Scientific and Statistical Database Management (SSDBM 2004), Santorini Island, Greece, 2004.

Spatial Join for High-Resolution Objects

Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz
University of Munich, Germany, {kriegel, kunath, pfeifle, renz} @dbs.infor matik.uni-muenchen.de

Abstract

Modern database applications including conm-
puter-aided design (CAD), medical imaging, molecular bi-
ology, or Multimedia Information Systems impose new re-
quirements on efficient spatial query processing. One of the
most common query typesin Spatial Database Management
Systemsisthe spatial join. In this paper, we investigate spa-
tial join processing for two sets of very complex spatial ob-
jects. We present an approach that is based on a fast filter
step performing the spatial join on simple primitives which
conser vatively approximate the objects. Our main attention
is focused on the problem how to generate approximations
adequate for high-resolution objects. In this paper, we in-
troduce gray approximations as a general concept which
helps to range between replicating and non-replicating ob-
ject approximations. The key idea of our approach is to
build these replications based on statistical information
taking the data distribution of the respective join-partner
relation into account. Furthermore, our approach uses
compression techniques for the effective storage and re-
trieval of the decomposed spatial objects. We demonstrate
the benefits of our new method for the spatial intersection
join on high resolution data. The experimental evaluation
on real-world test data points out that our new concept ac-
celerates the spatial intersection join considerably.

1. Introduction

The efficient management of complex objects has be-
come an enabling technology for geographical information
systems (GIS) as well as for many novel database applica
tions, including computer aided design (CAD), medical im-
aging, molecular biology, and Multimedialnformation Sys-
tems. One of the most common query types in Spatial
Database Management Systems is the spatial join. In this
paper, we concentrate on the intersection join, as the inter-
sectionisthe most important join predicatefor complex spa-
tial objects [9]. The intersection join retrieves al object
pairs from two given data sets that satisfy the spatial-inter-
section predicate, i.e. al pairs of overlapping objectsarere-
ported. A usual spatial join example of 2D geographical
datais“find all cities which are crossed by ariver”. In the

a) Spatial object

b) Voxel set
Figure 1: Conversion pipeline from spatial objects to
voxel interval sequences

c) Interval sequence

automobile industry, spatial join processing of complex 3D
high-resolution objectsis aso required, e.g. to support effi-
cient processing of querieslike “find all engine parts which
intersect the car body”. Thereby an efficient processing of
spatia joinsisindispensable.

An important new requirement for large objects, in-
cluding cars, planes or space stations, is a high approxima-
tion quality. As acommon and successful approach, spatial
objects can be conservatively approximated by a set of vox-
els, i.e. cellsof agrid covering the compl ete dataspace[17].
By means of spacefilling curveswhich achieve good spatial
clustering properties, each cell of the grid can be encoded by
asingle z-value and, thus, an extended object is represented
by a set of z-values.

High resolutionsyield a high approximation quality but
result in high efforts in terms of identifying the join candi-
date pairs. Thus, the join performance is primarily influ-
enced by the size of the voxel sets, i.e. it depends on the
resolution of the grid. We aim to manage very complex ob-
jects, eg. the “777" from Boeing, which was completely
digitally designed and assembled. It consists of about three
million parts, some of which are composed of several mil-
lions of voxels. Following [11], adjacent cell values can be
grouped together to voxel interval sequences (cf. Figure 1)
which are basic datatypes for spatial applications. However,
in the case of high-resolution data, the number of resulting
intervals still remains very high.

In this paper, we introduce a method for spatial inter-
section join, especialy designed to cope with high resolu-
tion objects. Our approach is not confined to the availability
of aspatial index. Itisbased on grouping large sets of object
voxelsinto few contai ner objectsin apreceding preprocess-
ing step, and to perform the spatial join on these container
objects.

kunath
Scientific and Statistical Database Management (SSDBM 2004), Santorini Island, Greece, 2004.

1.1. Basicjoin algorithm

Figure 2 outlines the procedure for joining two sets of
objects stored in two relations R and S. id denotes a unique
object identifier and link refersto an external file containing
the complete voxel set of an object. The overall join proce-
dure is composed of two phases: in the first phase (prepro-
cessing phase), we convert the voxels for each object of S
into z-values, group the z-valuesinto a set of container ob-
jects and store them in an auxiliary relation S (cf. Figure
2a). The attribute approx is realized as Nested Table storing
the set of container objects for each object in S Thereby,
each container object is composed of the respective z-value
sequence and a minimal covering interval. In the second
phase (join phase), we perform a nested-loop join between
relation Rand S, where R is accessed within the outer join
loop. Beforejoining each object of Rwith S, we convert the
voxels into z-values and group the z-values of each object
into container objects on-the-fly (cf. Figure 2b), i.e. the
grouping process of relation Ris embedded within the outer
loop of the nested-loop join. In afast filter step, we use for
each join pair the minimal covering intervals of the contain-
er objectsto check them for intersection. Subsequently, in a
potential expensive refinement step each positive candidate
from the filter step has to be checked for intersection with
respect to its exact geometry by considering the z-value se-
guences. In the rest of this paper, we refer to thisbasic join
procedure performed on relation Rand S, respectively S.

The key ideathat we use for grouping the z-valuesisa
cost-based decomposition algorithm introduced in this pa-
per which takes statistics about the datadistribution into ac-
count. Furthermore, we deploy compression algorithms for
the efficient storage and retrieval of the container objects of
relation S.

1.2. Outline of this paper

The remainder of the paper is organized as follows:
Section 2 provides summaries of different aspects for effi-
cient spatial join processing and decompositioning of com-
plex spatial objects. Section 3 presents a cost-based decom-
positioning agorithm for generating container objects
introduced asgray intervals. In Section 4, we show how the
join procedure can be accelerated by using the generated
gray intervals. In Section 5 we present a detailed experi-
mental evaluation demonstrating the benefits of our ap-
proach. Finaly, in Section 6, we summarize our work, and
conclude the paper with afew remarks on future work.

2. Related wor k

In this section, we will shortly discuss different aspects
of efficient spatial join processing of complex spatial ob-
jects.

a) Relation R Relation S Relation S’
id | link id | link _id, approx
Al file A E[fleE group f%
prepracessing B[file B Ffile F Flem
phase Glfile g Zvaues . |Ed
T __ | e
b) Relation R Relation S’
id | link approx(A) i, approx
—_— (=] @=w] “E [mm
Al'file A _lel
join phase “Blfile g group nested loop F =
— 1 — z-values join — =
=
__ | (]

Figure 2: Spatial join procedure
a) Preprocessing phase b) Join phase

Spatial Join. Numerous spatial join agorithms have
been proposed over thelast decade. Most of them rely onthe
paradigm of multi-step query processing [3]. A fast filter
step excludes al objects that cannot satisfy the join predi-
cate. The subsequent refinement step is applied to the join
candidate pairs which are returned from the filter step.
Thereby, the main focus of research is on the filter step
whichisapplied to geometric object approximations. Onthe
basis of the availability of indices for processing the filter
step, spatia join methods operating on two relations can be
classified into three classes: index on both relations (Class
1), index on one relation (Class 2) and no indices (Class 3).

The common solutions for the spatial join methods of
Class 1 arethe a gorithms based on matching two R-trees as
presented in [2]. In the last few years, the international re-
search community has focused on methods of Class 2 and
Class 3. A simple Class 2 approach is the index nested loop,
where each tupel of the non-indexed relation isused as que-
ry applied to theindexed relation. In[13], seeded treeswere
introduced in oder to process spatial joins efficiently when
only one R-treeisavailable. The authors proposeto create a
second R-tree using the avail able tree as a skeleton and ap-
ply thereafter a Class 1 agorithm. For spatia join ago-
rithms of Class 3, initially no indices are available which
could be used to improve the query performance. Several
techniques have been proposed which partition the tuples
into buckets and then use hash based techniques, e.g. the
gpatial-hash join [14] or the partition based spatial merge
join [18]. The scalable sweeping-based spatial join [1] is
w.r.t. worst-case efficiency the most promising algorothm
for processing spatia joins. Thelatter approacheswork well
for relative simply shaped 2D objects, which can be well
approximated by their minimal bounding boxes. In contrast
to these approaches, our approach deals with very complex
3D objects, wherethe minimal bounding box isarather poor
approximation.

Decomposition of Complex Spatial Objects. Approx-
imations of extended objects generally consist of either one
or several simple spatial primitives such as minimal bound-
ing boxes which are often used for one-value approxima-
tions [3, 9]. Although providing the minimal storage com-
plexity, one-value approximations of spatially extended
objectsoften arefar too coarse. In many applications, GISor
CAD objects feature a very complex and fine-grained ge-
ometry. The rectilinear bounding box of the brake line of a
car, for example, would cover the whole bottom of the data
space. A non-replicating storage of such data would cause
too many false hitsin thefilter step of the join that have to
be eliminated by the refinement step.

In contrast, approaches which use multi-value approxi-
meations, i.e. approximationswhich are composed of several
spatial primitives, can achieve abetter approximation than a
single rectangle. In the case of avery accurate approxima-
tion, the number of primitives can become very high. For
instance, Gaede [8] pointed out that the number of z-value
intervals representing a spatially extended object exponen-
tially depends on the granularity of the grid approximation.
Furthermore, the extensive analyses given in [15] and [7]
show that the asymptotic redundancy of an interval-based
decomposition is proportional to the surface of the approxi-
mated object. Thus, in the case of high resolution huge parts
(e.g. wings of an airplane), the number of intervals can be-
come unreasonably high, which results in too many inter-
sect verificationsin the filter step of the join procedure.

A promising solution for a good trade-off between
these conflicting objectives may befound somewherein be-
tween one-value and multi-val ue object approximations. In
[20], Kriegel and Schiwietz tackled the complex problem of
“complexity versus redundancy” for 2D polygons. They in-
vestigated the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of com-
ponents, with respect to its effect on efficient query process-
ing. The presented empirically derived root-criterion sug-
gests to decompose a polygon consisting of n vertices into

O(./n) many simple approximations. Asthisroot-criterion
was designed for 2D polygons and was not based on any
analytical reasoning, it cannot be adapted to complex 3D
objects. In this paper, in contrast, we will present an analyt-
ical cost-based decomposition approach which can be used
for 2D and 3D objects. It takes the cost of thefilter step and
refinement step of the join procedure into account.

3. Cost-based decomposition of complex spa-
tial objects

In the following, the geometry of a spatial object isas-
sumed to be described by a sequence of pixelsivoxels, or-
dered by a space-filling curve, e.g. z-curve [17]. High reso-
lution spatial objects may consist of several hundreds of
thousands of voxels. For each object, there exist alot of dif-

ferent possibilities to decompose it into approximations by
grouping numerous voxels together. Following the ap-
proach that the voxels are linearized by a space-filling
curve, the voxels are grouped into one-dimensional inter-
vals. We call these intervals gray intervals throughout the
rest of this paper. Informally spoken, gray intervals bridge
the gap between black intervals obtained by simply con-
necting adjacent voxelstogether.

In the remainder of this section, we will introduce a
cost-based grouping algorithm which finds an optimal
trade-off between replicating and non-replicating approxi-
mations. In Section 3.1, wefirst introduce our gray intervals
formally, and show how they can be integrated into a com-
mercial ORDBMS. In Section 3.2, we discusswhy it is ben-
eficial to store the gray containersin a compressed way. In
Section 3.3, we introduce our cost-based grouping algo-
rithm for complex spatial objects.

3.1. Gray intervals

Gray intervals are formed by grouping object voxels
representing complex spatial objects. By means of space
filling curves, p: IN? — IN, all multidimensional voxelized
objects can be mapped to one-dimensiona voxelized ob-
jectscontaining aset of integers. In our approach we employ
the z-curve as space filling curve, thus an object is repre-
sented by a set of z-values.

Obviously, we can group adjacent z-values together to
az-value interval. The resulting sequence of intervals, rep-
resenting a high resolution spatially extended object, often
consists of very short intervals connected by short gaps. Ex-
periments suggest that both gaps and intervals obey an ex-
ponential distribution (cf. Section 5). In order to overcome
this obstacle, it seems promising to group adjacent voxel
intervalstogether to longer intervals, whichwecall gray in-
tervals.

Definition 1 (gray interval, gray interval sequence)

LetW={(l, u) € IN? | <u} bethedomain of zvalueinter-
vals, where (1, u) contains all z-values zsuch that | < z< u.
Furthermore, let b; = (I3, uy), ..., b, = (I, u,) € Whease-
guence of z-value intervals of the object having id asits ob-
ject identifier, withu, + 1 <1, foralie {1, ..., n—1}.
Moreover, letm<nandletiy, iy, iy, ..., i€ INSuchthat 0=
ig<iy <i,<..<ip=nholds. Then, we call Oy, = (id,
By gm0 by qaeb) oy (b g,y))) @Qray
interval sequence of cardinality m. We call each of thej = 1,

<, MQroups (b, q,.,b;) of O, agray interval |

gray gray -

Intuitively, agray interval isacovering of one or more
digoint and nonadjacent z-value intervals where there is at
least agap of one z-value between adjacent intervals. In the
next definition, we introduce afew useful operatorson gray
intervals.

576 584 592 600 608
z-value intervals

z-value intervals of the object (obtained from encoding voxels via the z-curve)

576 584 592 600 608
grey itervls || el |]| el |

gray interval sequence (obtained from grouping z-values together)

grayinterval | | | | Graylntervals
Operators a 2 g proey
hull: [578, | [586, | [600, id
H(1) 579] | 593] | 605] H(1,) |D(,)| B(1)
dggsl't))/: 1 5/8 6 .
x [578,579]] 1 | '30’
maX'G“z‘:m)gap: 0 2 | 3 E [[586, 593]| 5/8 |'3340'
e — [600, 605]| 3/6 | 'C4
thS‘(*I‘) | 30 |'3340 'ca
X

Figure 3: Gray interval sequence

Definition 2 (operatorson gray intervals)
For any grayinterval 1., = ((l; ,Uy),..., (Is,u)) we define the
following operators:
Length: L (Ig) = Us—I + 1.
Cardinality: C (Ig4) = s—r+1.
Number of Black Cells: Ny (Iga) = 2, (i =i+ 1),
Number of White Cells: Ny, (I gray) = L(Igray) = Np (Igray)-
Density: D (Igray) = Ny (Igray) / L (Igray)-
Hull: H (Igra) = (I ,Uy). _
Gap: G(lgray) ={ %ax{li—ui_l—l,i =r+1,..,s} :elges
Byte %quence: B (Igray) = <SO! "' Sq):
wherese INand0<§< 2% n = |uy/8|-|I /8]

. - i 2" (1)il <[1,/8] B+ 8i+k<u r<ts<s

I &0 otherwise

Figure 3 demonstratesthe values of some of these oper-
atorsfor asample set of gray intervals.

In our approach, the z-value intervalsb, , ..., b of each
gray interval |y, = by, ..., by are mapped to the complex
atribute data of the relation Graylntervals which is in
Non-First-Normal-Form (NF?). It consists of the hull H(l,
ray)» the density D(l) and a BLOB containing the byte se-
quence B(ly,,) representing the exact geometry. Important
advantages of this approach are as follows: First, the hulls
H(l44y) Of the gray intervals can be used in a preceding fast
primary filter step. Secondly, the density D(l) can help to
detect absolute intersections between two gray intervals
without accessing the exact geometry B(l.,,). This second
filter is specified in Section 4.3. Furthermore, we use the
ability to store the content of a BLOB outside of the table.
Thereforethe column B(l) containsaBLOB locator. This
enables usto accessthe possibly huge BLOB content only if
itisrequired and not automatically at the accesstime of the

a simple rectangular object
in a 2D data space which is linearly ordered by a z-curve

_ /] L] /]

= =l = L

p= p= /‘ p=

7 — 7 —
[—

% e #
---Hm””‘“”““““““‘”““;;ﬂ::::::::::;::::::::::::::::;Wmﬁ“””””““““”““““‘

B (Igray) = ---33CC33CCO000000033CC33CC...

Figure 4: Pattern derivation by linearizing a voxelized
object using a space-filling curve

rows. In the next section we discuss how the I/O cost of the
BLOBs can be reduced by applying compression tech-
nigques.

Let us note, that each complex object is stored in one
singlerow, where the corresponding gray interval s are man-
aged in anested table. Thisapproach helpsusto avoid costly
duplicate elimination during the join processing.

3.2. Compression of gray intervals

In this section, we motivate the use of packers, by
showing that B(l,,) contains patterns. Therefore, B(l,)
can efficiently be shrunken by using data compressors. Fur-
thermore, we discuss the properties which a suitable com-
pression agorithm should fulfill. Inthefollowing, we givea
brief presentation of a new effective packer which seems
promising for our approach. It exploits gaps and patterns
included in the byte sequence B(l,,) of our gray interval
Igray
3.2.1. Patterns. To describe a rectangle in a 2D vector
space we only need 4 numerical values, e.g. we need two
2-dimensional points. In contrast to the vector representa-
tion, an enormous redundancy is contained in the corre-
sponding voxel sequence of an object, an exampleis shown
in Figure4. As space filling curves enumerate the data
space in a structured way, we can find such “structures’ in
the resulting voxel sequence representing simply shaped
objects. We can pinpoint the same phenomenon not only for
simply shaped parts but also for more complex real-world
spatial parts. Assuming we cover the whole voxel sequence
of an object id by one interval, i.e. Oy, = (id, (l¢4,), and
survey its byte representation B(ly,,) in @ hex-editor, we
can notice that some byte sequences occur repeatedly. For
more details about the existence of patterns in B(ly,,) We
refer the reader to [12]. Wewill now discuss how these pat-
terns can be used for the efficient storage of gray intervals
inan ORDBMS.

3.2.2. Compression rules. A voxel set belonging to agray

interval Iy, can be materialized and stored in a BLOB in

many different ways. A good materialization should consid-
er two “compression rules’:

Rulel: Aslittle as possible secondary storage should be
occupied.
Rule2: Aslittleaspossibletime should be needed for the

(de)compression of the BLOB.

A good join response behavior is based on the fulfill-
ment of both aspects. The first rule guarantees that the 1/0

cost %% are relatively small whereas the second rule is

responsible for low CPU cost con)°. The overal time

BLOB_ BLOB 4 c2L9° for the evaluation of a BLOB is com-
posed of both parts. A good behavior related to an efficient
retrieval and evaluation of B(l,,) depends on the fulfill-
ment of both rules.

Aswewill show in our experiments, it isvery important
for a good retrieval- and evaluation-behavior to find a

well-balanced way between these two compression rules.

3.2.3. Spatial compression techniques. In our approach
we deploy the Quick Spatial Data Compressor (QSDC) a-
gorithm, which is especialy designed for high resolution
spatial data and includes specific features for the efficient
handling of patterns and gaps. It is optimized for speed and
does not perform time intensive computations as for in-
stance Huffman compression. QSDC is a derivation of the
LZ77 technique [6]. However, it compresses data in only
one pass and much faster than other Lempel-Ziv based com-
pression schemes asfor example XRAY [5]. For more details
werefer the reader to [13].

3.3. Cost-based grouping

For our grouping agorithm we take the estimated join
cost between agray interval |, and ajoin-partner relation
T into account. The overall join cost cost, is composed of
two parts, the filter cost cost;,, and the refinement cost
COStrefine:

COStjoin(Igray’T) = COStfiIta’(Igray’T) + Coareﬁne(lgray’T)-

The question at issue is, which grouping is most suit-
able for an efficient join process. A good grouping should
take the following “grouping rules’ into consideration:

Rulel1l: Thenumber of gray intervals should be small.

Rule2: The approximation error of al gray intervals
should be small.

Rule3: The gray intervals should alow an efficient
evaluation of the contained voxels.

The first rule guarantees that cost,, is small, as each gray
interval 14,,(T) of the join-partner relation T is a potential
filter candidate, which has to be loaded from disk (BLOB
content excluded) and evaluated for intersection with re-
spect to their hulls.

In contrast, the second rule guarantees that many unneces-
sary candidatetests of the refinement step can be omitted, as
the number and size of gapsincluded in the gray intervals,
i.e. the approximation error, is small. Finally, the third rule
guarantees that a candidate test can be carried out efficient-
ly. Thus, Rule 2 and Rule 3 are responsible for low cost, gie-
A good join response behavior results from an optimum
trade-off between these grouping rules.

Filter cost. The costsj e (I gray T) can be computed by the
expected number of intersection tests required to perform
thejoin between |, and thejoin partners, whichisequal to
the overall number Ny, (T) of gray intervals| ., (T). There-
fore, we penalize each intersection test by the cost ¢; which
arerequired to accessthegray intervalsl ., (T) and evaluate
thejoin predicate for each pair (H(lg4,).H(l4a(T))):

Cogfilter(lgray!T) = Ngray(T) " G,

where N,o,q(T) (number of voxels) > Nga(T) = Npec(T)
(number of objects) holds for the join-partner relation. The
value of parameter ¢; depends on the used system.

Refinement cost. The cost of the refinement step cos-
t «ine IS determined by the selectivity of the filter step. For
each candidate pair resulting from the filter step, we haveto
retrieve the exact geometry B(l,) in order to verify the
intersection predicate. Consequently, our cost-based group-
ing agorithm is based on the following two parameters:

® Selectivity O Of the filter step.
* Evaluation cost cost,,, of the exact geometries.

The refinement cost of ajoin related to agray interval |
can be computed asfollows:

COStrefine(Igray! T) = Ngray(T) : cSfil'[er(lgray!-r) : COSteval(Igray)-

In the following subsections, we show how we can esti-
mate the selectivity of thefilter step oy and the evaluation
Ccost COSty, 5.

gray

3.3.1. Selectivity estimation. We use simple statistics of
the join-partner relation T to estimate the selectivity
Giitter (Igray: T)- In [10], it was shown that using quantiles
(“equi-count histograms’) is more suitable for estimating
the selectivity than using histograms (‘ equi-width histo-
grams’). The runtime required for the histogram computa-
tionisincreased by the cost of barrier-crossings between the
declarative environment of the SQL layer and our stored
procedure. Fortunately, most ORDBM Ss comprise efficient
built-in functions to compute single-column statistics, par-
ticularly for cost-based query optimization. Available opti-
mizer statistics are accessible to the user by the relational
data dictionary. The basic idea of our quantile-based selec-
tivity estimation is to exploit these built-in index statistics
rather than to add and maintain user-defined histograms.

We start with the definition of a quantile vector, the typical
statistic type supported by relational database kernels.

Definition 3 (Quantile Vector).

Let (M, <) be a totally ordered multi-set. Without loss of
generdity, let M={m;, m, ...,m¢} with m<m,,,
1<j<N. Then, QV(M, V) =(q, ---, q,) € M" is cdled a
quantile vector for M, given aresolutionv € IN, iff thefol-
lowing conditions hold:

(i) do=my 4
(i) Vviel ..,v:del ., N: qi:rq/\JW <; N

The multi-set M of our quantile vector (q, ..., g,) IS
formed by the z-value attribute of the domain values of the
join-partner relation.

The selectivity Ger(lgray: T) related to a gray interval
lgray CaN be determined by applying the quantile vector
QV(T,v) of the z-values of the join-partner relation T. In the
following formula, v denotes the resolution of the quantile
vector and overlap() returns the intersection length of two
intersecting intervals..

v (overlap(H(Igray), (g _1yqi))) v
O0i—di-1

Gfilter(lgray’ T~
i=1

3.3.2. BLOB-Evaluation cost. For the computation of the
evaluation cost we have to consider the 1/0 cost required to
retrieve the BLOB from the secondary storage and the CPU
cost related to the eval uation of the BLOB. These cost heavi-
ly depend on how we organize B(l ,,) within our BLOB, i.e.
they depend on the used compression algorithm. For each
compression a gorithm we provide statistics, i.e. an empiri-
cally derived look-up table LUT (cf. Figure 5), by means of
which we can estimate the 1/0O cost and CPU cost. Roughly
speaking, the eval uation cost Coste,q (1 gray LUT) dependson
thelength of our gray interval L(I,,) and on the used pack-
er.

3.3.3. Join cost. To sum up the join cost costjgin(l gray) relat-
edtoagrayinterval |, and ajoin-partner relation T can be
expressed asfollows:

Cog:join(lgray!-r) =
Ngray(T) ' (Cf + cSfilter(lgray:T) ' Coge\/al(lgray!LUT))
The filter selectivity and BLOB-evaluation cost are
computed as described in Section 3.3.1 and 3.3.2. For the
computation of the filter cost, we propose to empirically
derive the value of c;. Let us note that the inequality

'COSty 4 >COSt e iN Figure 5 isindependent of Ny, (T), and
thus Ny, ,(T) is not required during the grouping algorithm.

gray

3.3.4. Grouping algorithm. Orenstein [16] introduced the
size- and error bound decomposition approach. Our first
grouping rule “the number of gray intervals should be

QV: quantile vector
LUT:look-up table with packer specific cost
GroupCon (lg,, LUT, QV(T), T) {
left gray_interval;
right gray_interval;
interval_pair tupel (left gray_interval, right gray_interval)
interval_pair := split_at_maximum_gap(lya,);
left := interval_pair.left;
right := interval_pair.right;
COStgray = COStjoin(Igrava);
COSlyec = COStjin(I€fL,T) + costign(right, T);

look-up table LUT
if COStgray > COS[dec then) 25 | ———UNPACKED
GroupCon (Ieft, LUT.QV(T),T); |2 »
GroupCon (right, LUT.QV(T),T); |£ *
d % report (I gray)’ : ° ;) 2000000 4000000 6000000
} BLOB size [byte]

Figure 5: Grouping algorithm GroupCon based on a
look-up table LUT and a quantil vector QV

small” can be met by applying the size-bound approach,
while applying the error-bound approach results in the sec-
ond rule “the approximation error of all gray intervals
should be small”. For fulfilling both rules, we introduce the
following top-down grouping algorithm for gray intervals,
called GroupCon (cf. Figure 5). GroupCon isarecursive al -
gorithm which starts with agray interval 1., initially cov-
ering the complete object. For reasons of efficient computa-
tion we use the following simple heuristics: In each step of
our algorithm, we look for the maximum gap g within the
actual gray interval. We carry out the split at this gap, if the
estimated join cost caused by the decomposed intervals is
smaller than the estimated cost caused by our input interval
lgray Theexpected join cost costjgn(lgray T) can be computed
as described above. Datacompressors which have ashallow
LUT curve, eg. PACKER 2 in Figure5, result in an early
stop of the GroupCon algorithm generating a small number
of gray intervals.

4. Accelerated relational join processing

In contrast to the last section, where we focused on
building the object approximations and organizing them
within the database, in this section we turn our attention to
processing the join. Wefirst present our new join algorithm
in Section 4.1, using the techniques presented in Section 3.
In Section 4.2, we show how we can express the join proce-
dure on top of the SQL engine. Furthermore, we introduce
useful optimizationsfor the evaluation of theintersect pred-
icatein Section 4.3.

4.1. Join algorithm.

Our two phase join agorithm is shown in Figure 6.
Thereby we build the gray interval s (function decompose())

R table(id, z-val); /lobjects of relation R
S table(id, zval); /lobjects of relation S
S table(Gray_Intervals);
join(RS{
for each object objgin Sdo {
objg := decompose(objJ);
store (objg)inS;}
result_set:=J;
for each object objin Rdo {
obj := decompose(objg);
for each object objg in S do
if intersect(objg, 0bjg) then
result_set :=result_set U (objg.id, objg.id);}}

preprocessing
phase

phase

join

Figure 6: Nested-Loop join algorithm

by means of the cost-based grouping algorithm presented in
Section 3.3.3. In the following, we assume that we have to
join relation R with relation S containing complex spatial
objects.

Preprocessing phase. For each object objginrelation S
we apply the function decompose(objg), which builds the
gray intervals according to the grouping algorithm Group-
Con (cf. Figure5). This grouping algorithm takesthe statis-
tics of the data distribution with respect to relation R into
account. Finaly, the gray intervals of each object are mate-
rialized in relation S following the NF? schema Gray! nter -
vals (cf. Figure 3).

In the following nested-loop join, we assume that the
objects obj of relation R will be accessed only once. Thus,
there is no need to materialize the gray intervals of objg in
the database as done for the objectsinrelation S, or S. As-
suming that one object completely fits in memory, its gray
intervals can be built on-the-fly during the join phase.

Join phase. The join phase is performed in a nest-
ed-loop fashion. For each object, we perform the function
decompose(objg) in the outer loop in order to build the gray
intervals of object objg. Thistime, we apply the data distri-
bution statistics of relation S. In the inner loop, we test each
object objfor intersection with object obj calling the bool -
ean function intersect().

The function intersect(obj g, objs) checks whether two
objects obj and obj g intersect. They intersect, iff thereisat
least one gray-interval pair (0bjg .l g 4, Obj 5.1 gray) Whichin-
tersects. We assume that the rows of both nested tables
obj.data and obj 5 .data are sequentially accessed and that
the gray intervals are ordered with respect to their hulls.
Both nested tables are processed in parallel, thuswe need to
access each row only once. As soon as an intersection is
detected, the remaining tests can be skipped and the value
“true” isissued. Theintersection test of agray-interval pair
is performed in two steps. In the first step (filter step) the
pair is tested with respect to their hulls. If the result of the
filter step is positive, i.e. the hulls intersect, a subsequent

SELECT R'.id, S.id FROM
(Graylntervals S,
(SELECT R.id ASid, decompose(R.z val) AS data
FROM R
GROUPBY Rid) R
WHERE intersect(R .data, S .data) = true // filter/refinement

Figure 7: SQL statement for spatial-intersection join

refinement step verifies the intersection with respect to the
exact geometric object representations. Before testing the
two byte sequences for intersection, we have to load B(ob-
Js-lgray) from disk and decompressiit.

As already mentioned in Section 3.2.2, it is important
that the compressed BLOB size is small in order to reduce
the 1/O cost. Obviously, the small 1/O cost should not be at
the expense of the CPU cost. Therefore, it isimportant that
only the objects of theinner relation S arein acompressed
form, whereas the byte sequence B(objg .| 4,,) does not af-
fect the 1/0O cost. Furthermore, a fast decompression algo-
rithm isrequired to evaluate the BLOB quickly.

In the next section, we show how we can easily express
the intersection join query on top of the SQL engine.

4.2. The spatial-intersection join SQL statement

Most ORDBM Ss, including Oracle, IBM DB2 or Infor-
mix IDS/'UDO, provide extensibility interfaces in order to
enable database developers to seamlesdy integrate custom
object types and predicates within the declarative DDL and
DML. Theseinterfacesform anecessary prerequisitefor the
seamless embedding of user-defined spatial objects, func-
tions and aggregates into off-the-shelf ORDBMSs. On this
basis, we define the intersection join query which is ex-
pressed on top of the SQL engine as shownin Figure 7.

The input of this SQL query is the relation R and the
auxiliary relation S derived from the preprocessing step. In
the subqguery, which results in the new relation R, we use
the function decompose() which is a user-defined aggregate
function as provided in the SQL:1999 standard. This func-
tion decomposes each object of Rinto aset of grayintervals.
The function intersect() isimplemented as stored procedure
and behaves as described in Section 4.1.

4.3. Optimizations

For the intersect predicate, it suffices to find a single
intersecting interval pair in order to report the join-pair. Ob-
vioudly, it is desirable to detect such intersecting pairs as
early as possible in order to avoid unnecessary refinement
tests. In this section, we present an optimization aiming at
this goal. We introduce a fast second filter step which tries
to determine intersecting pairs without examining the
BLOBs. Thistest is entirely based on aggregated informa-

a) bl) IwalapzlblaCKL'ova-lap:ugray C) _:|_|ng

—— gray

ook | C— (P —
—— | gray - . — = -
—_— = = b [— &
2 S e bew (1]
L(lyag) > G('ga) —
blad gray/ |] - .
, L v B Uoverlap lWE(laD+1 >
gray = lgray gay = Ygray Nyl gray) + N gray)

Figure 8: Fast intersection tests on gray intervals

tion of the gray intervals. The following optimization can
easily be integrated into the function intersection(). If the
fast second filter step determines an intersecting gray inter-
val pair, al remaining candidate tests can obviously be
skipped. Thus this filter step acts as an additional filter be-
tween thefirst filter step and the refinement step.

4.3.1. Fast intersection tests. Let us first mention that a
gray interval with maximum density is called a black inter-
val. Furthermore, we speak of “overlapping” intervals, if the
hulls of the intervals intersect. We will now discuss what
gray intervalshavetolook like so that we can decide wheth-
er two overlapping intervals actually intersect each other or
not without accessing their BLOBs. If any of the following
five conditions holds, then two gray intervalsintersect:

« [If two black intervals overlap, they necessarily intersect
aswell.

e If ablack interval islonger than the maximum gap be-
tweentwo blackintervalscontainedin|, ., then thetwo
intervalsintersect (cf. Figure 8a).

« |f ablackinterval overlapsthe start or end of agray in-
terval, then theintervalsintersect. Thisisdueto thefact
that any gray interval ends and starts with ablack inter-
val (cf. Figure 8b;,).

« |f gray intervals start or end at the same point, then the
intervals intersect. Thisis due to the fact that any gray
interval ends and starts with a black interval (cf.
Figure 8b,).

* |If the sum of the number of thewhite voxelsof two over-
lapping gray intervals is smaller than the length of the
overlapping area, then the two intervals necessarily in-
tersect. (cf. Figure 8c). This test is similar to the false
areatest in[3].

Let us note that we carry out this fast-intersection test
for all overlapping gray intervals before testing the exact
geometry for any gray interval. If one of these fast-intersec-
tion-tests yields true, the intersection routine returns true,
without testing any data stored in the BLOBs. If none of
these fast-intersection-testsyieldstrue, it is beneficial to or-
der the gray intervals of the objects by descending density
values D(l) before carrying out the expensive BLOB-in-
tersection test. Thus, theintervals having the highest density
are tested first, which increases the probability for an early
intersection detection.

gray’

1E+08

IE+06

1E+04

gaps

Number of
gaps / intervals

1E+02
intervals
1E+00 + T T T T |
1E+00 1E+02 1E+04 1E+06 1E+08 1E+|}10
lengt

Figure 9: Interval and gap histograms (CAR)

5. Experimental evaluation

In this section, we evaluate the performance of our ap-
proach with a special emphasis on different grouping algo-
rithms GRP in combination with various data compression
techniques DC. We used the following data compressors: no
compression (NOOPT), BZIP2 approach [4] and the QSDC
approach. Furthermore, we grouped object voxelsinto gray
intervals following two grouping agorithms, called MAX-
GAP and GroupCon.

MaxGap. This grouping algorithm tries to minimize
the number of gray intervalswhile not allowing that a max-
imum gap G(l 4,,) of any gray interval Iy, exceedsagiven
MAXGAP parameter. By varying this MAXGAP parameter,
we can find the optimum trade-off between the first two op-
posing grouping rules of Section 3, namely a small number
of gray intervalsand asmall approximation error of each of
these intervals. A one-value approximation is achieved by
setting the MaxGap parameter to infinite.

GroupCon. We grouped the voxels according to our
cost-based grouping agorithm GroupCon (cf. Section
3.3.3), where we used the statistics of Section 3.3.1 and a
look-up table for each packer. We set the resolution of the
guantile vector to 100 quantiles. The look-up table was cre-
ated by experimentally determining the average cost for
evaluating agray interval |y, dependent on the length of
its byte sequence. Let us note, that the grouping based on
MaxGap(DC) does not depend on DC, whereas Group-
Con(DC) takes the actual data compressor DC into account
for performing the grouping.

The refinement-step evaluation of the intersect() rou-
tine was delegated to a DLL written in C. All experiments
were performed on a Pentium 4/2600 machine with IDE
hard drives. The database block cache was set to 500 disk
blocks with a block size of 8 KB and was used exclusively
by one active session.

Test data sets. The tests are based on two test data sets
CAR (3D CAD data) and SEQUOIA (subset of 2D GIS data
representing woodlands derived from the SEQUOIA 2000
benchmark [19]). Thefirst test data set was provided by our
industrial partner, a German car manufacturer, in form of
high resolution voxelized three-dimensional CAD parts.
The properties of both data sets are depicted in Table 1.

Table 1: Test Data Sets

Dataset | #voxels | #objects | size of Data Space
CAR 14 million 200 2= cells
SEQUOIA | 32million 1100 2% cells

In both cases, the z-curve was used as a space filling
curve to enumerate the pixelsivoxels. Figure 9 depicts the
interval and gap histograms for the CAR test data set. This
characteristic can also be observed for SEQUOIA. Both test
data sets consist of many short black intervalsand short gaps
and only afew longer ones.

5.1. Effectivity of the Compression Techniques

First we present the compression effectivity of our pre-
ferred packer by looking at the storage requirements of the
materialized gray intervals of the CAR dataset. Figure 10
showsthe different storage requirements of the BLOBswith
respect to the different data compression techniques. For
high MAXGAP values the BZIP2 approach yields very high
compression rates, for the one-value approximation even
more than 1:1000. On the other hand, due to an enormous
overhead, the BZIP2 approach occupies even more second-
ary storage space than NOOPT for small MAXGAP values.
Contrary, the QSDC approach yields good results over the
full range of the MAXGAP parameter. Using the QSDC
compression technique, we achieve low 1/0O cost for the
BLOBs which drastically enhance the efficiency of the re-
finement step of the join process.

5.2. Efficiency of the Join Process

In this section, we want to turn our attention to the effi-
ciency of the join process. The figures presented in this
paragraph depict the performance of the spatial join queries.
We have performed intersection joins over two relations,
each containing approximately a half of the parts from the
CAR dataset. We took care that the data of both relations
have similar characterizations with respect to the object size
and distribution. Similarly, the intersection join is per-
formed on parts of the SEQUOIA data set which is divided
into two relations, consisting of deciduous-forest and
mixed-forest areas.

InFigure 11 itisshownin which way the responsetime
for the intersection join query, including the preprocessing
1E+I0

3 NOOPT.
2 1E+09
£
% 1E+08
B IE07 — QsDC
- —

1E+06 — —— =
9 BZPI2
M IE+05 4 T

1E+02 1E+03 1E+04 I1E+05 1E+06 1E+07 1E+08 one-
MAXGAP value

Figure 10: Storage requirements for the BLOB (CAR)

reprocessing

H prep N grouping

8640 O refinement

) c

o 3

£ 864 =3

c =

S [0}

3

o e

3 Y

T g

[}

3 IE+02 1E+03 IE+04 IE+05 IE+06 IE+07 1E+08 One-value

MAXGAP

b)

86400

o) 5
0

£ 8640 =3

= o

S 864 0]

=1

3

s 86 = = == =]

= MY Y

S oo

[}

3 1E+02 1E+03 1E+04 IE+05 1E+06 1E+07 1E+08 One-value

MAXGAP

Figure 11: GRP(DC) evaluated for intersection joins on
the CAR datasets
a) QSDC compression b) NOOPT (no compression)

step, depends on the MAXGAP parameter using the QSDC
compression (cf. Figure 11a) and no compression (cf.
Figure 11b). The figures depict the overall contributions of
the preprocessing phase (cf. Figure 2a), of the on-the-fly
grouping (cf. Figure 2b) and of the filter and refinement
step. If we use small MAXGAP parameters, we need alot of
timefor thefilter step whereas the refinement step, whichis
influenced by the BLOB sizes, is relatively cheap. On the
other hand, for high MAXGAP vaues we can see that the
refinement step isvery expensivein contrast to thefilter step
which showsvery little contribution. Dueto thefact, that the
performance mainly depends on the I/O cost, the prepro-
cessing step shows a similar performance behavior as the
pure join. We can observe that for both compression cases
the GroupCon approach exceeds the best MAXGAP ap-
proach with respect to both compression variants. The mar-
ginally higher preprocessing cost of the GroupCon ago-
rithm result from the computation of the cost-estimations
required for the decomposition.

Figure 12 illustrates how the overall join run-time de-
pends on the different grouping techniques for both da-
ta-sets, CAR (cf. Figure 12a) and SEQUOIA (cf. Figure
12b). For packed data the optimum MAXGAP vaueis high-
er than for unpacked data, i.e. MAXGAP = 10°for NOOPT
and MAXGAP = 108 for BZIP2 and QSDC. The GroupCon
algorithm producesfor both data sets object decompositions
which yield almost optimum join response time for varying
compression techniques. It adaptsto the optimum MAXGAP
parameter for varying compression techniques, by allowing
greater gaps for packed data, i.e the number of generated
gray intervalsissmaller in the case of packed data

To sum up, the GroupCon algorithm produces object
decompositions which yield the optimal trade-off between

NOOPT 0 BzZIP2 [QSDC

Q
=

& 86400

8640

(o]

o] (o2

(o2} A
GroupCon

o
©

E+02 IE#03 1E+04 IE#05 15406 IE+07 1E+08 One-value

MAXGAP (CAR)
8640 -

@

(o2}

S
GroupCon

overall execution time [s] & overall execution time
©
(2]

1E+02 1E+03 1E+04 1E+05 I1E+06 1E+07 IE+08 One-value
MAXGAP (SEQUOIA)

Figure 12: Overall join performance for different packers
(a) CAR dataset (b)SEQUOIA dataset

the filter and refinement cost for both high-resolution data
sets.

6. Conclusion

In this paper, we introduced a new approach for effi-
cient processing of spatial intersection joins over high-reso-
[ution objects. In our approach, it isassumed that thereisno
spatial index available and that thejoinis performed in nest-
ed loop fashion. The join procedure is based on fast filter
steps performed on obj ect approximations and an expensive
refinement step. We introduced gray intervals as an object
approximation concept which is based on grouping large
voxel sets, which are high-resol ution object representations,
into few container objectsin apreceding preprocessing step.
It is shown how they can efficiently be stored by means of
data compression techniques within ORDBMSSs. In particu-
lar, we deployed a quick spatial data compressor QSDC, in
order to emphasize those packer characteristics which are
important for efficient join processing, nhamely good com-
pression ratio for low 1/0 cost and high unpack speed for
low evaluation cost. The core of our approach is a
cost-based decompositioning a gorithm for complex spatial
objects, called GroupCon. It takes cost of the filter and re-
finement step into account. The refinement cost are based
on selectivity estimations of thefilter step which arederived
from statistics and estimation of the decompression cost of
the gray intervals. The decomposition algorithm demon-
strates good performance for different compression tech-
niques. We showed that our new approach, i.e. the combina
tion of GroupCon and QSDC, accel erates the spatial join by
more than one order of magnitude compared to the uncom-
pressed one-val ue approximation.

In our future work, we want to extend the application
rangesof our new approach fromtheareaof digital mock-up

to real-time virtual reality applications. Furthermore, we
plan to deploy spatial access methodsin order to further im-
provethe join efficiency.

7. References

[1] Arge L., Procopiuc O., Ramaswamy S., Suel T., Vitter J.S.:
Scalable Sweeping-Based Spatial Join, In Proc. of the VLDB Con-
ference, 1998, 570-581.

[2] Brinkhoff T., Kriegel H.P, Seeger B.: Efficient Processing of
Spatial JoinsUsing R-trees, In Proc. of the ACM SIGMOD Confer-
ence, 1993, 237-246.

[3] Brinkhoff T. Kriegel H.-P, Schneider R., Seeger B.:
Multi-Sep Processing of Spatial Joins, In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1994, 197-208.

[4] Burrows M., Wheeler D. J.: A Block-sorting Lossless Data
Compression Algorithm, Digital Systems Research Center
Research Report 124, 1994.

[5] Cannane A., Williams H.: A Compression Scheme for Large
Databases, Australasian Database Conference (ADC), 6-11, 2000.
[6] Deutsch P: RFC1951, DEFLATE Compressed Data Format
Specification. http://rfc.net/rfc1951.html, 1996.

[7] FaoutsosC., JagadishH. V., ManolopoulosY.: Analysisof the
n-Dimensional Quadtree Decomposition for Arbitrary Hyperrect-
angles, IEEE TKDE 9(3), 1997, 373-383.

[8] GaedeV.: Optimal Redundancy in Spatial Database Systems,
InProc. 4th Int. Symp. on Large Spatial Databases, 1995, 96-116.
[9] Geede V., Gunther O.: Multidimensional Access Methods,
ACM Computing Surveys 30(2), 1998, 170-231.

[10] Kriegel H.-P, PfeifleM., Pdtke M., Seidl T.: A Cost Model for
Interval Intersection Queries on RI-Trees, Proc. 14th Int. Conf. on
Scientific and Statistical Database Management (SSDBM), Edin-
burgh, Scotland, 2002, 131-141.

[11] Kriegel H.-P, Pdtke M., Seidl T.: Managing Intervals Effi-
ciently in Object-Relational Databases, In Proc. 26th Int. Conf. on
Very Large Databases (VL DB), 2000, 407-418.

[12] Kunath P: Compression of CAD-data, Diploma thesis, Uni-
versity of Munich.

[13] LoM-L., Ravishankar C.V.: Spatial JoinsUsing Seeded Trees,
In Proc. of the ACM SIGMOD Conference, 1994, 209-220.

[14] Lo M-L., Ravishankar C.V.: Spatial Hash-Joins, In Proc. of
the ACM SIGMOD Conference, 1996, 247-258.

[15] Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis of
the Clustering Propertiesof Hilbert Space-filling Curve, Tech. Rep.
CS-TR-3611, University of Maryland, 1996.

[16] Orenstein J. A.: Redundancy in Spatial Databases, In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 1989, 294-305.
[17] Orenstein J. A.: Spatial Query Processing in an Object-Ori-
ented Database System, In Proc. of the ACM SIGMOD Confer-
ence, 1986, 326-336.

[18] Patel J.M., DeWitt D.J.: Partition Based Spatial-Merge Join,
In Proc. of the ACM SIGMOD Conference, 1996, 259-270.
[19]Stonebraker M., Frew J., Gardels K., Meredith J.: The
SEQUOIA 2000 Sorage Benchmark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data: 1993.

[20] Schiwietz M., Kriegel H.-P: Query Processing of Spatial
Obj ects: Complexity versus Redundancy, Proc. 3rd Int. Symposium
on Large Spatial Databases (SSD'93), Singapore, 1993, in: Lecture
Notesin Computer Science, Vol. 692, Springer, 1993, 377-396.

