≤ i ≤ d), called dimensional A-Files (DA-Files), con-
taining the approximation of the data objects for one partic-
ular attribute ai ∈ A only and a sequential file containing
the exact feature vectors. We assume that all feature vec-
tors are ordered in the same way in each file. To build the
partial VA-File, we start by calculating approximations for
the given set of feature vectors. However, instead of using a
uniformly distributed grid as the original VA-File does, we
adopt the grid to the data distribution by using the algorithm
introduced in [1]. As a result, the number of data objects in
each partition is approximately the same. We will use the
properties of this adaptable grid in the following query algo-
rithms. After constructing our grid, we can now determine
the vector approximations in each dimension and store them
in the d DA-Files.

3.2. Answering PεRQs

To answer pε-RQs, we introduce a new algorithm that
exploits the possibility to read single dimensions. For a
given query point q, a range ε and subspace S ⊆ A, we
proceed using the following steps:

1. Order Dimensions: Rank the DA-Files with respect to
their selectivity for the given query q.
2. Scan DA-Files (Filtering): Load the most selective DA-
File and determine all candidate approximations for which
the minimal distance to q is smaller than epsilon. After-
wards, load the next DA-File with respect to its ranking and
refine the previously determined candidates using the addi-
tional dimension. Proceed in the same way until all dimen-
sional VA-Files are processed.
3. Determine Results (Refinement): Determine all candi-
date approximations that are completely placed within the
ε-range of q and add their IDs to the result. Refine the rest
of the candidates using the exact representations.

To order the DA-Files in the first step of the algorithm
by their selectivity, we use the adaptive grid, which we em-
ployed for deriving the vector approximations. Since this
grid is built mirroring the distribution of the feature val-
ues of the corresponding dimension, the size of a partition
indicates the sparseness of data values. A large partition
indicates sparsity while a rather small partition indicates a
dense area in the corresponding interval of feature values.
Based on this observation, we define the selectivity coeffi-
cient σε

q(F) for DA-File F in the following way. Let P =
{pi, .., pk} be an ordered set of k = 2b +1 partition borders
for the DA-File F . Then, the sparsity coefficient σε

q(F) of
an ε-range query to the query point q is determined as fol-
lowing: σε

q(F) = |{pi|pi ∈ P ∧ q − ε ≤ pi ≤ q + ε}|.
Intuetively, the selectivity coefficient describes the num-

ber of partitions that are intersected by the query sphere.
If the dimension is rather sparse in the query range, only a
small number or even a single partition is intersected. As
a result, the selectivity coefficient is rather small and the
dimension yields high pruning power for the given query.
Since, the effort for each additional dimension decreases
with the number of remaining candidates, a highly selective
dimension should be processed quite early. Therefore, we
calculate the selectivity coefficient for each DA-File corre-
sponding to any dimension of the query subspace and order
the DA-Files ascending by their selectivity.

In the filter step of our algorithm, we now process each
dimension in the calculated order. We first of all load the
top-ranked DA-File. At the beginning of this step, all ob-
jects are potential candidates. Thus, we determine all ap-
proximations for which the minimal distance to q, i.e. the
mindist, is smaller than ε. Note that the mindist depending
on a single dimension is still a best-case estimation for the
distance between the query q and the actual data object o

being represented by the approximation ao. Thus, we can
already prune the data objects having a larger mindist with
respect to the first dimension. For each candidate, we save
the mindist, the maxdist, i.e. the maximal distance to the
query object q and its position in the DA-File. For any fur-
ther iteration, the next DA-File is loaded. However, since
we already could prune some of the data objects, we only
increase the mindist for the remaining candidates by the val-
ues of the current DA-File. Correspondingly, we sum up the
maxdist. Remember that we are using squared Euclidian
distances and thus, both updates can be easily achieved by
single plus-operations. With an increasing number of con-
sidered DA-Files, the set of candidates still having a mindist
that is smaller than ε is rapidly decreasing. Thus, the num-
ber of distance updates decreases with each additional DA-
File as well.

In the final refinement step, we test all remaining candi-
date approximations if their maxdist is larger than ε. If this
is the case, the approximation is completely placed within
the query sphere and the data object already belongs to the
query result. Otherwise, the approximation could still rep-
resent a feature vector lying outside of the query sphere.
Thus, we have to read the exact feature vector from disk
and compare it to the query vector.

3.3. Answering PkNNQs

The second partial similarity query, we want to support,
are pkNN queries. Note that this problem is more com-
plicated than partial ε-range queries because the pruning
power of a single dimension is very limited at the begin-
ning of the algorithm. Most algorithms for kNN queries
start with an infinite upper bound for the distance of the
k-nearest neighbor to the query object q and then succes-
sively decrease this upper bound after reading some objects
or approximations. For an ordinary VA-File, the k-nearest
maxdist of any read approximation to q is an upper bound
for the actual distance of the k-nearest neighbor and thus,
this distance can be used to prune other approximations. For
the partial VA-File this is a problem because we cannot de-
termine a meaningful maxdist for a complete approximation
on the basis of a single dimension. To estimate a maxdist
without considering all dimensions, we have to assume a
worst-case distance for all missing representations which
is the distance of q to the farther rim of the data space in
each dimension. Obviously, if the dimensions for which we
have to use these worst-case estimates, are too numerous,
the number of candidates is usually too big to fit into the
main memory.

Thus, our algorithm starts with reading the first 2d/3
DA-Files for a query over a d-dimensional subspace. In our
experiments, it turned out that using an approximation in
two thirds of the dimensions and estimating the remaining

third, was already quite selective. A reason for this effect
is that we again sort the dimensions by their potential prun-
ing power. However, in the case of kNN queries the sorting
criterion is not based on the selectivity of the dimension,
instead we use the distance of the query object q to the far-
ther rim of the data space, i.e. the worst case distance of
the result. Thus, by ordering the dimensions by the worst
case estimates they are contributing to the current pruning
distance, we assure that dimensions that would add large
worst-case estimates are read earlier or are contained within
the first 2d/3 dimensions that are read anyway.

Our kNN algorithm starts with reading the first 2d/3
DA-Files. Afterwards, we determine the mindist and the
maxdist of each approximation to the query object q. For
the mindist, we simply have to add up the squared distances
in each of the 2d/3 dimensions. To calculate the maxdists,
we have to additionally add the worst-case distance for each
of the dimensions that were not processed yet. To deter-
mine the current pruning distance, we employ a priority
queue storing the k smallest maxdists found so far. As in
the kNN algorithm for the ordinary VA-File, an object can
now be pruned if its mindist is larger than the k smallest
maxdist found so far. After this initialization phase, we load
one additional DA-File. For the remaining candidates, we
now increase the mindist and maxdist using the approxima-
tions stored in the read DA-File. Additionally, we have to
decrease the maxdist by the worst-case distance that was
used to estimate the distance in this dimension. Let us note
that the priority queue containing the k smallest maxdists
is completely rebuilt for each dimension. The filter step
is complete if the number of remaining candidates is small
enough that refining these candidates would cause less I/O
costs than reading the other DA-Files. If this is not the
case, the filter steps ends after each DA-File of any query
dimension was processed. In the case of pkNN queries this
method works quite well because the set of candidates is
usually very small for this kind of query.

After the filter phase is complete, the remaining candi-
dates are ordered by their mindist. The k-nearest neighbors
that are found so far are stored in a priority queue. The
queue is constructed to place the object having the k small-
est distances to q on the top position. After refining the
first q objects, the top element of this priority queue can be
used to determine whether refining additional candidates is
still necessary. If the smallest mindist of all remaining can-
didates is greater or equal to the exact distance on top of
the priority queue, the objects stored in the queue are the
k-nearest neighbors and we can terminate the algorithm.

4. Evaluation

We evaluated the performance of the partial VA-File on
a workstation featuring a 1.7 GHz CPU and 2 GB RAM.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 20 30 40 50 60 70 80 90 100

dimensionality of query subspace

el
a

p
se

d
 r

u
n

ti
m

e
(m

s)

partial VA file VA file sequential scan

(a) DS2, selectivity: 0.01%

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 20 30 40 50 60 70 80 90 100

dimensionality of query subspace

el
a

p
se

d
 r

u
n

ti
m

e
(m

s)

partial VA file VA file sequential scan

(b) DS2, selectivity: 0.05%

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

dimensionality of query subspace

el
a

p
se

d
 r

u
n

ti
m

e
(m

s)

partial VA file VA file

(c) DS2, k = 1

0

2000

4000

6000

8000

10000

12000

14000

16000

10 20 30 40 50 60 70 80 90 100

dimensionality of query subspace

el
a

p
se

d
 r

u
n

ti
m

e
(m

s)

partial VA file VA file

(d) DS2, k = 10

Figure 1. Runtime w.r.t. dimensionality of query subspace on DS2.

We used a disk with a transfer rate of 45 MB/s, a seek time
of 4 ms and a latency delay of 2 ms. We used two equally
distributed synthetic data sets, DS1 (50D) and DS2 (100D),
both containing 1 million tuples and a real world data set
DS3 containing 112,361 tuples representing 64D color his-
tograms of TV snapshots.

When evaluating partial range queries with selectivity
values of 0.01% and 0.05% we observed that the partial VA-
File as well as the original VA-File clearly outperfom the
sequential scan on both data sets. In addition, it turned out
that the lower the number of relevant attributes of the query,
the higher is the performance advantage of the partial VA-
File over the original VA-File. The break-even point is at
around 70% relevant query attributes, i.e. for a query that
specifies less than 70% of the features to be relevant, our
partial VA-File yields a performance advantage over exist-
ing methods. Sample results on DS2 are shown in Figure
1.

In case of partial k-nearest neighbor queries we observed
that for low values of k the partial VA-File is clearly better
than the original VA-File even for full-dimensional queries.
If the value of k increases, the performance of the par-
tial VA-File slightly decreases. However, for k = 10, the
break-even point for which the partial VA-file performs bet-
ter than the original VA-file was observed at about 80%, i.e.
if the dimensionality of the query subspace is at most 80%
of the entire feature space, the partial VA-file outperforms
the compared methods.

The results of our experiments on the real world dataset
DS3 confirm the observations made on the synthetic
datasets. We again observe that the sequential scan is
clearly outperformed by the VA-File variants.

5. Conclusion

In this paper, we presented the partial VA-File, an index
structure that is constructed to speed up similarity queries
in arbitrary, a priori unknown subspaces of high dimen-
sional feature spaces. We presented novel algorithms for
partial kNN queries and partial range queries which have

to load only the dimensions that are needed for a particular
query and thus save a considerable amount of I/O time when
querying low dimensional subspaces. In our experiments,
we demonstrate that the partial VA-File is able to achieve
a better average query performance over all possible sub-
spaces compared to the original VA file and the sequential
scan.

References

[1] R. Agrawal and A. Swami. A one-pass space-efficient algo-
rithm for finding quantiles. IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120, 1995.

[2] N. Beckmann, H.-P. Kriegel, B. Seeger, and R. Schneider.
”The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles”. In Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’90), Atlantic City, NJ, 1990.

[3] S. Berchtold, C. Böhm, D. A. Keim, H.-P. Kriegel, and
X. Xu. ”Optimal Multidimensional Query Processing Us-
ing Tree Striping”. In Proc. Int. Conf. on Data Warehousing
and Knowledge Discovery (DaWaK 2000), Greenwich, U.K.,
2000.

[4] S. Berchtold, D. A. Keim, and H.-P. Kriegel. ”The X-Tree:
An Index Structure for High-Dimensional Data”. In Proc.
22nd Int. Conf. on Very Large Databases (VLDB’96), Mumbai
(Bombay), India, 1996.

[5] D. Comer. ”The Ubiquitous B-Tree”. ACM Computing Sur-
veys, 11(2):121–137, 1979.

[6] A. F. Cárdenas. ”Analysis and Performance of In-
verted Database Structures”. Communications of the ACM,
18(5):253–263, 1975.

[7] A. Guttman. “R-Trees: A Dynamic Index Structure for Spa-
tial Searching”. In Proc. ACM SIGMOD Int. Conf on Man-
agement of Data (SIGMOD’84), Boston, MA, 1984.

[8] N. Katayama and S. Satoh. ”The SR-tree: An Index Structure
High Dimensional Nearest Neighbor Queries”. In Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’97),
Tucson, AZ, 1997.

[9] R. Weber, H.-J. Schek, and S. Blott. “Quantitative Analy-
sis and Performance Study for Similarity-Search Methods in
High-Dimensional Spaces”. In Proc. 24th Int. Conf. on Very
Large Databases (VLDB’98), New York, NY, 1998.

