
Proc. 15th Int. Conf. on Scientific and Statistical Database Management (SSDBM 2003),
Cambridge, Massachusetts (USA), 2003.
Acceleration of Relational Index Structures Based on Statistics

Hans-Peter Kriegel*, Peter Kunath*, Martin Pfeifle*, Matthias Renz*

*University of Munich, Institute for Computer Science
{kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de

Abstract

Relational index structures, as for instance the Relational
Interval Tree, the Relational R-Tree, or the Linear
Quadtree, support efficient processing of queries on top of
existing object-relational database systems. Furthermore,
there exist effective and efficient models to estimate the
selectivity and the I/O cost in order to guide the cost-based
optimizer whether and how to include these index structures
into the execution plan. By design, the models immediately
fit to common extensible indexing/optimization frameworks,
and their implementations exploit the built-in statistics
facilities of the database server. In this paper, we show how
these statistics can also be used for accelerating the access
methods themselves by reducing the number of generated
join partners. The different join partners are grouped
together according to a cost-based grouping algorithm. Our
first experiments on an Oracle9i database yield a speed-up
of up to 1,000% for the Relational Interval Tree, the
Relational R-Tree and for the Linear Quadtree.

1. Introduction

The efficient management of complex objects has be-
come an enabling technology for many novel database ap-
plications, including computer aided design (CAD), medi-
cal imaging or molecular biology. For commercial use, a
seamless and capable integration of spatial indexing into in-
dustrial-strength databases is essential. Fortunately, a lot of
traditional database servers have evolved into Object-Rela-
tional Database Management Systems (ORDBMS). In [5],
for instance, it was shown that the Linear Octree and espe-
cially the Relational Interval Tree (RI-tree) are suitable in-
dex-structures for the efficient management of intervals,
and tiles likewise. In order to integrate these index struc-
tures into modern ORDBMSs, we need suitable cost models
[2], which exploit the built-in statistics facilities of the da-
tabase server. Based on these statistics it is possible to esti-
mate the selectivity of a given query and to predict the cost
of processing that query.

In this paper, we show how these statistics can be used to
accelerate the query process using common relational index
structures. We introduce our approach in general as well as

exemplarily for spatial intersection queries performed on
the Linear Quadtree. This discussion should enable the
reader to easily adapt our ideas to other relational index
structures, e.g. the RI-tree and the Relational R-tree.

The remainder of this paper is organized as follows. In
Section 2 we introduce our basic idea in general. In
Section 3, we adapt our general approach to the Linear
Quadtree and show how it can be integrated into an OR-
DBMS. In Section 4, we present our first promising exper-
imental results and conclude the paper with a few remarks
on future work.

2. Accelerating Relational Index Structures

Our approach aims at reducing the total query I/O cost
using a relational access method. The relational access
method can be any custom index structure mapped to a fine
granular relational schema which is organized by built-in
access methods, as for instance the B+-tree. Our general
idea is to minimize the overall navigational cost of the built-
in index by applying extended index range scans. Thereby
we read false hits from the index, which are filtered out by
a successive refinement step.

2.1. Index Range Scan Sequences

For spatial intersection queries, the query object Q leads
to many disjoint range queries on the build-in index I. We
consider them as a sequence SeqQ,I of index range scans.

I/0 cost. The number of logical reads LR(s) associated with
one index range scan s = (l, u) of SeqQ,I = (〈s1,..., sn〉) is com-
posed from two parts: LRn(s) the navigational cost for find-
ing the first page of the result set, and LRs(s) the cost for
scanning the remaining pages containing the complete re-
sult set.

LR(s) = LRn(s) + LRs(s), with the following properties:
(i) LRn(s) = LRn(p(r’))
(ii) LRs(s) = LRs(<p(r’),...,p(r’’)>)
where the index entries r’ and r’’ have the property:
∀ r ∈ R : (r < r’ ⇒ r < l) ∧ (r > r’’ ⇒ r > u)
and p(r) denotes the disk page of the index I, which contains
the entry r. The number of logical reads LR(SeqQ,I) associ-

ated with SeqQ,I = (〈s1,..., sn〉) is determined by LR(SeqQ,I)

= .

2.2. Extended Index Range Scan Sequences

The main purpose of our approach is to minimize the
overall number of logical reads for the navigational part of
the built-in index. Therefore, we try to reduce the number of
generated range queries on the index I, while only allowing
a small increase in the output I/O cost. This can be achieved
by merging two suitable adjacent range scans s’ = (l’, u’)
and s’’ = (l’’, u’’) together to one extended range scan xs =
(l’, u’’).

Intuitively, an extended range scan xs = is an
ordered list of index range scans. When carrying it out, we
traverse the index directory only once and perform a range
scan (lr, us), as for example (l3, u4) in Figure 1.

I/O cost. The number of logical reads LR(xs) associated
with one extended range scan xs = is composed
from two parts LR(xs) = LRn(xs) + LRs(xs), with the follow-
ing properties:

(i) LRn(xs) = LRn(sr)
(ii) LRs(xs) = LRs((lr,us))

The number of logical reads LR(XSeqQ,I) associated with
an extended index range scan sequence XSeqQ,I = (〈xs1,...,
xsm〉) can be computed as follows:

LR(XSeqQ,I) =

.

Obviously, there might exist extended index range scan
sequences XSeqQ,I for which LR(XSeqQ,I) << LR(SeqQ,I)
holds. For each gap g between two adjacent range queries s’
and s’’ we decide, whether the output I/O-cost of scanning

over the gap g are lower than the navigational I/O cost re-
lated to s’’. The decision whether to merge range scan s’ and
s’’ to one extended range scan and apply an additional re-
finement step afterwards in order to filter out false hits, is
based on statistics, which are necessary for the cost models
anyway. In [2] it was shown that the quantile-based ap-
proach efficiently and effectively estimates the selectivity
by exploiting the built-in index statistics of ORDBMSs.

Definition 1 (Quantile Vector).
Let (M, ≤) be a totally ordered multi-set. Without loss of

generality, let M = {m1, m2, …, mN} with mj ≤ mj+1,
1 ≤ j < N. Then, Q(M, ν) = (q0, …, qν) ∈ Mν is called a
quantile vector for M and a resolution ν ∈ IN, iff the fol-
lowing conditions hold:

(i) q0 = m1

(ii) ∀ i ∈ 1, …, ν: ∃ j ∈ 1, …, N: qi = mj ∧ < ≤

The multi-set M of our quantile vector (q0, …, qν) is
formed by the values of the first attribute A1 of the domain
values of our index I. By means of these statistics we can es-
timate the number of logical reads associated with
one range scan s = (l, u). In the following formula, b denotes
the number of disk blocks at the leaf level of I, v denotes the
resolution of the quantile vector, N denotes the overall num-
ber of entries stored in the index I and overlap returns the
intersection length of two intersecting intervals.

We can also apply the above formula to estimate the I/O
cost LRs(g) related to scanning over a gap g =]u’, l’’[be-
tween two adjacent range queries s’ and s’’. If LRs(g) is
lower than LRn(s’’), we close the gap g. Thus we obtain an
extended index range scan sequence XSeqQ,I =
(〈 ,..., 〉) for which the fol-
lowing property holds,

Usually, the navigational cost are independent of the ac-
tual range scan and can easily be estimated, e.g. by the
height of the B+-directory.

In the next section, we will show how our approach can
be applied to a specific index structure.

3. The Intersection Query on the Linear
Quadtree - an Example

The classical example for a space partitioning relational
access method is the Linear Quadtree [7]. In this section,
we shortly introduce our approach based on the basic idea
of the Linear Quadtree according to the in-depth discussion
of Freytag, Flasza and Stillger [1].

LR si()
i 1=

n

∑

s3

pb

Fig. 1. Accelarated query processing

query object Q

query object Q yields to an
index range scan sequence SeqQ,I = (〈s1, s2, s3, s4〉)

s1 s2 s4

l1 u1 l2 u2 l3 u3 l4 u4

p1

LRn(s1) LRn(s2)

LRs(s1) = LRs(s2) =1 LRs(s3) = 4

LRn(s3)

LRs(s4) = 2

LRn(s4)

extended index range scan sequence
XSeqQ,I = (〈〈s1, s2〉, 〈s3, s4〉〉)

〈s3, s4〉

pb

〈s1, s2〉

l1 u2 l3 u4

p1

LRn(〈s1, s2〉) = LRn(s1)

LRs(〈s1, s2〉) = 1 LRs(〈s3, s4〉) = 7

LRn(〈s3, s4〉) = LRn(s3)

blocks of index data I

blocks of index data I

sr,..,ss〈 〉

sr,..,ss〈 〉

LR xsj()
j 1=

m

∑

j 1–
N

---------- i
ν

j
N

LRs
est

LRs l u,()() LRs
est

l u,()()≈

overlap l u,() qi 1– qi,(),()
qi qi 1––

--- N
v
----⋅ 

 
i 1=

v

∑
N b⁄()

---=

si0 1+ ,..,si1
〈 〉 sim 1– 1+ ,..,sim

〈 〉

i 1... n 1–∈∀ : i i1... im 1–∈ <=> LRn
est

si 1+() LRs
est

ui li 1+,()()<

The Linear Quadtree organizes the multidimensional
data space using a regular grid. Any spatial object is approx-
imated by a set of tiles. By numbering the Z-tiles of the data
space according to a depth-first recursion, any set of Z-tiles
can be represented by a set of linear values. The linear val-
ues of the Z-tiles of each spatial object can be stored in an
index table DBTiles (zval, id), where both columns com-
prise the primary key, i.e we have a B+-tree on the attributes
zval, id. Furthermore we build a quantile vector on the val-
ues of the zval-attribute.

Assume object Q in Figure 2 is used as query object.
Then there are multiple exact match and range scan queries
which have to be performed. We can reduce the cost by
closing small gaps on the leaf-level of the underlying B+-
tree. By using the information stored in the statistics, i.e. us-
ing the tile quantiles, the number of join partners can be re-
duced drastically, with a marginal increase of the I/O cost.
The definition of tile quantiles is based on the general defi-
nition of a quantile vector (cf. Definition 1). The multi-set
M of our quantile vector (q0, …, qν) is formed by the values
stored in the leaf-level of the B+-tree, i.e M = πzval(DBTiles).

We investigate all gaps included in the sequence of our
generated join partners and decide for each gap whether it
is beneficial to close it. Assume the height of our B+-direc-
tory is n. If the database tiles of the actual investigated gap
do not cover more than n leaf blocks on our index (zval), we
close this gap. Thus we reduce the joinI/O cost by n, while
not increasing the outputI/O cost by more than n. This proce-
dure is depicted in Figure 2.

The above mentioned cost-based grouping step can be
carried out in a procedural preparation step JoinPartGen by
using bind variables [2], leading to an efficient cursor driv-
en SQL-statement [4] (cf. Figure 3). This approach reduces

the overhead of barrier crossings between the declarative
and procedural environments to a minimum. The resulting
table tiles contains entries of a type which consists of three
attributes ZvalLow, ZvalHigh and an ExactZvalList. The at-
tribute ExactZvalList is needed for an additional refinement
step to filter out false index hits, called TestZval.

4. Conclusions and Future Work

We have implemented our cost-based grouping algo-
rithm for the RI-tree, the Relational R-tree as well as for the
Linear Quadtree on top of the Oracle9i database system.
According to our first experiments, we achieved a speed-up
of up to 1,000% depending on the query object and the data
distribution. Obviously, for highly selective queries our ap-
proach yields very promising results. This is especially true
for high resolution data spaces as the number of generated
join partners exponentially depends on the resolution [3].

You could also look at our approach from another point
of view. The traditional error-and size bound decomposition
approaches [6] decompose a large query object into smaller
query objects optimizing the trade off between accuracy
and redundancy. In contrast, the idea of taking the actual
data distribution into account in order to decompose the
query object, could lead to a new database driven decompo-
sition approach, which tries to minimize the overall number
of logical reads.

5. Future Work

In our future work, we plan to elaborate our ideas further
and try to present a sound and convincing experimental
evaluation, where we want to investigate several index-
structures as well as different query predicates.

We will analyze which level of detail for the statistics is
most suitable for the acceleration of relational index-struc-
tures, and whether these statistics correlate with the ones
necessary for the corresponding cost models.

References

[1] Freytag J.-C., Flasza M., Stillger M.: Implementing Geospa-
tial Operations in an Object-Relational Database System.
Proc. 12th Int. Conf. on Scientific and Statistical Database
Management, 209-219, 2000.

12 15 27

Fig. 2. Cost-Based Tile Grouping

3 6 18 21

10 25 28

4 7 19 22
20 23

11 14 26 29
30

 Recursive partitioning of Query object Q

Tile 0 8 24 30 16

cost-based
Quantiles

grouping

B

302513

8 20 23

q

8 20 23

13

1 16

2 17

9 24

0

0 8 24 30 16 30
25

2320

13

8

0 8 24 30 16 30
25

2320

13

8

Corresponding Join PartnersQuery Object

Quadtree tiles

Quadtree tiles

Quadtree tiles

Fig. 3. Accelarated window

SELECT DISTINCT idx.id
FROM DBTiles idx,

TABLE(JoinPartGen(BOX((0,0),(10,10)))) tiles,
WHERE (idx.zval BETWEEN tiles.ZvalLow AND tiles.ZvalHigh)

AND TestZval(idx.zval, tiles.ExactZvalList);

[2] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model for
Interval Intersection Queries on RI-Trees. Proc. 14th Int.
Conf. on Scientific and Statistical Database Management,
131-141, 2002.

[3] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: Spatial Query
Processing for High Resolution. Proc. 8th Int. Conf. on Data-
base Systems for Advanced Applications, 2003.

[4] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: The Paradigm of
Relational Indexing: A Survey. 10. GI-Fachtagung Daten-
banksysteme für Business, Technologie und Web, 2003.

[5] Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Effi-
ciently in Object-Relational Databases. Proc. VLDB, 407-
418, 2000.

[6] Orenstein J. A.: Redundancy in Spatial Databases. Proc. ACM
SIGMOD Int. Conf. on Management of Data, 294-305, 1989.

[7] Samet H.: Applications of Spatial Data Structures. Addison
Wesley Longman, Boston, MA, 1990.

