
 Efficient Query Processing on Relational Data-Partitioning Index Structures
Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz

University of Munich, Germany, {kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de

Abstract

In contrast to space-partitioning index structures,
data-partitioning index structures naturally adapt to the ac-
tual data distribution which results in a very good query re-
sponse behavior. Besides efficient query processing, mod-
ern database applications including computer-aided de-
sign, medical imaging, or molecular biology require
fully-fledged database management systems in order to
guarantee industrial-strength. In this paper, we show how
we can achieve efficient query processing on data-parti-
tioning index structures within general purpose database
systems. We reduce the navigational index traversal cost by
using “extended index range scans”. If a directory node is
“largely” covered by the actual query, the recursive tree
traversal for this node can beneficially be replaced by a
scan on the leaf level of the index instead of navigating
through the directory any longer. On the other hand, for
highly selective queries, the index is used as usual. In this
paper, we demonstrate the benefits of this idea for spatial
collision queries on the Relational R-tree. Our experiments
with an Oracle9i database system show that our new ap-
proach outperforms common index structures and the se-
quential scan considerably.

1. Introduction

The efficient management of complex objects has be-
come an enabling technology for many novel database ap-
plications, including computer aided design (CAD), medi-
cal imaging or molecular biology. For commercial use, a
seamless and capable integration of spatial indexing into in-
dustrial-strength databases is essential. In contrast to a que-
ry optimizer of an ORDBMS which has to decide “once and
for all” whether to include a specific access method into the
execution plan, the approach of this paper is much more
fine-grained. At each directory node of a hierarchical index
structure it is individually decided whether it is beneficial to
switch to a range scan on the leaf level of the index or
whether it is beneficial to take further advantage of the in-
dex-directory. The experiments show that our new approach
always adapts to the best of the two worlds “index” and “se-
quential scan”. Therefore, the optimizer can under all cir-
cumstances include our new approach into the query execu-
tion plan.

In an ORDBMS, the user has no access to the exact
information where the blocks are located on the disk.
Former approaches which try to generate efficient read
schedules for a given set of disk pages [4] must know the
actual position of the pages on the storage media.

In this paper, we introduce a new approach based on
index inherent statistics on top of an ORDBMS exemplarily
for spatial intersection queries performed on the Relational
R-tree. In [2] it is also shown how our approach can be
adapted to similarity range queries and k-nn queries on the
Relational M-tree. For more details about relational index-
ing, we refer the reader to [1].

The Relational R-tree. In this paragraph, we shortly
introduce Relational R-trees, like they have been used by
the Oracle developers Ravi Kanth et al. [3]. Figure 1 depicts
a hierarchical R-tree along with a possible relational map-
ping (page_id, page_lev, son_id, son_data). The column
page_id contains the logical page identifier, while page_lev
denotes its level in the tree. Thereby, 0 marks the leaf level
of the directory. The attribute son_id contains the page_id of
the connected entry, while son_data stores its minimum
bounding rectangle. To support the navigation through the
R-tree table at query time, a built-in index can be created on
the page_id column.

The remainder of this paper is organized as follows. In
Section 2, we present our new indexing approach which
combines the advantages of a recursive tree traversal and a
sequential scan. In Section 3, we present experimental re-
sults and conclude the paper with a few remarks on future
work in Section 4.

Figure 1: Relational mapping of an R-tree directory
a) Hierarchical directory, b) Index table

polygons_rtree

page id page_lev son_id son_data
(MBR)

ROOT 2 1 BOX((0,0),(200,120))

1 1 2 BOX((0,0),(80,60))

1 1 3 BOX((60,20),(100,120))

1 1 4 BOX((140,20),(200,120))

2 0 A …

2 0 B …

… … … …

1 2

3

4

A
B C D E

…A B

a) b)

kunath
Scientific and Statistical Database Management (SSDBM 2004), Santorini Island, Greece, 2004.

2. Acceleration of Relational Access Methods

We assume that the page_ids are ordered according to a
depth-first tree traversal and that we have a B+-tree on this
attribute. Furthermore, we assume that an additional B+-tree
exists on the attributes page_level, page_id so that we can
easily scan over all data entries, i.e. all entries where the
page_level is 0. The general idea is that we skip the recur-
sive tree traversal at a certain point and perform an extended
range scan on the leaf-level of our index. Thereby, we try to
minimize the overall navigational cost on the hierarchical
index while allowing to read false hits from the leaf-level of
the index which are filtered out by a subsequent refinement
step. Figure 2b depicts this general idea. The main advan-
tages of our new approach is that we can reduce the naviga-
tional cost related to the hierarchical index structure (filled
triangles in Figure 2) and to the built-in B+-trees (arrows in
Figure 2). On the other hand, we have higher cost related to
the scanning of the leaf-level and higher CPU cost related to
the additionally required refinement step.
In this section, we will discuss the cost related to a hierar-
chical tree traversal and the cost related to an extended
range scan in general. Based on this reasoning, we will
present a heuristic for intersection queries on the Relational
R-tree which helps to answer the crucial question when to
abort the recursive tree traversal and switch to an extended
range scan. In Section 2.1, we will introduce the general
I/O cost and CPU cost related to a certain directory node
which presumably arise when continuing the tree traversal
(cf. Figure 2a) and the cost related to an extended range
scan starting at this directory node (cf. Figure 2b). These
cost heavily depend on the “overlap-factor”
which denotes the percentage of accessed tuples during a
query q in a certain subtree of a directory node n if the
index structure is used as usual. In the following sections,
we will show how we can estimate this “overlap-factor” σ
for the intersect predicate on the Relational R-tree (cf. Sec-
tion 2.2). We use the following notations:

Our reasoning is based on the assumptions that we have
a uniform data distribution and uniformly filled nodes. If
this is not the case, we can improve the estimation by storing
the data distribution, the actual number of directory nodes,
and the number of leaf-nodes beneath a certain directory
node along with this directory element. For the sake of clar-
ity, we refrain from this more complex approach, and as-
sume that we have a uniform data distribution and that all
nodes are uniformly filled.

2.1. General Approach

We will first discuss the cost related to the navigational
approach (cf. Section 2.1.1), before we look at the cost relat-
ed to the scanning approach (cf. Section 2.1.2). In Section
2.1.3, we introduce our final combined approach which ex-
ploits the advantages of the navigational and the scanning
approach.

2.1.1. Navigational Approach
The cost related to a directory node n when using the

hierarchical index structure without further modifications
for a query q (cf. Figure 2a) consist of an I/O- and a
CPU-part and can be expressed as follows:

In the following, we will discuss the detailed I/O- and
CPU-cost of the navigational approach.

I/O-cost. We have to access cnt_n directory nodes:

Each of these nodes has m entries. For locating these
nodes on the disk we use a built-in B+-tree which has a

Figure 2: General Idea
a) Navigational approach, b) Scanning approach

......

......

......

......

page
level

0

1

L

.

.

.

a) b)

one extended range scan

skip
tree
traversal

three range scans

{di
re

ct
or

y
le

ve
ls

le
af

le
ve

l

...

σ σ q n,()=

symbol meaning

m
average number of index entries per directory
node

b average number of index entries per disk page

L(n) level of the current directory node n

hB height of the B+-tree

kCPU CPU-cost for testing one index directory entry

kI/O I/O-cost for reading one page from the disk

σ(q, n)

value between 0 and 1 which denotes the per-
centage of accessed tuples in the subtree
belonging to node n, if the index structure is
used as usual for the query processing of a
query q

costNAVI(q, n)
the navigational cost related to a node n and a
query q when further using the hierarchical
index

costSCAN(q, n)
the scanning cost related to a node n and a
query q when applying an extended range for n

tcos NAVI q n,() tcos NAVI
I/O

q n,() tcos NAVI
CPU

q n,()+=

cnt_nNAVI
I/O

q n,() 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅=

height of hB. Additional to the navigational cost on the
B+-tree, we have cost related to the reading of cnt_tNAVI=

 index entries, i.e. tuples, distributed over
 disk pages. We penalize each page read with a

factor kI/O. To sum up, we have the following I/O-cost:

CPU-cost. The CPU-cost related to the evaluation of
 index entries are:

2.1.2. Scanning Approach
If we scan all data belonging to a directory node n on

level L(n), the following cost occur:

The detailed I/O-and CPU-cost are as follows:
I/O-cost. We have to locate the starting point of the

scanning area once by using a B+-tree. Then, we read
index entries of the leaf level distributed over disk
pages. Again, we penalize each page read with a factor kI/O.
To sum up, we have the following I/O-cost for the scanning
approach:

CPU-cost. The cost related to the evaluation of
values on the leaf-level are . Thus we have the
following CPU-cost for the scanning approach:

2.1.3. Combined Approach
Our approach starts with applying the navigational ap-

proach. For each visited node we estimate the navigational
and the scanning cost. If , we
abort the recursive tree traversal and apply an extended
range scan. This mixed approach is a kind of greedy ap-
proach, which tries to combine the advantages of the navi-
gational and the scanning approach.

The main point in accurately estimating
and is to forecast the overlap-factor σ as pre-
cise as possible. For each hierarchical index structure such a
selectivity estimation function has to be provided for the op-
timizer anyway. When the execution plan for a given query

q is determined, the optimizer evokes σ (q, nroot) in order to
decide whether to include this index in the query execution
plan or not. We propose to evoke this selectivity estimation
function for each visited directory node in order to decide
whether to use the tree directory further or to switch to an
extended range scan. Let us note that our approach inherent-
ly benefits from a good selectivity estimator which can be
used as black box by our new indexing method. Neverthe-
less, we will present a heuristic which aims at estimating the
selectivity efficiently and effectively for the collision que-
ries on the Relational R-tree. Needless to say that you can
also use more sophisticated selectivity estimation functions
to get better results. The main point of this paper is to show
that already simple selectivity estimations suffice to accel-
erate the query processing considerably.

2.2. Accelerated Relational R-Tree

In this section, we adapt the concept presented in Sec-
tion 2.1 to the intersect predicate on the Relational R-tree.

The overlap-factor σ (q, n) can easily be determined as
shown in Figure 3. The overlap-factor σ (q, n) is equal to the
ratio of the intersection volume between the query
object q and the directory node n and the hyper-volume
of the directory node.

As the operation whether two boxes intersect or not can
be performed very efficiently, we neglect the CPU cost and
concentrate in this section on the accruing I/O cost. Thus we
perform an extended index range scan for a directory node n
on level L(n) and a query q if

m cnt_nNAVI
I/O⋅

cnt_tNAVI b⁄

tcos NAVI
I/O

q n,() kI O⁄ hB
m
b
----+

 ⋅= 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅

 ⋅

cnt_tNAVI

tcos NAVI
CPU

q n,() kCPU m 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅

⋅ ⋅ =

tcos SCAN q n,() tcos SCAN
I O⁄

q n,() tcos SCAN
CPU

q n,()+=

m
L n()

m
L n()

b⁄

tcos SCAN
I O⁄

q n,() hB
m

L n()

b
-------------+

 kI O⁄
m

L n()

b
------------- kI O⁄⋅≈⋅=

m
L n()

kCPU m
L n()⋅

tcos SCAN
CPU

q n,() m
L n()

kCPU⋅=

tcos SCAN q n,() tcos NAVI q n,()<

tcos SCAN q n,()
tcos NAVI q n,()

σ n q∩() =
Vn q∩

Vn

Figure 3: Determination of the overlap-factor σ for the
intersect predicate on the Relational R-tree

query q

directory node n

Vn q∩

Vn q∩
Vn

σ q n,()
Vn q∩

Vn
--------------=

tcos SCAN
I 0⁄

tcos NAVI
I 0⁄

 <

 i.e.

hB
m

L n()

b
-------------+

 hB
m
b
----+

 1 σ q n,()+ m
i

i 1=

L n() 1–

∑⋅

 ⋅<

If we assume rather high values of m, a significant over-
lap factor σ (q, n) and a directory level L(n) higher than 2,
we scan if the following simplified condition is fulfilled:

Or, slightly modified, we scan if:

If m is equal to b, i.e. we do not use the “supernode”
concept of the X-tree [5] (cf. Section 3.1), and we assume
that we have to perform two reads for navigating through the
B+-tree directory, it is beneficial to scan if the overlap-factor
is higher than 1/3. Note that the resulting simplified formula
is independent of the actual level of the directory nodes.

3. Experimental Evaluation

The tests are based on a test data set CAR, provided by
our industrial partner, a German car manufacturer. It con-
sists of approximately 1,400,000 high-resolution voxelized
three-dimensional CAD parts managed by a Relational
R-tree of height 5.

We have implemented our approach for the Relational
R-tree on top of the Oracle9i Server using PL/SQL for the
computational main memory based programming. All ex-
periments were performed on a Pentium III/700 machine
with IDE hard drives. The database block cache was set to
500 disk blocks with a block size of 8 KB and the machine
was used exclusively by one active session.

Intersection Queries on the Relational R-tree. We
applied our new scanning approach proposed in Section 2 to
the Relational R-tree for varying overlap-factors σ which
were compared to a full table scan and an unchanged R-tree
implementation. Figure 4 shows that the best results for a
large range of selectivity parameters was obtained by using

an overlap-factor of σ = 1/3 which is identical to the theoret-
ically derived value (cf. Section 2.2). For σ = 0, an extended
range scan is triggered as soon as the query box intersects a
directory box. This results in rather high query response
times for highly selective queries compared to the original
R-tree. On the other hand, a parameter σ = 1 forces an ex-
tended range scan, if the directory node is completely cov-
ered by the query object resulting in rather good query re-
sponse times over the complete range of selectivity
parameters. Figure 4 shows that the decision whether to use
the directory of the relational R-tree any longer or to switch
to an extended range scan can be decided for each node with
negligible overhead. Our combined approach can improve
the overall query response time by more than 150% for que-
ries of low selectivity compared to the navigational ap-
proach (R-tree). Furthermore, for highly selective queries
our combined approach outperforms the sequential scan by
more than 10,000%. To sum up, the combined approach nat-
urally adapts to the best of the two worlds: “index” and “se-
quential scan”.

4. Conclusion

In this paper, we presented a new technique which uses
the hierarchical directory of a relational index structure as
long as it makes sense. At each directory node, it is individ-
ually decided whether it is beneficial to switch to a range
scan on the leaf level of the index or whether it is beneficial
to take further advantage of the index-directory. This new
approach is contrary to the approach used by query optimiz-
ers which have to decide “once and for all” whether to in-
clude a specific access method into the execution plan. We
introduced our approach in general as well as exemplarily
for spatial intersection queries on the Relational R-tree. Our
experimental evaluation showed that our new approach
adapts to the best of the two worlds, “index” and “sequential
scan”. Therefore, the optimizer can under all circumstances
include this new fine-grained approach into any query exe-
cution plan.

References

[1] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: The Paradigm
of Relational Indexing: A Survey. 10. GI-Fachtagung Datenbank-
systeme für Business, Technologie und Web, 2003.
[2] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Efficient
Query Processing on Relational Data Partitioning Index Struc-
tures. Technical Report, University of Munich, 2004.
[3] Ravi Kanth K. V., Ravada S., Sharma J., Banerjee J.: Indexing
Medium-dimensionality Data in Oracle. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 521-522, 1999.
[4] Seeger B., Larson P., McFadyen R.: Reading a Set of Disk
Pages. Proc. 19th Int. Conf. on Very Large Databases (VLDB):
592-603, 1993.

m
L n()

b
------------- hB

m
b
----+

 σ q n,() m
L n() 1–⋅ ⋅<

1 σ q n,() 1
b hB⋅

m
-------------+

 ⋅<

0

50

100

150

200

250

300

0,00 0,10 0,40 1,00

selectivity

ru
n

ti
m

e
[s

ec
.]

Figure 4: Relational R-tree for varying selectivity.

full table scan

R-tree unchanged

R-tree scan σ = 0

R-tree scan σ = 1/3

R-tree scan σ = 1

