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Abstract

The efficient management of interval data represents a core
requirement for many temporal and spatial database
applications. With the Relational Interval Tree (RI-tree1), an
efficient access method has been proposed to process
interval intersection queries on top of existing object-
relational database systems. This paper complements that
approach by effective and efficient models to estimate the
selectivity and the I/O cost of interval intersection queries in
order to guide the cost-based optimizer whether and how to
include the RI-tree into the execution plan. By design, the
models immediately fit to common extensible indexing/
optimization frameworks, and their implementations exploit
the built-in statistics facilities of the database server.
According to our experimental evaluation on an Oracle
database, the average relative error of the estimated cost to
the actual cost of index scans ranges from 0% to 23%,
depending on the resolution of the persistent statistics and
the size of the query objects.

1. Introduction

There is a growing demand for database applications to
handle intervals which, for instance, occur as transaction
time and valid time ranges in temporal databases [31] [26]
[4] or as line segments on a space-filling curve in spatial ap-
plications [9] [3]. The SQL:1999 standard provides the
datatype PERIOD with the predicates precedes, succeedes,
meets, equals, overlaps (= intersects), contains, and during
[30]. With the Relational Interval Tree1 (RI-tree), a relation-
al access method has been proposed which supports all of
the PERIOD predicates [18].

Highly accurate but still efficient selectivity estimation
and cost prediction are the fundamentals of effective query
optimization. As pointed out in [28], standard selectivity es-
timation does not estimate well the result cardinalities of se-

lections having temporal predicates, and standard built-in
methods are not directly suitable for interval intersection
queries, in particular. For complex query objects and query
predicates, the recent object-relational database servers pro-
vide extensible optimization frameworks that come along
with the extensible indexing frameworks, in order to com-
plete the seamless integration of user-defined index struc-
tures into the declarative DML. As an example for such an
extension, we propose a cost model for the RI-tree that fits
well to the extensible frameworks by design. Though the
RI-tree immediately maps intervals to built-in B+-trees, the
built-in cost models for B+-trees do not estimate well the
processing cost since they do not take the particular struc-
ture and partitioning of interval data into account.

Our techniques aim at the collection of statistics, the es-
timation of selectivity, and the prediction of I/O cost. There-
by, the optimizer of the database system is enabled to place
the user-defined index at its optimal position in the query
execution plan. According to [5] and [13], such a cost-based
approach is preferable to rule-based approaches when refer-
encing user-defined methods as predicates. The two main
design aspects for the above mentioned functions are:

Effectiveness. The extensible optimizer uses the selec-
tivity estimation to determine a good join order for complex
SQL queries. It then evaluates the available cost models to
choose the most efficient access path to the data. The objec-
tive is to keep the relative error of selectivity and cost esti-
mations sufficiently small to rank the user-defined index ac-
curately among alternative access methods.

Efficiency. In order to obtain an efficient execution plan
for a DML operation, the optimizer framework calls the es-
timation functions for each contained interval predicate. To
reduce the total runtime of query optimization, the execu-
tion cost for the estimation functions should be kept mini-
mal. Furthermore, data statistics required for the estimation
functions should also be efficiently collected.

The architecture of extensible optimization is analogous
to extensible indexing as illustrated in Figure 1: Whereas
the new methods are built on top of the relational SQL layer,
they are object-relationally embedded by implementing the1.  Patent pending.
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respective interfaces of the frameworks. In case of our new
cost models, we particularly propose methods to estimate
the selectivity of a given range query on a database of inter-
vals (function getSelectivity) and a method to predict the
cost of processing that query (function getIndexCost). In
this paper, we focus on the predicate overlaps (= intersects)
which is considered to be the most important one [10]. Nev-
ertheless, the RI-tree supports all of the PERIOD predicates
as well [18] and, moreover, has been also successfully ap-
plied to spatial queries [19]. The proposed cost model can
easily be extended to these kinds of queries. 

The organization of the paper follows the requirements
of extensible optimization frameworks and proceeds in the
following way: After sketching related work on selectivity
estimation and cost prediction in Section 2, Section 3 brief-
ly recalls the RI-tree [17]. In Section 4, we propose two ap-
proaches to estimate the selectivity of intersection queries
on interval data. The first approach is based on user-defined
histograms, whereas the second one relies on the built-in
statistics of standard database systems. Section 5 derives a
cost model for estimating the I/O cost of a given query on
the RI-tree. After an empirical evaluation of the presented
methods in Section 6, the paper is concluded in Section 7.

2. Related Work

2.1. Selectivity Estimation

In order to determine a good estimate for the selectivity
of a specific predicate without retrieving the actual results,
the predicate has to be evaluated on a sufficiently accurate
approximation of the data distribution. The computation of
such an approximation is known as one of the most difficult
problems, for instance in case of selectivity estimation of
extended objects [1]. The many existing approaches fall
into three different classes: parametric techniques, sam-
pling, and statistics.

Parametric techniques approximate the given data by
using a standard mathematical distribution. For databases
comprising extended objects, many proposals exploit in-
trinsic characteristics of the stored data, including the usage
of the Correlation Fractal Dimension on point sets by Be-
lussi and Faloutsos [2] or the SLED property of real seg-
ment data proposed by Proietti and Faloutsos [24]. A limi-
tation for parametric techniques results from the
requirement of a-priori assumptions about the data distribu-
tion. In contrast, sampling adapts to the actual data distribu-
tion by processing a small fraction of the stored tuples. This
paradigm has been pursued and evaluated by Lipton,
Naughton and Schneider [21] and by Haas et al. [12]. Sta-
tistics are a very popular approach in database systems, as
they typically can be efficiently computed and occupy only
a small amount of secondary storage. For linearly ordered
domains, the most commonly used statistics type in com-
mercial database servers are quantiles of the original data.
For the selectivity estimation on non-uniform distributions
of extended objects, histograms are a common technique.
An extensive analysis on different kinds of spatial histo-
grams has been published by Acharya, Poosala and Ra-
maswamy [1]. Whereas histograms can be naturally applied
to one-dimensional interval data, a quantile-based approach
has to operate on a linear representation of the original in-
tervals. In this paper, we present and evaluate techniques for
interval data on both types of statistics, histograms as well
as quantiles.

2.2. Cost Estimation

A wide range of cost models has been presented in the
literature for various index structures for extended objects,
including the technique of Kamel and Faloutsos [16] for in-
tersection queries on packed R-trees, or the REGAL law for
R-tree entries by Proietti and Faloutsos [25]. Recently, cost
models have also been extended to handle joins of extended

Fig. 1. Analoguous architectures for the object-relational embedding of user-defined index structures and cost models 
into extensible indexing and optimization frameworks, respectively.

Extensible Indexing Framework
Object-relational interface for index 
maintenance and querying functions.

User-defined Index Structure

Relational Implementation
Mapping to built-in indexes (B+-trees); 
SQL-based query processing.

Extensible Optimization Framework
Object-relational interface for selectivity 
estimation and cost prediction functions.

User-defined Cost Model

Relational Implementation
Mapping to built-in statistics facilities; 
SQL-based evaluation of cost model.



objects and the presence of database buffers as in the pro-
posals of Huang, Jing and Rundensteiner [11], Leutenegger
and Lopez [20], or Theodoridis, Stefanakis and Sellis [33].
Whereas previous research has mainly concentrated on the
design and evaluation of cost models for stand-alone access
methods, the following sections develop an approach that
can be fully implemented on top of existing object-relation-
al database systems.

3. The Relational Interval Tree

The RI-tree is a relational storage structure for interval
data (lower, upper), built on top of the SQL layer of any
RDBS. By design, it follows the concept of Edelsbrunner’s
main-memory interval tree [8] and guarantees the optimal
complexity for storage space and for I/O operations when
updating or querying large sets of intervals.

3.1. Relational Storage and Extensible Indexing

The RI-tree strictly follows the paradigm of relational
storage structures since its implementation is purely built on
(procedural and declarative) SQL but does not assume any
lower level interfaces to the database system. In particular,
built-in index structures are used as they are, and no intru-
sive augmentation or modification of the database kernel is
required.

On top of its pure relational implementation, the RI-tree
is ready for immediate object-relational wrapping. It fits
particularly well to extensible indexing frameworks as al-
ready proposed in [32] and illustrated in Figure 1. These
frameworks, which are provided by the latest object-rela-
tional database systems, including IBM DB2 Universal Da-
tabase [14] [7], Informix Universal Server [15] [6], or Ora-
cle Server [23] [29] enable developers to extend the set of
built-in index structures by custom access methods in order
to support user-defined datatypes and predicates without
weakening the reliability of the entire system.

3.2. Dynamic Data Structure

The structure of an RI-tree consists of a binary tree of
height h which covers the range [1, 2h–1] of potential inter-
val bounds. It is called the virtual backbone of the RI-tree
since it is not materialized but only the root value 2h–1 is
stored persistently in a metadata table. Traversals of the vir-
tual backbone are performed purely arithmetically by start-
ing at the root value and proceeding in positive or negative
steps of decreasing length 2h–i, thus reaching any desired
value of the data space in O(h) CPU time and without caus-
ing any I/O operation. For the relational storage of intervals,
the node values of the tree are used as artificial keys: Upon
insertion of an interval, the first node that hits the interval

when descending the tree from the root node down to the in-
terval location is assigned to that interval.

An instance of the RI-tree then consists of two relational
indexes which in an extensible indexing environment are
preferably managed as index-organized tables. The indexes
obey the relational schema lowerIndex (node, lower, id) and
upperIndex (node, upper, id) and store the artificial key val-
ue node, the bounds lower and upper, and the id of each in-
terval. An interval is represented by exactly one entry in
each of the two indexes, and therefore, O(n/b) disk blocks
of size b suffice to store n intervals. For inserting or deleting
intervals, the node values are determined arithmetically,
and updating the indexes requires O(logb n) I/O operations
per interval.

The illustration in Figure 2 provides an example for the
RI-tree. Let us assume the intervals (2,13) for Mary, (4,23)
for John, (10,21) for Bob, and (21,30) for Ann (Fig. 2a).
The virtual backbone is rooted at 16 and covers the data
space from 1 to 31 (Fig. 2b). The intervals are registered at
the nodes 8, 16, and 24. The interval (2,13) for Mary is rep-
resented by the entries (8, 2, Mary) in the lowerIndex and
(8, 13, Mary) in the upperIndex since 8 is the registration
node, and 2 and 13 are the lower and upper bound, respec-
tively (Fig. 2c). 

3.3. Intersection Query Processing

To minimize barrier crossings between the procedural
runtime environment and the declarative SQL layer, an in-
terval intersection query (lower, upper) is processed in two
steps. The procedural query preparation step descends the

Fig. 2. Example for an RI-tree. a) four intervals. b) virtual
backbone and registration positions of the intervals. c)
resulting relational indexes lowerIndex and upperIndex
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virtual backbone from the root node down to lower and to
upper, respectively. The traversal is performed arithmetical-
ly without causing any I/O operations, and the visited nodes
are collected in two main-memory tables, left queries and
right queries, as follows: nodes to the left of lower may con-
tain intervals which overlap lower and are inserted into left
queries. Analogously, nodes to the right of upper may con-
tain intervals which overlap upper and are inserted into
right queries. Whereas these nodes are taken from the paths,
the set of all nodes between lower and upper belongs to the
so-called inner query which is represented by a single range
query on the node values. All intervals registered at nodes
from the inner query are guaranteed to intersect the query
and, therefore, will be reported without any further compar-
ison. The query preparation step is purely based on main
memory and requires no I/O operations.

In the subsequent declarative query processing step, the
transient tables are joined with the relational indexes upper-
Index and lowerIndex by a single, three-fold SQL statement
(Figure 3). The upper bound of each interval registered at
nodes in left queries is compared to lower, and the lower
bounds of intervals stemming from right queries are com-
pared to upper. The inner query corresponds to a simple
range scan over the intervals with nodes in (lower, upper).
The SQL query requires O(h·logb n + r/b) I/Os to report r re-
sults from an RI-tree of height h since the output from the
relational indexes is fully blocked for each join partner. 

For systems which do not support transient main-memo-
ry tables as bind variables, we use set containment predi-
cates ‘i.node IN leftQueries’ and ‘i.node IN rightQueries’.
The query sets are then composed by string concatenation.
In any case, no I/O operations are required in the query prep-
aration step.

4. Selectivity Estimation

Accurate estimations of query result sizes are a neces-
sary input for many components of the underlying database
system. In particular, the selectivity estimation for an inter-
val intersection query can be used by the built-in optimizer

to find an efficient join order and to determine the best
available access method [27] [23]. Selectivity estimation is
also required to provide the user with an approximate pre-
diction about the potential execution time of DML state-
ments. In the following, we propose a histogram-based ap-
proach (‘equi-width histograms’) and a quantile-based
approach (‘equi-count histograms’).

4.1. Histogram-Based Selectivity Estimation

In order to cope with arbitrary interval distributions, his-
tograms can be employed to capture the data characteristics
at any desired resolution. We start by giving the definition
of an interval histogram:

Definition 1 (Interval Histogram).
Let D = [1, 2h – 1] be a domain of interval bounds, h � 1.
Let the natural number � � N be the resolution, and �

�
=

(2h – 1)/��the corresponding bucket size. Let bi,� = [1 + (i –
1)·�

�
,1 + i·�

�
) denote the span of bucket i, i � {1, …, �}.

Let further I ��{(l, u), l � u} ��D2 be a database of intervals.
Then, H(I, �) = (n1, 	, n

�
) � N� is called the interval histo-

gram on I with resolution �, iff for all i � {1, …, �}:
ni = |{
���I | 
�intersects bi,�}|

In order to compute an interval histogram on a database
I of n intervals, O(n/b) disk blocks have to be touched, as-
suming a blocked storage of I by a page size b. The compu-
tation is performed by standard SQL and wrapped by a
stored procedure that complies with the statistics collection
interface of the extensible optimization framework (func-
tion getSelectivity). Based on H(I, �), we compute a selec-
tivity estimate by evaluating the intersection of the query
interval with each bucket span bi,� (cf. Figure 4): 

Definition 2 (Histogram-based Selectivity Estimate).
Given an interval histogram H(I, �) = (n1, 	, n

�
) with

bucket size �, we define the histogram-based selectivity es-
timate �I(I, �), 0 � �I(I, �) � 1 for an intersection query
� = (l

�
, u

�
) by the following formula: 

�I(I, �) = 

where overlap returns the intersection length of two inter-
secting intervals, and 0, if the intervals are disjoint.

SELECT id FROM upperIndex i, :leftQueries q
WHERE i.node = q.node AND i.upper >= :lower

UNION ALL
SELECT id FROM lowerIndex i, :rightQueries q

WHERE i.node = q.node AND i.lower <= :upper
UNION ALL
SELECT id FROM lowerIndex  /* or upperIndex */

WHERE node BETWEEN :lower AND :upper;

Fig. 3. SQL statement for an intersection query with bind 
variables for left queries, right queries, lower and upper

bi + 1,�

�l
�

u
�

H(I, �)

Fig. 4. Selectivity estimation on an interval histogram.
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Note that long intervals may span multiple histogram
buckets. Thus, in the above computation, we normalize the
expected output to the sum of the number ni of intervals in-
tersecting each bucket i rather than to the original cardinal-
ity n of the database. In order to support query intervals with
a very small duration, the average length of the stored inter-
vals could also be considered for the estimation.

4.2. Quantile-Based Selectivity Estimation

Due to the replication of intervals across bucket bound-
aries, the accuracy of the histogram-based selectivity esti-
mation may deteriorate with longer interval lengths or high-
er histogram resolutions. In addition, the runtime required
for the histogram computation is increased by the cost of
barrier-crossings between the declarative environment of
the SQL layer and our stored procedure. Fortunately, most
ORDBMS comprise efficient built-in functions to compute
single-column statistics, particularly for cost-based query
optimization. Available optimizer statistics are accessible to
the user by the relational data dictionary. The basic idea of
our quantile-based selectivity estimation is to exploit these
built-in index statistics rather than to add and maintain user-
defined histograms. We start with the definition of a quan-
tile vector, the typical statistics type supported by relational
database kernels. Then, we describe its application to node
values of the RI-tree.

Definition 3 (Quantile Vector).
Let (S, �) be a totally ordered multi-set. Without loss of gen-
erality, let S = {s1, s2, 	, sk} with sj � sj+1, 1 � j < k. Then,
Q(S, �) = (q0, 	, q

�
) � S� is called a quantile vector for S

and a resolution � � N, iff the following conditions hold:
(i) q0 = s1

(ii) 
i � 1, …, �:��j � 1, …, k:  qi = sj ��  �  ��

Definition 4 (Node Quantiles).
Let lowerIndex be the relational index on (node, lower, id)
for an instance T of the RI-tree. Let N = �node(lowerIndex)
be the projected multi-set of node values. Then, Q(N, �) is
called the vector of node quantiles on T with resolution �.

Based on the node ordering materialized in the lowerIn-
dex (or upperIndex), the computation of Q(N, �) on an
RI-tree storing n intervals has an I/O complexity of O(n/b),
where b is the disk block size. By using the node quantiles
for an RI-tree index, we get an aggregated view on the loca-
tions of the stored intervals. In addition, we may use some
knowledge about the one-dimensional durations which is
given by the following definition that captures the average
distances of the interval bounds to the respective fork node:

Definition 5 (Average Node Distances).
Let T be an instance of the RI-tree with lowerIndex and up-
perIndex relations. Then, the average lower distance �low-

er(T) and the average upper distance �upper(T) is defined as:
 (i) �lower(T) = avg(node – lower)
(ii) �upper(T) = avg(upper – node)

The average values �lower and �upper are computed with
O(n/b) I/O complexity, and if possible, along with the quan-
tile statistics. If the built-in statistics of the hosting database
system comprise single-column averages on node, lower,
and upper, then �lower and �upper can be simply derived from
these existing statistics: �lower = avg(node) – avg(lower)
and �upper = avg(upper) – avg(node). For interval databases
with a highly skewed distribution of interval lengths, �lower
and �upper can be replaced by quantiles on �node –

lower(lowerIndex) and �upper – node(upperIndex).
Our goal is to compute the selectivity estimate in con-

stant time, i.e. independent not only from the cardinality,
but also from the granularity of the interval data. Instead of
submitting the O(h = log2root + 1) node queries on the
RI-tree, we evaluate the quantiles with respect to the span
of nodes touched during the processing of a potential inter-
val intersection query.

Definition 6 (Span of Touched Nodes).
For a given RI-tree T and an intersection query �, the range
��T� �� = (l

�
, u

�
) is called the span of touched nodes, iff l

�
 is

the minimal and u
�
 is the maximal node on the virtual back-

bone that is touched while processing the query � on T.

Lemma 1. Let D = [1, 2h – 1] be the interval domain cov-
ered by an RI-tree T with root = 2h – 1. For an intersection
query � = (l

�
, u

�
) � D, the span of touched nodes ��T� �� =

(l
�
, u

�
) � D�is computed by the following formulas:

 (i) l
��

= 2k, k = log2(l�),
(ii) u

�
 = 2h – 2k, k = �log2(2h – u

�
)�.

Proof. (i) The leftmost node touched during the arithmetic
traversal of the backbone is the last node before we first step
into a right subtree. Following the left branch yields a 0-bit,
following the right branch yields a 1-bit in the binary repre-
sentation of the actual node value. Thus, the leftmost node
l
�
 has exactly one bit set at the first position of a 1-bit in l

�
.

(ii) Analogously, the rightmost node u
�
 is derived from the

first 0-bit in the binary representation of u
�
 by a mirrored

consideration. �
We estimate the number of results yielded by the inner,

left, and right queries for an intersection query � = (l
�
, u

�
)

based on the node quantiles Q(N, �) = (q0, 	, q
�
). Figure 5

provides a graphical interpretation of the following calcula-
tions: the number of results rinner from the inner query can

j 1–
k

---------- i
�
--- j

k
--



be estimated by evaluating the overlap of � with the quan-
tiles (analogously to Section 4.1): 

To estimate the number of results rleft retrieved by the left
queries, we only have to consider quantiles falling into the
range (leftBound

�
, l

�
), where leftBound

�
= max(l

�
, l

�
–

�upper(T)) and ��T� �� = (l
�
, u

�
):

The estimation of the number of results rright of the right
queries is done analogously to rleft. Finally, we define:

Definition 7 (Quantile-based Selectivity Estimate).
The quantile-based selectivity estimate �N(I, �) of the inter-
section query � on an interval database I is given by 

As desired, the quantile vector is a non-replicating statis-
tics on interval data, and the data sets contributing to the re-
sults rleft, rinner, and rright are disjoint. In consequence,
0 � rleft + rinner + rright � |N| holds and, thus, 0 � �N(I, �) � 1.

5. Model for I/O Cost

In order to achieve a seamless declarative integration of
the Relational Interval Tree into extensible indexing frame-
works as provided by modern object-relational database
systems, a cost model has to be registered at the extensible
optimization framework. In this section, we present a cost
model for interval intersection queries on the RI-tree, based
on the estimated selectivity and the range queries generated
for the underlying B+-trees.

We assume the selectivity estimation �(I, �) for an inter-
section query � = (l

�
, u

�
) on an interval data set I to be deter-

mined as shown above. In our derivation of a cost model to
estimate the number of touched B+-tree blocks for arbitrary

intersection queries �, we use that expected selectivity as in-
put for the estimation of the I/O operations.

Let us recall from Section 3.3 that the query preparation
step does actually cause no I/O operations since the travers-
al of the backbone structure is done purely arithmetically,
and the generated join partners are managed in main mem-
ory. The I/O complexity of O(h · logbn + r/b) [17] for an in-
tersection query retrieving r results from an RI-tree of
height h comprises components of the following two types:
• First, the directories of the relational indexes (built-in

B+-trees) have to be traversed in order to navigate on the
disk to the first result, if any, for each join partner. Let us
denote this portion of I/O operations by joinI/O and let us
recall that joinI/O = O(h · logbn).

• Second, the results for each join partner are reported by
scanning contiguous leaf blocks of the relational indexes.
We call this portion of I/O operations outputI/O. Since the
output is blocked, i.e. there are no gaps between the an-
swers for a single range query, the complexity outputI/O =
O(r/b) is guaranteed.

In contrast to the very general complexity analysis, a cost
model has to compute actual numbers of I/O operations for
specific interval queries. Our model relies on the following
two observations:
1. In a real user environment with many concurrent que-

ries, substantial parts of the B+-directories typically re-
side in the main memory and can be managed by the
built-in LRU-cache of the DBMS [22]. According to a
common assumption, we count two I/O operations for
each leaf-block access in order to estimate the number of
blocks actually read from disk.

2. The transient join partners are processed in increasing
order (left queries, inner query) or decreasing order
(right queries) with respect to the node value in the com-
posite indexes on (node, upper, id) and (node, lower, id),
respectively. Due to this ordered access, pages that are
read several times during query processing will rarely be
displaced from the LRU cache between the accesses. We
therefore assume that each leaf page is retrieved only
once from secondary storage.

Based on these assumptions, we derive individual formulas
for the components outputI/O and joinI/O in the following.

outputI/O. For a given RI-Tree T on a set I of intervals, let
L = leaf-blocks(upperIndex) � leaf-blocks(lowerIndex) be
the number of leaf blocks in the B+-trees, L = O(n/b), and �
be an interval intersection query performed on T. The an-
swers retrieved from upperIndex and from lowerIndex are
guaranteed to be disjoint, and we estimate outputI/O(T, �) as
the fraction of L predicted by the selectivity estimate �(I, �)
on T:

outputI/O(T, �)  =  �(I, �) · L

qi+1qi 	

rinner

�

l
�

l
� – �upper(T) l

�
u
�

rleft

Q(N, �)

Fig. 5. Selectivity estimation on node quantiles.
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joinI/O. The formula for joinI/O includes the number of
leaf block accesses caused by the navigation in the B+-tree
directories for the join partners. Since the leaf blocks are
read from two independent B+-tree indexes, we capture the
join overhead for the set of left queries and inner queries on
the one hand and for the set of right queries on the other
hand separately.

Figure 6 provides an illustration for our considerations
and depicts the leaf blocks in the lowerIndex and upperIn-
dex that are read for a query�� = (l

�
, u

�
). Note that the virtual

backbone is drawn to the scale of the population in the in-
dexes, and not to the original domain of D = [1, 2h – 1]. 

The leaf block p in the upperIndex, for example, is
touched multiple times during query processing. According
to the locality-preserving read schedules for LRU buffers,
the multiple accesses to block p count for a single leaf ac-
cess only. This estimation is complemented by the addition-
al heuristics to count two physical disk accesses for a single
leaf block access in order to take care of the I/O caused by
traversing the index directory.

An important observation for joinI/O is that the results of
different join partners in general do not form a contiguous

range of entries in the leaf blocks of the indexes. Although
the results are blocked for each single left query, inner que-
ry, and right query, there are typically gaps between the
blocked result sets of different join partners. In order to
model the distribution of gaps, we first determine the gaps
between the node values, NGapsleft(�) and NGapsright(�), for
a given intersection query � on an RI-tree T. Then, we derive
the expected corresponding gaps between disk blocks,
BGapsleft(�) and BGapsright(�).

Estimation of Node Gaps. For the estimation of node
gaps, we traverse the virtual backbone on D = [1, 2h – 1],
and we collect the lengths NGapsleft(�) = {�1, 	, �l} of gaps
to the left of the query interval �, i.e. in the range [1, l

�
] be-

tween consecutive nodes touched by the left and inner que-
ries, and the lengths NGapsright(�) = {�1, 	, �r} of gaps to
the right of �, i.e. in the range [u

�
, 2h – 1] between the right

queries, respectively.
Estimation of Block Gaps. Let L

�
 be the average num-

ber of nodes per leaf block in the span ��T� �) of touched
nodes for �. We estimate the corresponding block gaps
among the range queries for � by the multi-sets BGapsleft(�)
and BGapsright(�) of real numbers:

BGapsleft(�) = , BGapsright(�) = . 

The value of L
��
is easily estimated by using the persistent

statistics on T along with the cardinality n and the number
of leaf blocks L, similarly to Section 4. After having com-
puted the number and extension of gaps between the
blocked sections of outputI/O, we use this information to es-
timate joinI/O. Depending on the length and the position of
each block gap g, a specific number of leaf block accesses
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occurs. For gaps smaller than one disk block, i.e. g � 1, the
I/O is increased by this very gap length g with a weight of 1
(cf. Figure 7a). According to Figure 7b, the I/O overhead
for larger gaps depends on the gap offset to the leaf blocks
and is restricted to blocks at the gap border. For gaps g > 1,
our formula to estimate the contribution gapI/O(g) of a gap
g to joinI/O therefore focuses on the fraction g’ = g – �g�.
Since we assume a uniform distribution of gap offsets with
respect to the leaf blocks in the upperIndex and lowerIndex,
the mean contributions of the left and right borders of a gap
g > 1 to gapI/O(g) are 1 + g’ with weight 1 – g’ and g’ with
weight g’. The overall value then sums to (1 – g’)·(1 + g’) +
g’·g’ = 1, and the distinction of cases simplifies to

gapI/O(g) = min(1, g).

With respect to I/O cost, random access to a leaf block is,
therefore, only beneficial if the preceding block gap is larg-
er than the size of a disk block. In consequence, gaps cov-
ering only fractions of a disk block could be sequentially
scanned without causing any I/O overhead (this observation
opens up a promising potential to further improve the per-
formance of the RI-tree). For all gaps between the range
queries on the upperIndex and lowerIndex for a given query
interval � on an RI-tree T, we estimate the additional I/O for
the join processing as

joinI/O(T, �) = .

The total I/O cost for an interval intersection query � on
an RI-tree T is then summarized by

total_costI/O(T, �)  =  outputI/O(T, �) + joinI/O(T, �).

6. Empirical Evaluation

6.1. Experimental Setup

We implemented the proposed functions for the estima-
tion of selectivity and execution cost on the Oracle Server

Release 8.1.6 using built-in methods for statistics collec-
tion, analytic SQL functions, and the PL/SQL procedural
runtime environment. All experiments were performed on
an Athlon/750 machine with IDE hard drives. The database
block cache was set to 500 disk blocks with a block size of
8 KB and was used exclusively by one active session. The
experiments for the evaluation of statistics, selectivity esti-
mation, and cost model have been executed on various in-
terval databases. We have used a synthetic dataset of inter-
vals following a uniform starting point and length
distribution (UNI) and intervals derived from a real dataset
(REAL). For both databases UNI and REAL, Figure 8 de-
picts the histogram statistics. A peak in the histogram visu-
alization denotes a high density of interval data. In case of
the UNI dataset, the data space [1..1,000,000] is covered
with a uniform density. 

To evaluate the quality of the selectivity and cost predic-
tion, we determined the average relative error of the esti-
mates. This measure denotes the ratio of the absolute esti-
mation error to the actual query result, averaged over a set
of queries S. If ei is the estimated and ri is the actual result
size of a query qi, the average relative error of the estimated
selectivity for S is defined as:

Avg relative error (selectivity) = 

For the estimations of the actual I/O cost, the average rel-
ative error is defined analogously. This measure is a com-
mon technique to evaluate selectivity estimations and cost
models, see e.g. [1]. It is undefined if all queries in a query
set produce zero output or zero cost. However, this is not the
case for our evaluation. As an alternative, the geometric av-
erage of relative errors could be used as in [25]. But, as the
relative error of some predictions reached zero, this mea-
sure would be undefined, and, therefore, could not be used
throughout our experiments. The following results show the
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averages of, in total, 100 intersection queries for the UNI
and REAL databases.

6.2. Computation of Statistics

The persistent statistics must be recomputed in order to
adapt to changing data distributions. For highly dynamic
data, the database administrator might even decide to trig-
ger the computation of important statistics periodically.
Therefore, a low execution cost for the creation of statistics
is essential. Figure 9 compares the total runtime of compu-
tation for the histogram statistics to the quantile statistics
for increasing database size, using 100% samples. Due to
the overhead of barrier crossing between PL/SQL and SQL,
the quantile-based approach outperforms the histogram-
based approach by a factor of 2. 

6.3. Selectivity Estimation

In the next set of experiments, we evaluate the average
relative error with respect to the query size, i.e. the percent-
age of the data space covered by the query region. Figure 10
shows the relative error of the histogram-based and quan-
tile-based statistics on the UNI and REAL database. The re-
sulting accuracy of both, the quantile-based approach and
the histogram-based approach is very high. For higher se-
lectivities, the quantile-based approach performs slightly
better, yielding estimation errors around 4.5% and 2.9% for
the UNI and REAL database, respectively. This result can
be explained by the fact that quantiles adapt to the local den-
sity of the data, whereas histograms partition the whole data
space using buckets of identical size. The next experiment
in Figure 11 depicts the average relative error for different
resolutions of the persistent statistics, evaluated for a set of
intersection queries having 10% average query size. As ex-
pected, the estimation error increases significantly for
coarser resolutions due to the replication of intervals across

bucket boundaries (cf. Section 4.2). Beyond a global opti-
mum at some 100 buckets, the error of the histogram-based
approach increases for higher resolutions, due to the repli-

Fig. 9. Computation cost of histogram-based and 
quantile-based statistics.
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cation of intervals spanning multiple histogram buckets.
Therefore, we focus on the quantile-based approach in the
following experiments, as the representation of intervals is
non-redundant. Regarding the runtime, a single selectivity
estimation using statistics with a resolution of 100 quantiles
for the UNI and REAL databases took about 0.05 seconds
on the average.

6.4. Cost Estimation

We used the estimated quantile-based selectivity of the
previous section as input for the I/O cost model. The exten-
sible query optimizer uses the resulting estimations to de-
cide upon the usability of the RI-tree for specific queries.
Figure 12 presents the relative error of the estimated cost
for the UNI and REAL databases. The relative errors stay
below 14% and 23%, respectively. Figure 13 compares the
absolute estimations and the actual cost for the blocked out-
put of results (outputI/O). In addition, joinI/O denotes the
overhead due to the nested-loop join with the transient que-
ry tables. For the sake of comparability to the analytical I/O
complexity mentioned in Section 3.3, the results are shown
with respect to the actual query selectivity. Our interpreta-
tion of these results is twofold: First, the real I/O cost show
that the total I/O is largely determined by the cardinality of
the query result, whereas the overhead for the join process-

ing remains almost constant. The relative cost of the join
overhead decreases from 100% at 0% selectivity to 0.2‰ at
100% selectivity (Figure 13a). According to these empirical
results, the overhead of joinI/O is negligible for higher val-
ues of the query selectivity. Second, we observe that our
cost model not only yields tight estimations for the total
query cost, but also reflects the distribution between the
output and join cost rather accurately. Regardless of the ac-
tual query selectivity, the cost computation on the databases
UNI and REAL took about 0.05 seconds for a single inter-
val intersection query.

7. Conclusions

High quality selectivity estimation and cost prediction
are the fundamentals of effective query optimization. Par-
ticularly for complex query objects and complex query
predicates, the recent object-relational database servers pro-
vide extensible optimization frameworks that go along with
the extensible indexing frameworks, in order to complete
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the seamless integration of user-defined index structures
into the declarative DML. In this paper, we present an ex-
ample for such an extension and focus to the relational in-
terval tree (RI-tree) that already fits well to modern object-
relational extensible indexing frameworks. We particularly
propose models to estimate the selectivity of interval inter-
section queries and to predict the cost for query processing.
With respect to the generation and management of statistics,
the proposed quantile-based selectivity estimation reuses as
much built-in functionality of the RDBMS as possible. Ac-
cording to our experimental evaluation, the computed esti-
mations are very accurate. For highly selective queries on a
database of real interval data, the relative error for the selec-
tivity estimation was around 2.9%. The corresponding er-
rors for the I/O cost model amount to 23% and 3.3%, re-
spectively.

In our future work, we plan to adapt the proposed tech-
niques to support general interval relationships as required
for temporal applications [18], and, in addition, to spatial
queries in GIS and CAD applications [19].
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