
 Spatial Join for High-Resolution Objects

Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz
University of Munich, Germany, {kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de

Abstract

Modern database applications including com-
puter-aided design (CAD), medical imaging, molecular bi-
ology, or Multimedia Information Systems impose new re-
quirements on efficient spatial query processing. One of the
most common query types in Spatial Database Management
Systems is the spatial join. In this paper, we investigate spa-
tial join processing for two sets of very complex spatial ob-
jects. We present an approach that is based on a fast filter
step performing the spatial join on simple primitives which
conservatively approximate the objects. Our main attention
is focused on the problem how to generate approximations
adequate for high-resolution objects. In this paper, we in-
troduce gray approximations as a general concept which
helps to range between replicating and non-replicating ob-
ject approximations. The key idea of our approach is to
build these replications based on statistical information
taking the data distribution of the respective join-partner
relation into account. Furthermore, our approach uses
compression techniques for the effective storage and re-
trieval of the decomposed spatial objects. We demonstrate
the benefits of our new method for the spatial intersection
join on high resolution data. The experimental evaluation
on real-world test data points out that our new concept ac-
celerates the spatial intersection join considerably.

1. Introduction

The efficient management of complex objects has be-
come an enabling technology for geographical information
systems (GIS) as well as for many novel database applica-
tions, including computer aided design (CAD), medical im-
aging, molecular biology, and Multimedia Information Sys-
tems. One of the most common query types in Spatial
Database Management Systems is the spatial join. In this
paper, we concentrate on the intersection join, as the inter-
section is the most important join predicate for complex spa-
tial objects [9]. The intersection join retrieves all object
pairs from two given data sets that satisfy the spatial-inter-
section predicate, i.e. all pairs of overlapping objects are re-
ported. A usual spatial join example of 2D geographical
data is “find all cities which are crossed by a river”. In the

automobile industry, spatial join processing of complex 3D
high-resolution objects is also required, e.g. to support effi-
cient processing of queries like “find all engine parts which
intersect the car body”. Thereby an efficient processing of
spatial joins is indispensable.

An important new requirement for large objects, in-
cluding cars, planes or space stations, is a high approxima-
tion quality. As a common and successful approach, spatial
objects can be conservatively approximated by a set of vox-
els, i.e. cells of a grid covering the complete data space [17].
By means of space filling curves which achieve good spatial
clustering properties, each cell of the grid can be encoded by
a single z-value and, thus, an extended object is represented
by a set of z-values.

High resolutions yield a high approximation quality but
result in high efforts in terms of identifying the join candi-
date pairs. Thus, the join performance is primarily influ-
enced by the size of the voxel sets, i.e. it depends on the
resolution of the grid. We aim to manage very complex ob-
jects, e.g. the “777” from Boeing, which was completely
digitally designed and assembled. It consists of about three
million parts, some of which are composed of several mil-
lions of voxels. Following [11], adjacent cell values can be
grouped together to voxel interval sequences (cf. Figure 1)
which are basic datatypes for spatial applications. However,
in the case of high-resolution data, the number of resulting
intervals still remains very high.

In this paper, we introduce a method for spatial inter-
section join, especially designed to cope with high resolu-
tion objects. Our approach is not confined to the availability
of a spatial index. It is based on grouping large sets of object
voxels into few container objects in a preceding preprocess-
ing step, and to perform the spatial join on these container
objects.

Figure 1: Conversion pipeline from spatial objects to
voxel interval sequences

a) Spatial object b) Voxel set c) Interval sequence

kunath
Scientific and Statistical Database Management (SSDBM 2004), Santorini Island, Greece, 2004.

1.1. Basic join algorithm

Figure 2 outlines the procedure for joining two sets of
objects stored in two relations R and S. id denotes a unique
object identifier and link refers to an external file containing
the complete voxel set of an object. The overall join proce-
dure is composed of two phases: in the first phase (prepro-
cessing phase), we convert the voxels for each object of S
into z-values, group the z-values into a set of container ob-
jects and store them in an auxiliary relation S’ (cf. Figure
2a). The attribute approx is realized as Nested Table storing
the set of container objects for each object in S. Thereby,
each container object is composed of the respective z-value
sequence and a minimal covering interval. In the second
phase (join phase), we perform a nested-loop join between
relation R and S’, where R is accessed within the outer join
loop. Before joining each object of R with S’, we convert the
voxels into z-values and group the z-values of each object
into container objects on-the-fly (cf. Figure 2b), i.e. the
grouping process of relation R is embedded within the outer
loop of the nested-loop join. In a fast filter step, we use for
each join pair the minimal covering intervals of the contain-
er objects to check them for intersection. Subsequently, in a
potential expensive refinement step each positive candidate
from the filter step has to be checked for intersection with
respect to its exact geometry by considering the z-value se-
quences. In the rest of this paper, we refer to this basic join
procedure performed on relation R and S, respectively S’.

The key idea that we use for grouping the z-values is a
cost-based decomposition algorithm introduced in this pa-
per which takes statistics about the data distribution into ac-
count. Furthermore, we deploy compression algorithms for
the efficient storage and retrieval of the container objects of
relation S’.

1.2. Outline of this paper

The remainder of the paper is organized as follows:
Section 2 provides summaries of different aspects for effi-
cient spatial join processing and decompositioning of com-
plex spatial objects. Section 3 presents a cost-based decom-
positioning algorithm for generating container objects
introduced as gray intervals. In Section 4, we show how the
join procedure can be accelerated by using the generated
gray intervals. In Section 5 we present a detailed experi-
mental evaluation demonstrating the benefits of our ap-
proach. Finally, in Section 6, we summarize our work, and
conclude the paper with a few remarks on future work.

2. Related work

In this section, we will shortly discuss different aspects
of efficient spatial join processing of complex spatial ob-
jects.

Spatial Join. Numerous spatial join algorithms have
been proposed over the last decade. Most of them rely on the
paradigm of multi-step query processing [3]. A fast filter
step excludes all objects that cannot satisfy the join predi-
cate. The subsequent refinement step is applied to the join
candidate pairs which are returned from the filter step.
Thereby, the main focus of research is on the filter step
which is applied to geometric object approximations. On the
basis of the availability of indices for processing the filter
step, spatial join methods operating on two relations can be
classified into three classes: index on both relations (Class
1), index on one relation (Class 2) and no indices (Class 3).

The common solutions for the spatial join methods of
Class 1 are the algorithms based on matching two R-trees as
presented in [2]. In the last few years, the international re-
search community has focused on methods of Class 2 and
Class 3. A simple Class 2 approach is the index nested loop,
where each tupel of the non-indexed relation is used as que-
ry applied to the indexed relation. In [13], seeded trees were
introduced in oder to process spatial joins efficiently when
only one R-tree is available. The authors propose to create a
second R-tree using the available tree as a skeleton and ap-
ply thereafter a Class 1 algorithm. For spatial join algo-
rithms of Class 3, initially no indices are available which
could be used to improve the query performance. Several
techniques have been proposed which partition the tuples
into buckets and then use hash based techniques, e.g. the
spatial-hash join [14] or the partition based spatial merge
join [18]. The scalable sweeping-based spatial join [1] is
w.r.t. worst-case efficiency the most promising algorothm
for processing spatial joins. The latter approaches work well
for relative simply shaped 2D objects, which can be well
approximated by their minimal bounding boxes. In contrast
to these approaches, our approach deals with very complex
3D objects, where the minimal bounding box is a rather poor
approximation.

id approx

approx(A)

Figure 2: Spatial join procedure
a) Preprocessing phase b) Join phase

}
}

preprocessing
phase

join phase

Relation R Relation S Relation S’a)

b)

E

F

G

group

group nested loop
joinz-values

z-values

id
A

B

link
’file_A’

’file_B’

id
E

F

G

link
’file_E’

’file_F’

’file_G’

Relation R

id

A

B

link

’file_A’

’file_B’

id approx
Relation S’

E

F

G

Decomposition of Complex Spatial Objects. Approx-
imations of extended objects generally consist of either one
or several simple spatial primitives such as minimal bound-
ing boxes which are often used for one-value approxima-
tions [3, 9]. Although providing the minimal storage com-
plexity, one-value approximations of spatially extended
objects often are far too coarse. In many applications, GIS or
CAD objects feature a very complex and fine-grained ge-
ometry. The rectilinear bounding box of the brake line of a
car, for example, would cover the whole bottom of the data
space. A non-replicating storage of such data would cause
too many false hits in the filter step of the join that have to
be eliminated by the refinement step.

In contrast, approaches which use multi-value approxi-
mations, i.e. approximations which are composed of several
spatial primitives, can achieve a better approximation than a
single rectangle. In the case of a very accurate approxima-
tion, the number of primitives can become very high. For
instance, Gaede [8] pointed out that the number of z-value
intervals representing a spatially extended object exponen-
tially depends on the granularity of the grid approximation.
Furthermore, the extensive analyses given in [15] and [7]
show that the asymptotic redundancy of an interval-based
decomposition is proportional to the surface of the approxi-
mated object. Thus, in the case of high resolution huge parts
(e.g. wings of an airplane), the number of intervals can be-
come unreasonably high, which results in too many inter-
sect verifications in the filter step of the join procedure.

A promising solution for a good trade-off between
these conflicting objectives may be found somewhere in be-
tween one-value and multi-value object approximations. In
[20], Kriegel and Schiwietz tackled the complex problem of
“complexity versus redundancy” for 2D polygons. They in-
vestigated the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of com-
ponents, with respect to its effect on efficient query process-
ing. The presented empirically derived root-criterion sug-
gests to decompose a polygon consisting of n vertices into

 many simple approximations. As this root-criterion
was designed for 2D polygons and was not based on any
analytical reasoning, it cannot be adapted to complex 3D
objects. In this paper, in contrast, we will present an analyt-
ical cost-based decomposition approach which can be used
for 2D and 3D objects. It takes the cost of the filter step and
refinement step of the join procedure into account.

3. Cost-based decomposition of complex spa-
tial objects

In the following, the geometry of a spatial object is as-
sumed to be described by a sequence of pixels/voxels, or-
dered by a space-filling curve, e.g. z-curve [17]. High reso-
lution spatial objects may consist of several hundreds of
thousands of voxels. For each object, there exist a lot of dif-

ferent possibilities to decompose it into approximations by
grouping numerous voxels together. Following the ap-
proach that the voxels are linearized by a space-filling
curve, the voxels are grouped into one-dimensional inter-
vals. We call these intervals gray intervals throughout the
rest of this paper. Informally spoken, gray intervals bridge
the gap between black intervals obtained by simply con-
necting adjacent voxels together.

In the remainder of this section, we will introduce a
cost-based grouping algorithm which finds an optimal
trade-off between replicating and non-replicating approxi-
mations. In Section 3.1, we first introduce our gray intervals
formally, and show how they can be integrated into a com-
mercial ORDBMS. In Section 3.2, we discuss why it is ben-
eficial to store the gray containers in a compressed way. In
Section 3.3, we introduce our cost-based grouping algo-
rithm for complex spatial objects.

3.1. Gray intervals

Gray intervals are formed by grouping object voxels
representing complex spatial objects. By means of space
filling curves, ρ: INd → IN, all multidimensional voxelized
objects can be mapped to one-dimensional voxelized ob-
jects containing a set of integers. In our approach we employ
the z-curve as space filling curve, thus an object is repre-
sented by a set of z-values.

Obviously, we can group adjacent z-values together to
a z-value interval. The resulting sequence of intervals, rep-
resenting a high resolution spatially extended object, often
consists of very short intervals connected by short gaps. Ex-
periments suggest that both gaps and intervals obey an ex-
ponential distribution (cf. Section 5). In order to overcome
this obstacle, it seems promising to group adjacent voxel
intervals together to longer intervals, which we call gray in-
tervals.

Definition 1 (gray interval, gray interval sequence)
Let W = {(l, u) ∈ IN2, l ≤ u} be the domain of z-value inter-
vals, where (l, u) contains all z-values z such that l ≤ z ≤ u.
Furthermore, let b1 = (l1, u1), …, bn = (ln, un) ∈ W be a se-
quence of z-value intervals of the object having id as its ob-
ject identifier, with ui + 1 < li+1 for all i ∈ {1, …, n – 1}.
Moreover, let m ≤ n and let i0, i1, i2, …, im ∈ IN such that 0 =
i0 < i1 < i2 < …< im = n holds. Then, we call Ogray = (id,
〈 , , …, 〉) a gray
interval sequence of cardinality m. We call each of the j = 1,
…, m groups of Ogray a gray interval Igray .

Intuitively, a gray interval is a covering of one or more
disjoint and nonadjacent z-value intervals where there is at
least a gap of one z-value between adjacent intervals. In the
next definition, we introduce a few useful operators on gray
intervals.

O n()

bi0 1+ ,...,bi1
〈 〉 bi1 1+ ,...,bi2

〈 〉 bim 1– 1+ ,...,bim
〈 〉

bij 1– 1+ ,...,bij
〈 〉

Definition 2 (operators on gray intervals)
For any gray interval Igray = 〈(lr ,ur),…, (ls ,us)〉 we define the
following operators:

Length: L (Igray) = us – lr + 1.

Cardinality: C (Igray) = s – r + 1.

Number of Black Cells: Nb (Igray) = .

Number of White Cells: Nw (Igray) = L(Igray) − Nb (Igray).
Density: D (Igray) = Nb (Igray) / L (Igray).
Hull: H (Igray) = (lr ,us).

Gap: G(Igray) ={ .

Byte Sequence: B (Igray) = 〈s0, .., sn〉,

where si ∈ IN and 0 ≤ si < 28,

Figure 3 demonstrates the values of some of these oper-
ators for a sample set of gray intervals.

In our approach, the z-value intervals br , …, bs of each
gray interval Igray = 〈br , …, bs〉 are mapped to the complex
attribute data of the relation GrayIntervals which is in
Non-First-Normal-Form (NF2). It consists of the hull H(Ig-

ray), the density D(Igray) and a BLOB containing the byte se-
quence B(Igray) representing the exact geometry. Important
advantages of this approach are as follows: First, the hulls
H(Igray) of the gray intervals can be used in a preceding fast
primary filter step. Secondly, the density D(Igray) can help to
detect absolute intersections between two gray intervals
without accessing the exact geometry B(Igray). This second
filter is specified in Section 4.3. Furthermore, we use the
ability to store the content of a BLOB outside of the table.
Therefore the column B(Igray) contains a BLOB locator. This
enables us to access the possibly huge BLOB content only if
it is required and not automatically at the access time of the

rows. In the next section we discuss how the I/O cost of the
BLOBs can be reduced by applying compression tech-
niques.

Let us note, that each complex object is stored in one
single row, where the corresponding gray intervals are man-
aged in a nested table. This approach helps us to avoid costly
duplicate elimination during the join processing.

3.2. Compression of gray intervals

In this section, we motivate the use of packers, by
showing that B(Igray) contains patterns. Therefore, B(Igray)
can efficiently be shrunken by using data compressors. Fur-
thermore, we discuss the properties which a suitable com-
pression algorithm should fulfill. In the following, we give a
brief presentation of a new effective packer which seems
promising for our approach. It exploits gaps and patterns
included in the byte sequence B(Igray) of our gray interval
Igray.

3.2.1. Patterns. To describe a rectangle in a 2D vector
space we only need 4 numerical values, e.g. we need two
2-dimensional points. In contrast to the vector representa-
tion, an enormous redundancy is contained in the corre-
sponding voxel sequence of an object, an example is shown
in Figure 4. As space filling curves enumerate the data
space in a structured way, we can find such “structures” in
the resulting voxel sequence representing simply shaped
objects. We can pinpoint the same phenomenon not only for
simply shaped parts but also for more complex real-world
spatial parts. Assuming we cover the whole voxel sequence
of an object id by one interval, i.e. Ogray = (id, 〈Igray〉), and
survey its byte representation B(Igray) in a hex-editor, we
can notice that some byte sequences occur repeatedly. For
more details about the existence of patterns in B(Igray) we
refer the reader to [12]. We will now discuss how these pat-
terns can be used for the efficient storage of gray intervals
in an ORDBMS.

3.2.2. Compression rules. A voxel set belonging to a gray
interval Igray can be materialized and stored in a BLOB in

Figure 3: Gray interval sequence

z-value intervals of the object (obtained from encoding voxels via the z-curve)

576 584 592 600 608

z-value intervals

gray intervals

gray interval
Operators

I1 I2 I3

hull:
H(Ix)

[578,
579]

[586,
593]

[600,
605]

density:
D(Ix) 1 5/8 3/6

maximum gap:
G(Ix) 0 2 3

byte sequence:
B(Ix) ’30’ ’33 40’ ’C4’

GrayIntervals

id
data

H(Ix) D(Ix) B(Ix)

...

E

[578, 579] 1 ’30’

[586, 593] 5/8 ’3340’

[600, 605] 3/6 ’C4’

...

I1 I2 I3

576 584 592 600 608

gray interval sequence (obtained from grouping z-values together)

ui li– 1+()
i r…s=
∑

0 r s=
max li ui 1–– 1– i r 1 … s, ,+=,{ } else

n us 8⁄ lr 8⁄–=

si
2

7 k–

0k 0=

7

∑ if lt ,ut()∃ :lt lr 8⁄ 8⋅ 8 i k ut r t s≤ ≤,≤+ +≤
otherwise

=

... ...

Figure 4: Pattern derivation by linearizing a voxelized
object using a space-filling curve

... ...
Igray

B (Igray) = ...33CC33CC0000000033CC33CC...

a simple rectangular object
in a 2D data space which is linearly ordered by a z-curve

many different ways. A good materialization should consid-
er two “compression rules”:

A good join response behavior is based on the fulfill-
ment of both aspects. The first rule guarantees that the I/O
cost are relatively small whereas the second rule is
responsible for low CPU cost . The overall time

 for the evaluation of a BLOB is com-
posed of both parts. A good behavior related to an efficient
retrieval and evaluation of B(Igray) depends on the fulfill-
ment of both rules.

As we will show in our experiments, it is very important
for a good retrieval- and evaluation-behavior to find a
well-balanced way between these two compression rules.

3.2.3. Spatial compression techniques. In our approach
we deploy the Quick Spatial Data Compressor (QSDC) al-
gorithm, which is especially designed for high resolution
spatial data and includes specific features for the efficient
handling of patterns and gaps. It is optimized for speed and
does not perform time intensive computations as for in-
stance Huffman compression. QSDC is a derivation of the
LZ77 technique [6]. However, it compresses data in only
one pass and much faster than other Lempel-Ziv based com-
pression schemes as for example XRAY [5]. For more details
we refer the reader to [13].

3.3. Cost-based grouping

For our grouping algorithm we take the estimated join
cost between a gray interval Igray and a join-partner relation
T into account. The overall join cost costjoin is composed of
two parts, the filter cost costfilter and the refinement cost
costrefine:

costjoin(Igray,T) = costfilter(Igray,T) + costrefine(Igray,T).

The question at issue is, which grouping is most suit-
able for an efficient join process. A good grouping should
take the following “grouping rules” into consideration:

The first rule guarantees that costfilter is small, as each gray
interval Igray(T) of the join-partner relation T is a potential
filter candidate, which has to be loaded from disk (BLOB
content excluded) and evaluated for intersection with re-
spect to their hulls.

In contrast, the second rule guarantees that many unneces-
sary candidate tests of the refinement step can be omitted, as
the number and size of gaps included in the gray intervals,
i.e. the approximation error, is small. Finally, the third rule
guarantees that a candidate test can be carried out efficient-
ly. Thus, Rule 2 and Rule 3 are responsible for low costrefine.
A good join response behavior results from an optimum
trade-off between these grouping rules.

Filter cost. The costfilter(Igray,T) can be computed by the
expected number of intersection tests required to perform
the join between Igray and the join partners, which is equal to
the overall number Ngray(T) of gray intervals Igray(T). There-
fore, we penalize each intersection test by the cost cf which
are required to access the gray intervals Igray(T) and evaluate
the join predicate for each pair (H(Igray),H(Igray(T))):

costfilter(Igray,T) = Ngray(T) · cf,

where Nvoxel(T) (number of voxels) ≥ Ngray(T) ≥ Nobject(T)
(number of objects) holds for the join-partner relation. The
value of parameter cf depends on the used system.

Refinement cost. The cost of the refinement step cos-
trefine is determined by the selectivity of the filter step. For
each candidate pair resulting from the filter step, we have to
retrieve the exact geometry B(Igray) in order to verify the
intersection predicate. Consequently, our cost-based group-
ing algorithm is based on the following two parameters:

 • Selectivity σfilter
 of the filter step.

 • Evaluation cost costeval of the exact geometries.

The refinement cost of a join related to a gray interval Igray

can be computed as follows:

costrefine(Igray, T) = Ngray(T) · σfilter(Igray,T) · costeval(Igray).

In the following subsections, we show how we can esti-
mate the selectivity of the filter step σfilter and the evaluation
cost costeval.

3.3.1. Selectivity estimation. We use simple statistics of
the join-partner relation T to estimate the selectivity
σfilter(Igray,T). In [10], it was shown that using quantiles
(‘equi-count histograms’) is more suitable for estimating
the selectivity than using histograms (‘equi-width histo-
grams’). The runtime required for the histogram computa-
tion is increased by the cost of barrier-crossings between the
declarative environment of the SQL layer and our stored
procedure. Fortunately, most ORDBMSs comprise efficient
built-in functions to compute single-column statistics, par-
ticularly for cost-based query optimization. Available opti-
mizer statistics are accessible to the user by the relational
data dictionary. The basic idea of our quantile-based selec-
tivity estimation is to exploit these built-in index statistics
rather than to add and maintain user-defined histograms.

Rule 1: As little as possible secondary storage should be
occupied.

Rule 2: As little as possible time should be needed for the
(de)compression of the BLOB.

cBLOB
I/O

cBLOB
CPU

cBLOB cBLOB
I/O cBLOB

CPU+=

Rule 1: The number of gray intervals should be small.
Rule 2: The approximation error of all gray intervals

should be small.
Rule 3: The gray intervals should allow an efficient

evaluation of the contained voxels.

We start with the definition of a quantile vector, the typical
statistic type supported by relational database kernels.

Definition 3 (Quantile Vector).
Let (M, ≤) be a totally ordered multi-set. Without loss of
generality, let M = {m1, m2, …, mN} with mj ≤ mj+1,
1 ≤ j < N. Then, QV(M, ν) = (q0, …, qν) ∈ Mν is called a
quantile vector for M, given a resolution ν ∈ IN, iff the fol-
lowing conditions hold:

(i) q0 = m1

(ii) ∀i ∈ 1, …, ν: ∃j ∈ 1, ..., N: qi = mj ∧ < ≤
The multi-set M of our quantile vector (q0, …, qν) is

formed by the z-value attribute of the domain values of the
join-partner relation.

The selectivity σfilter(Igray,T) related to a gray interval
Igray can be determined by applying the quantile vector
QV(T,v) of the z-values of the join-partner relation T. In the
following formula, v denotes the resolution of the quantile
vector and overlap() returns the intersection length of two
intersecting intervals:.

3.3.2. BLOB-Evaluation cost. For the computation of the
evaluation cost we have to consider the I/O cost required to
retrieve the BLOB from the secondary storage and the CPU
cost related to the evaluation of the BLOB. These cost heavi-
ly depend on how we organize B(Igray) within our BLOB, i.e.
they depend on the used compression algorithm. For each
compression algorithm we provide statistics, i.e. an empiri-
cally derived look-up table LUT (cf. Figure 5), by means of
which we can estimate the I/O cost and CPU cost. Roughly
speaking, the evaluation cost costeval(Igray, LUT) depends on
the length of our gray interval L(Igray) and on the used pack-
er.

3.3.3. Join cost. To sum up the join cost costjoin(Igray) relat-
ed to a gray interval Igray and a join-partner relation T can be
expressed as follows:

costjoin(Igray,T) =

Ngray(T) · (cf + σfilter(Igray,T) · costeval(Igray,LUT))

The filter selectivity and BLOB-evaluation cost are
computed as described in Section 3.3.1 and 3.3.2. For the
computation of the filter cost, we propose to empirically
derive the value of cf. Let us note that the inequality
’costgray>costdec’ in Figure 5 is independent of Ngray(T), and
thus Ngray(T) is not required during the grouping algorithm.

3.3.4. Grouping algorithm. Orenstein [16] introduced the
size- and error bound decomposition approach. Our first
grouping rule “the number of gray intervals should be

small” can be met by applying the size-bound approach,
while applying the error-bound approach results in the sec-
ond rule “the approximation error of all gray intervals
should be small”. For fulfilling both rules, we introduce the
following top-down grouping algorithm for gray intervals,
called GroupCon (cf. Figure 5). GroupCon is a recursive al-
gorithm which starts with a gray interval Igray initially cov-
ering the complete object. For reasons of efficient computa-
tion we use the following simple heuristics: In each step of
our algorithm, we look for the maximum gap g within the
actual gray interval. We carry out the split at this gap, if the
estimated join cost caused by the decomposed intervals is
smaller than the estimated cost caused by our input interval
Igray. The expected join cost costjoin(Igray,T) can be computed
as described above. Data compressors which have a shallow
LUT curve, e.g. PACKER 2 in Figure 5, result in an early
stop of the GroupCon algorithm generating a small number
of gray intervals.

4. Accelerated relational join processing

In contrast to the last section, where we focused on
building the object approximations and organizing them
within the database, in this section we turn our attention to
processing the join. We first present our new join algorithm
in Section 4.1, using the techniques presented in Section 3.
In Section 4.2, we show how we can express the join proce-
dure on top of the SQL engine. Furthermore, we introduce
useful optimizations for the evaluation of the intersect pred-
icate in Section 4.3.

4.1. Join algorithm.

Our two phase join algorithm is shown in Figure 6.
Thereby we build the gray intervals (function decompose())

j 1–
N

i
ν

j
N

σf i lter Igray T,()
overlap H Igray() qi 1– qi(,),()

qi qi 1––
-- 
  v⁄

i 1=

v

∑≈

Figure 5: Grouping algorithm GroupCon based on a
look-up table LUT and a quantil vector QV

QV: quantile vector

LUT:look-up table with packer specific cost
GroupCon (Igray, LUT, QV(T), T) {

left gray_interval;
right gray_interval;
interval_pair tupel(left gray_interval, right gray_interval)
interval_pair := split_at_maximum_gap(Igray);
left := interval_pair.left;
right := interval_pair.right;
costgray := costjoin(Igray,T);
costdec := costjoin(left,T) + costjoin(right,T);
if costgray > costdec then

GroupCon (left,LUT,QV(T),T);
GroupCon (right,LUT,QV(T),T);

else report (Igray);
}

0

5

10

15

20

25

0 2000000 4000000 6000000

 BLOB s ize [byte]

ev
al

u
at

io
n

 c
o

st

UNPA CKED
PA CKER 1
PA CKER 2

look-up table LUT

by means of the cost-based grouping algorithm presented in
Section 3.3.3. In the following, we assume that we have to
join relation R with relation S containing complex spatial
objects.

Preprocessing phase. For each object objS in relation S
we apply the function decompose(objS), which builds the
gray intervals according to the grouping algorithm Group-
Con (cf. Figure 5). This grouping algorithm takes the statis-
tics of the data distribution with respect to relation R into
account. Finally, the gray intervals of each object are mate-
rialized in relation S’ following the NF2 schema GrayInter-
vals (cf. Figure 3).

In the following nested-loop join, we assume that the
objects objR of relation R will be accessed only once. Thus,
there is no need to materialize the gray intervals of objR in
the database as done for the objects in relation S, or S’. As-
suming that one object completely fits in memory, its gray
intervals can be built on-the-fly during the join phase.

Join phase. The join phase is performed in a nest-
ed-loop fashion. For each object, we perform the function
decompose(objR) in the outer loop in order to build the gray
intervals of object objR. This time, we apply the data distri-
bution statistics of relation S. In the inner loop, we test each
object objS for intersection with object objR calling the bool-
ean function intersect().

The function intersect(objR’, objS’) checks whether two
objects objR’ and objS’ intersect. They intersect, iff there is at
least one gray-interval pair (objR’.Igray, objS’.Igray) which in-
tersects. We assume that the rows of both nested tables
objR’.data and objS’.data are sequentially accessed and that
the gray intervals are ordered with respect to their hulls.
Both nested tables are processed in parallel, thus we need to
access each row only once. As soon as an intersection is
detected, the remaining tests can be skipped and the value
“true” is issued. The intersection test of a gray-interval pair
is performed in two steps: In the first step (filter step) the
pair is tested with respect to their hulls. If the result of the
filter step is positive, i.e. the hulls intersect, a subsequent

refinement step verifies the intersection with respect to the
exact geometric object representations. Before testing the
two byte sequences for intersection, we have to load B(ob-
jS’.Igray) from disk and decompress it.

As already mentioned in Section 3.2.2, it is important
that the compressed BLOB size is small in order to reduce
the I/O cost. Obviously, the small I/O cost should not be at
the expense of the CPU cost. Therefore, it is important that
only the objects of the inner relation S’ are in a compressed
form, whereas the byte sequence B(objR’.Igray) does not af-
fect the I/O cost. Furthermore, a fast decompression algo-
rithm is required to evaluate the BLOB quickly.

In the next section, we show how we can easily express
the intersection join query on top of the SQL engine.

4.2. The spatial-intersection join SQL statement

Most ORDBMSs, including Oracle, IBM DB2 or Infor-
mix IDS/UDO, provide extensibility interfaces in order to
enable database developers to seamlessly integrate custom
object types and predicates within the declarative DDL and
DML. These interfaces form a necessary prerequisite for the
seamless embedding of user-defined spatial objects, func-
tions and aggregates into off-the-shelf ORDBMSs. On this
basis, we define the intersection join query which is ex-
pressed on top of the SQL engine as shown in Figure 7.

The input of this SQL query is the relation R and the
auxiliary relation S’ derived from the preprocessing step. In
the subquery, which results in the new relation R’, we use
the function decompose() which is a user-defined aggregate
function as provided in the SQL:1999 standard. This func-
tion decomposes each object of R into a set of gray intervals.
The function intersect() is implemented as stored procedure
and behaves as described in Section 4.1.

4.3. Optimizations

For the intersect predicate, it suffices to find a single
intersecting interval pair in order to report the join-pair. Ob-
viously, it is desirable to detect such intersecting pairs as
early as possible in order to avoid unnecessary refinement
tests. In this section, we present an optimization aiming at
this goal. We introduce a fast second filter step which tries
to determine intersecting pairs without examining the
BLOBs. This test is entirely based on aggregated informa-

R table(id, z-val); //objects of relation R
S table(id, z-val); //objects of relation S
S’ table(Gray_Intervals);
join(R,S){

for each object objS in S do {
objS’ := decompose(objS);
store (objS’) in S’; }

result_set := ∅;
for each object objR in R do {

objR’ := decompose(objR);
for each object objS’ in S’ do
if intersect(objR’, objS’) then

result_set := result_set ∪ (objR’.id, objS’.id);}}

Figure 6: Nested-Loop join algorithm

}
}

pr
ep

ro
ce

ss
in

g
ph

as
e

jo
in

ph
as

e

Figure 7: SQL statement for spatial-intersection join

SELECT R’.id, S’.id FROM
(GrayIntervals S’,

(SELECT R.id AS id, decompose(R.z_val) AS data
FROM R
GROUP BY R.id) R’

WHERE intersect(R’.data, S’.data) = true // filter/refinement

tion of the gray intervals. The following optimization can
easily be integrated into the function intersection(). If the
fast second filter step determines an intersecting gray inter-
val pair, all remaining candidate tests can obviously be
skipped. Thus this filter step acts as an additional filter be-
tween the first filter step and the refinement step.

4.3.1. Fast intersection tests. Let us first mention that a
gray interval with maximum density is called a black inter-
val. Furthermore, we speak of “overlapping” intervals, if the
hulls of the intervals intersect. We will now discuss what
gray intervals have to look like so that we can decide wheth-
er two overlapping intervals actually intersect each other or
not without accessing their BLOBs. If any of the following
five conditions holds, then two gray intervals intersect:

 • If two black intervals overlap, they necessarily intersect
as well.

 • If a black interval is longer than the maximum gap be-
tween two black intervals contained in Igray, then the two
intervals intersect (cf. Figure 8a).

 • If a black interval overlaps the start or end of a gray in-
terval, then the intervals intersect. This is due to the fact
that any gray interval ends and starts with a black inter-
val (cf. Figure 8b1).

 • If gray intervals start or end at the same point, then the
intervals intersect. This is due to the fact that any gray
interval ends and starts with a black interval (cf.
Figure 8b2).

 • If the sum of the number of the white voxels of two over-
lapping gray intervals is smaller than the length of the
overlapping area, then the two intervals necessarily in-
tersect. (cf. Figure 8c). This test is similar to the false
area test in [3].

Let us note that we carry out this fast-intersection test
for all overlapping gray intervals before testing the exact
geometry for any gray interval. If one of these fast-intersec-
tion-tests yields true, the intersection routine returns true,
without testing any data stored in the BLOBs. If none of
these fast-intersection-tests yields true, it is beneficial to or-
der the gray intervals of the objects by descending density
values D(Igray) before carrying out the expensive BLOB-in-
tersection test. Thus, the intervals having the highest density
are tested first, which increases the probability for an early
intersection detection.

5. Experimental evaluation

In this section, we evaluate the performance of our ap-
proach with a special emphasis on different grouping algo-
rithms GRP in combination with various data compression
techniques DC. We used the following data compressors: no
compression (NOOPT), BZIP2 approach [4] and the QSDC
approach. Furthermore, we grouped object voxels into gray
intervals following two grouping algorithms, called MAX-
GAP and GroupCon.

MaxGap. This grouping algorithm tries to minimize
the number of gray intervals while not allowing that a max-
imum gap G(Igray) of any gray interval Igray exceeds a given
MAXGAP parameter. By varying this MAXGAP parameter,
we can find the optimum trade-off between the first two op-
posing grouping rules of Section 3, namely a small number
of gray intervals and a small approximation error of each of
these intervals. A one-value approximation is achieved by
setting the MaxGap parameter to infinite.

GroupCon. We grouped the voxels according to our
cost-based grouping algorithm GroupCon (cf. Section
3.3.3), where we used the statistics of Section 3.3.1 and a
look-up table for each packer. We set the resolution of the
quantile vector to 100 quantiles. The look-up table was cre-
ated by experimentally determining the average cost for
evaluating a gray interval Igray, dependent on the length of
its byte sequence. Let us note, that the grouping based on
MaxGap(DC) does not depend on DC, whereas Group-
Con(DC) takes the actual data compressor DC into account
for performing the grouping.

The refinement-step evaluation of the intersect() rou-
tine was delegated to a DLL written in C. All experiments
were performed on a Pentium 4/2600 machine with IDE
hard drives. The database block cache was set to 500 disk
blocks with a block size of 8 KB and was used exclusively
by one active session.

Test data sets. The tests are based on two test data sets
CAR (3D CAD data) and SEQUOIA (subset of 2D GIS data
representing woodlands derived from the SEQUOIA 2000
benchmark [19]). The first test data set was provided by our
industrial partner, a German car manufacturer, in form of
high resolution voxelized three-dimensional CAD parts.
The properties of both data sets are depicted in Table 1.

loverlap uoverlap
uoverlap - loverlap+1

Figure 8: Fast intersection tests on gray intervals

b1)a)
Iblack

uoverlap=ugrayloverlap=lblack c)

u’gray = ugrayl’gray = lgray

b2)

Nw(Igray) + Nw(I’gray)

>

+

Igray

I’gray

 G(I’gray)>L(Iblack)

I’gray

1E+00

1E+02

1E+04

1E+06

1E+08

1E+00 1E+02 1E+04 1E+06 1E+08 1E+10

Figure 9: Interval and gap histograms (CAR)

N
um

be
r

of
ga

ps
 /

in
te

rv
al

s

length

gaps

intervals

In both cases, the z-curve was used as a space filling
curve to enumerate the pixels/voxels. Figure 9 depicts the
interval and gap histograms for the CAR test data set. This
characteristic can also be observed for SEQUOIA. Both test
data sets consist of many short black intervals and short gaps
and only a few longer ones.

5.1. Effectivity of the Compression Techniques

First we present the compression effectivity of our pre-
ferred packer by looking at the storage requirements of the
materialized gray intervals of the CAR dataset. Figure 10
shows the different storage requirements of the BLOBs with
respect to the different data compression techniques. For
high MAXGAP values the BZIP2 approach yields very high
compression rates, for the one-value approximation even
more than 1:1000. On the other hand, due to an enormous
overhead, the BZIP2 approach occupies even more second-
ary storage space than NOOPT for small MAXGAP values.
Contrary, the QSDC approach yields good results over the
full range of the MAXGAP parameter. Using the QSDC
compression technique, we achieve low I/O cost for the
BLOBs which drastically enhance the efficiency of the re-
finement step of the join process.

5.2. Efficiency of the Join Process

In this section, we want to turn our attention to the effi-
ciency of the join process. The figures presented in this
paragraph depict the performance of the spatial join queries.
We have performed intersection joins over two relations,
each containing approximately a half of the parts from the
CAR dataset. We took care that the data of both relations
have similar characterizations with respect to the object size
and distribution. Similarly, the intersection join is per-
formed on parts of the SEQUOIA data set which is divided
into two relations, consisting of deciduous-forest and
mixed-forest areas.

In Figure 11 it is shown in which way the response time
for the intersection join query, including the preprocessing

step, depends on the MAXGAP parameter using the QSDC
compression (cf. Figure 11a) and no compression (cf.
Figure 11b). The figures depict the overall contributions of
the preprocessing phase (cf. Figure 2a), of the on-the-fly
grouping (cf. Figure 2b) and of the filter and refinement
step. If we use small MAXGAP parameters, we need a lot of
time for the filter step whereas the refinement step, which is
influenced by the BLOB sizes, is relatively cheap. On the
other hand, for high MAXGAP values we can see that the
refinement step is very expensive in contrast to the filter step
which shows very little contribution. Due to the fact, that the
performance mainly depends on the I/O cost, the prepro-
cessing step shows a similar performance behavior as the
pure join. We can observe that for both compression cases
the GroupCon approach exceeds the best MAXGAP ap-
proach with respect to both compression variants. The mar-
ginally higher preprocessing cost of the GroupCon algo-
rithm result from the computation of the cost-estimations
required for the decomposition.

Figure 12 illustrates how the overall join run-time de-
pends on the different grouping techniques for both da-
ta-sets, CAR (cf. Figure 12a) and SEQUOIA (cf. Figure
12b). For packed data the optimum MAXGAP value is high-
er than for unpacked data, i.e. MAXGAP = 105 for NOOPT
and MAXGAP = 106 for BZIP2 and QSDC. The GroupCon
algorithm produces for both data sets object decompositions
which yield almost optimum join response time for varying
compression techniques. It adapts to the optimum MAXGAP
parameter for varying compression techniques, by allowing
greater gaps for packed data, i.e the number of generated
gray intervals is smaller in the case of packed data.

To sum up, the GroupCon algorithm produces object
decompositions which yield the optimal trade-off between

Table 1: Test Data Sets

Dataset # voxels # objects size of Data Space

CAR 14 million 200 233 cells

SEQUOIA 32 million 1100 234 cells

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 one-
value

Figure 10: Storage requirements for the BLOB (CAR)

NOOPT

BZPI2

QSDC

B
LO

B
 s

iz
es

 in
 b

yt
es

MAXGAP

09

86

864

8640

86400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Figure 11: GRP(DC) evaluated for intersection joins on
the CAR datasets

a) QSDC compression b) NOOPT (no compression)

09

86

864

8640

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

preprocessing grouping
filter refinement

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

G
ro

up
C

on

MAXGAP

MAXGAP

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

a)

b)

one-value

one-value

G
ro

up
C

on

the filter and refinement cost for both high-resolution data
sets.

6. Conclusion

In this paper, we introduced a new approach for effi-
cient processing of spatial intersection joins over high-reso-
lution objects. In our approach, it is assumed that there is no
spatial index available and that the join is performed in nest-
ed loop fashion. The join procedure is based on fast filter
steps performed on object approximations and an expensive
refinement step. We introduced gray intervals as an object
approximation concept which is based on grouping large
voxel sets, which are high-resolution object representations,
into few container objects in a preceding preprocessing step.
It is shown how they can efficiently be stored by means of
data compression techniques within ORDBMSs. In particu-
lar, we deployed a quick spatial data compressor QSDC, in
order to emphasize those packer characteristics which are
important for efficient join processing, namely good com-
pression ratio for low I/O cost and high unpack speed for
low evaluation cost. The core of our approach is a
cost-based decompositioning algorithm for complex spatial
objects, called GroupCon. It takes cost of the filter and re-
finement step into account. The refinement cost are based
on selectivity estimations of the filter step which are derived
from statistics and estimation of the decompression cost of
the gray intervals. The decomposition algorithm demon-
strates good performance for different compression tech-
niques. We showed that our new approach, i.e. the combina-
tion of GroupCon and QSDC, accelerates the spatial join by
more than one order of magnitude compared to the uncom-
pressed one-value approximation.

In our future work, we want to extend the application
ranges of our new approach from the area of digital mock-up

to real-time virtual reality applications. Furthermore, we
plan to deploy spatial access methods in order to further im-
prove the join efficiency.

7. References
[1] Arge L., Procopiuc O., Ramaswamy S., Suel T., Vitter J.S.:
Scalable Sweeping-Based Spatial Join, In Proc. of the VLDB Con-
ference, 1998, 570-581.
[2] Brinkhoff T., Kriegel H.P., Seeger B.: Efficient Processing of
Spatial Joins Using R-trees, In Proc. of the ACM SIGMOD Confer-
ence, 1993, 237-246.
[3] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.:
Multi-Step Processing of Spatial Joins, In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1994, 197-208.
[4] Burrows M., Wheeler D. J.: A Block-sorting Lossless Data
Compression Algorithm, Digital Systems Research Center
Research Report 124, 1994.
[5] Cannane A., Williams H.: A Compression Scheme for Large
Databases, Australasian Database Conference (ADC), 6-11, 2000.
[6] Deutsch P.: RFC1951, DEFLATE Compressed Data Format
Specification. http://rfc.net/rfc1951.html, 1996.
[7] Faloutsos C., Jagadish H. V., Manolopoulos Y.: Analysis of the
n-Dimensional Quadtree Decomposition for Arbitrary Hyperrect-
angles, IEEE TKDE 9(3), 1997, 373-383.
[8] Gaede V.: Optimal Redundancy in Spatial Database Systems,
In Proc. 4th Int. Symp. on Large Spatial Databases, 1995, 96-116.
[9] Gaede V., Günther O.: Multidimensional Access Methods,
ACM Computing Surveys 30(2), 1998, 170-231.
[10] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model for
Interval Intersection Queries on RI-Trees, Proc. 14th Int. Conf. on
Scientific and Statistical Database Management (SSDBM), Edin-
burgh, Scotland, 2002, 131-141.
[11] Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Effi-
ciently in Object-Relational Databases, In Proc. 26th Int. Conf. on
Very Large Databases (VLDB), 2000, 407-418.
[12] Kunath P.: Compression of CAD-data, Diploma thesis, Uni-
versity of Munich.
[13] Lo M-L., Ravishankar C.V.: Spatial Joins Using Seeded Trees,
In Proc. of the ACM SIGMOD Conference, 1994, 209-220.
[14] Lo M-L., Ravishankar C.V.: Spatial Hash-Joins, In Proc. of
the ACM SIGMOD Conference, 1996, 247-258.
[15] Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis of
the Clustering Properties of Hilbert Space-filling Curve, Tech. Rep.
CS-TR-3611, University of Maryland, 1996.
[16] Orenstein J. A.: Redundancy in Spatial Databases, In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 1989, 294-305.
[17] Orenstein J. A.: Spatial Query Processing in an Object-Ori-
ented Database System, In Proc. of the ACM SIGMOD Confer-
ence, 1986, 326-336.
[18] Patel J.M., DeWitt D.J.: Partition Based Spatial-Merge Join,
In Proc. of the ACM SIGMOD Conference, 1996, 259-270.
[19]Stonebraker M., Frew J., Gardels K., Meredith J.: The
SEQUOIA 2000 Sorage Benchmark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data: 1993.
[20] Schiwietz M., Kriegel H.-P.: Query Processing of Spatial
Objects:Complexity versus Redundancy, Proc. 3rd Int. Symposium
on Large Spatial Databases (SSD'93), Singapore, 1993, in: Lecture
Notes in Computer Science, Vol. 692, Springer, 1993, 377-396.

09

86

864

8640

86400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

NOOPT BZIP2 QSDC

86

864

8640

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Figure 12: Overall join performance for different packers
(a) CAR dataset (b)SEQUOIA dataset

a)

b)

MAXGAP (SEQUOIA)
one-value

MAXGAP (CAR)
one-value

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

ov
er

al
l e

xe
cu

tio
n

tim
e

[s
]

G
ro

up
C

on
G

ro
up

C
on

