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ABSTRACT

Automatically determining the relative position of a single CT slice within a full body scan provides several useful
functionalities. For example, it is possible to validate DICOM meta-data information. Furthermore, knowing
the relative position in a scan allows the efficient retrieval of similar slices from the same body region in other
volume scans. Finally, the relative position is often an important information for a non-expert user having only
access to a single CT slice of a scan. In this paper, we determine the relative position of single CT slices via
instance-based regression without using any meta data. Each slice of a volume set is represented by several
types of feature information that is computed from a sequence of image conversions and edge detection routines
on rectangular subregions of the slices. Our new method is independent from the settings of the CT scanner
and provides an average localization error of less than 4.5 cm using leave-one-out validation on a dataset of 34
annotated volume scans. Thus, we demonstrate that instance-based regression is a suitable tool for mapping
single slices to a standardized coordinate system and that our algorithm is competitive to other volume-based
approaches with respect to runtime and prediction quality, even though only a fraction of the input information
is required in comparison to other approaches.
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1. INTRODUCTION

Scanning large parts of a patient’s body is common practice in radiology. Depending on the CT scanner, the used
settings and the scanned body regions, the amount of image data resulting from a full body scan varies between
40M to more than 1G of image data which have to be stored in a medical picture archiving and communication
system (PACS). The increasing amount of data poses various problems to physicians and to the PACS. A clinician
often needs to compare different scans of the same body region for differential diagnoses or needs to compare
disease patterns in the same body region between similar patients. In conventional systems, the PACS needs to
load the complete dataset in order to retrieve the required sub-region which causes an unnecessary load to both
the system and the network.

In other cases, a physician only receives a single CT slice as part of a radiology report and does not have
access to the complete CT volume set due to constraints like network bandwidth or patient privacy protection.
When searching for similar disease patterns in a remote PACS it is impractical to load complete volume sets in
order to manually navigate to the relevant body regions. Transferring only the most similar body parts is more
reasonable instead.

In both scenarios, it is necessary to determine the relative position of the given CT slice in the body. Let us
note that the absolute position is not very helpful in these cases because patients may vary in height. Deriving
the required information from the DICOM header of the slice is often not a reliable option. Entries like ‘patient
position’ or ‘body part examined’ are often imprecise or even wrong as reported by Gueld et al.1 Additionally,
single slices are often embedded into report documents, so that the header information or meta data is either
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lost or no more accessible in an easy way. Due to these reasons, parsing DICOM headers does not yield a viable
solution for obtaining the relative position of a single CT slice.

In this paper, we discuss the prediction of the relative position along the z-axis. Though this is the predomi-
nant processing direction for most CT examinations, it is possible to apply our method to other types of scans as
well if sufficient training examples are provided. The localization of the query slice returns a value in [0, 1] which
denotes our normalized range of values. From a technical point of view our method is based on gradient and
texture information and employs instance-based regression for making predictions of the relative position. The
rest of this paper is organized as follows. Section 2 briefly describes similar approaches of CT slice localization.
In Sec. 3.1, we describe our feature extraction steps and explain our prediction method in Sec. 3.2. The results
of our evaluation are shown in Sec. 4. The paper concludes with a brief summary and a short outlook on future
research.

2. RELATED WORK

Although localizing a CT slice within a human body can enormously facilitate the workflow of a physician, so far,
this area of research has not received much attention. Even though there have been approaches to determine the
body region from a topogram,2 the general approach is to localize invariant landmark positions as starting points
and from there to interpolate for forming a relative coordinate system. Haas et al3 for instance have introduced
an approach for creating a navigation table using eight landmarks which are detected in various fashions. Seifert
et al4 have proposed a method to detect invariant slices and single point landmarks in full body scans by using
PBT and HAAR features. The algorithm detects up to 19 salient and robust landmarks within a volume scan.
Nevertheless, it cannot be used for localizing a single slice as it operates on full body scans only.

To the best of our knowledge, localizing a CT slice within a human body model so far usually requires
more input than the actual, single query slice. The approach, most related to our work, allows the localization
of CT volume sets: Feulner et al5 first detect the patient’s skin and remove noise caused by the table and
the surrounding air. From the remaining image, intensity histograms and SURF descriptors are extracted and
clustered into visual words. Afterwards, the method combines nearest neighbor classification with an objective
function to classify and register the slices. The widths of the CT volume sets range between 44 mm and 427 mm,
which corresponds to up to 50 slices even in former case. The average error lies between 44 mm for small query
volumes and 16.6 mm for large query volumes. According to the authors, their method does not perform well
when localizing single slices only.

3. FEATURE EXTRACTION AND LOCALIZATION

All methods mentioned in the previous section usually generate complex models for large and pre-structured
query input. We propose to transform a single query image into a feature representation and to compute the
image’s localization via k-nearest neighbor regression as depicted in Fig. 1 ∗.

The idea of combining several feature representations is a well known technique in multimedia retrieval.
Therefore, we propose to leverage the advantages of texture and edge filters extracted from CT slices by using
the combination of histograms of oriented gradients and Haralick texture features to measure the similarity
between particular CT slices in order to optimally cover regions of enhanced uncertainty.

Our extraction method is inspired by Lazebnik et al,6 who propose to use a spatial pyramid kernel to obtain
locally sensitive features. In our approach, we create a modified spatial pyramid kernel to obtain several regular,
disjoint regions on the image. These regions act as information source for the following extraction steps. Finally,
each slice of a volume scan is represented by multiple feature descriptors.

The localization process determines the position of the slice along the z-axis. Limiting the query to the z-axis
is sufficient, as CT scans are usually recorded along this axis. An obvious but challenging problem of position
prediction along the z-axis is varying height of the patients. In order to solve this problem, we scale each CT
scan into a standard model with a domain of [0, 1] with 0 representing the sole of the foot and 1 representing
∗Human model in Fig. 1 taken from Patrick J. Lynch, medical illustrator and C. Carl Jaffe, MD, cardiologist at
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Figure 1: Slice localization by k-NN regression. ∗

the top of the head. In order to measure the accuracy of our approach, we map the standard model back to an
average body height of 180 cm, which corresponds to the average body height of a German male †.

This allows us to localize single slices independently of the person’s gender, height and age. In contrast to
a method using absolute positioning, the proposed method is not prone to errors originating from patients of
different heights.

3.1 Feature Extraction

Image descriptors using the derivations of the pixel data are well known from the field of object recognition7

and scene recognition6 and are usually applied to scenarios in the domain of digital photos or pictures. In the
field of object recognition, feature extraction usually involves the extraction of multiple features per image with
at least one feature vector describing an object of interest. The resulting bag of features is then stored in the
database for later retrieval tasks. In the field of scene classification, it is more common to use just a single
feature vector in order to describe a complete image. Typical descriptors are for example color histograms that
are extracted across the complete image. As this approach suffers from the loss of all spatial information, we
decided to extract features from certain, fixed regions of the images. The resulting data is then concatenated and
forms a single, compound feature vector that describes the complete image but retains local sensitivity according
to the processed image regions.

3.1.1 Spatial Pyramid Kernel

Since retrieving similar slices from volume sets is rather akin to scene classification than to object recognition
and due to the more complex distance measure in case of the bag of features approach, we decided to build single
feature vectors for complete images. In order to keep track of the spatial distribution of features, we apply a
modified spatial pyramid kernel, which was first presented by Bosch et al8 in order to classify regular images of
the Caltech dataset.9

The original implementation of the spatial pyramid kernel extracts features from a region covering the com-
plete image and then divides the image into four disjoint, equally-sized subregions.For each of these subregions,
the extraction and divide steps are executed recursively until a certain level is reached. The resulting features
†http://de.statista.com/statistik/daten/studie/1825/umfrage/koerpergroesse-nach-geschlecht/ Survey

about the distribution of body heights by gender (by the German Institute for Economic Research and TNS Infratest
Sozialforschung)
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(a) Original pyramid kernel using
21 regions.

(b) Modified pyramid kernel using
25 regions.

(c) Modified pyramid kernel with
bounding box applied.
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(d) Phog descriptor for Figures2b (complete image) and 2c (ROI only). The plots display
the strongly varying feature values of the given images in log scale.

Figure 2: Modified pyramid kernels and impact of ROI detection upon feature vectors.

are then weighted and serialized into a single feature vector. Obviously, the dimensionality grows with more
than O(4n) with n being the level of the subregions.

For the current scenario, this approach has two major drawbacks: First, to achieve a high resolution of the
spatial distribution, a comparatively large number of levels would be required leading to a very high dimension-
ality of the resulting feature vector. Second, as mentioned above, splitting the region into four equally-sized
subregions requires a split in the middle of the x- and y-axis of the image regions which is quite disadvantageous
in the case of CT scans because patients are usually not absolutely centered upon the image. Thus, the first
split is performed in the middle of the image but the split axis is hardly centered upon the center of the patient’s
body, as the patient’s position is varying between different scans. Therefore, significant body structures like the
spinal column are often either to the right or to the left side of the split which might lead to strongly varying
feature vectors for similar but not centered patients.

These issues lead us to modify the spatial pyramid kernel in a way that the image region is split into 25 disjoint,
equi-sized regions instead of only four regions as can be seen in Fig. 2. This procedure has two advantages. The
first advantage is that the spatial information gathered from the subregions is much more robust against varying
positions of the patient. The second advantage is that we only need to process one level of recursion significantly
reducing the dimensionality of the vector. A reason for the multiple levels in the original spatial pyramid kernel
is robustness against scaling and object positioning. However, in our application there are no strong differences
in the object position. Thus, our descriptors employ only two region levels. To compensate any remaining scaling
and transversal effects, we employ the preprocessing step in the next section.

3.1.2 Detecting the Region of Interest

Partitioning a complete image into 5x5 disjoint regions can lead to some image regions that are either almost
empty (for example in the edges of the image, as can be seen in Fig. 2d) or mostly occupied by the shape of the
table, the patient is lying on. As these almost empty regions implicitly reduce the descriptiveness of the resulting



feature vector, we apply an optional region of interest (ROI) detection, to detect the bounding box around the
patient’s body. In order to achieve this, we propose to seek the upper, lower, left and right border of the ROI.

Each border of a ROI is detected by scanning the image in a sweep line manner and keeping track of the
following variables: i, the index of the currently processed row/column, cP , the amount of consecutive pixels
above the defined threshold of −600 Hounsfield Units (HU) and cL: the amount of consecutive rows/columns
that are regarded as border candidates.

In order to find the top border of the ROI within an image, the algorithm starts at the top of the image
(i = 0) and scans the pixels of this line. If a pixel has a value above -600 HU, cP is raised by 1, otherwise, cP is
reset to 0.

As soon as cP is greater than 100 (which means that 100 consecutive pixels had a value greater than the
threshold) the algorithm decides that the current line is a border candidate. In that case, cL is raised by 1 and
the algorithm proceeds with the next line. If all pixels of a line are scanned without cP exceeding the threshold,
the line is not a border candidate, and cL is reset to 0 and the next line is processed. If the value of cL exceeds 20
(which means that 20 consecutive border candidates were found), the algorithm stops and returns max(0, i− 20)
as the top border of the ROI.

The above steps are repeated accordingly for each side of the image. The resulting four borders enclose the
ROI of the image, which can be used in the following feature extraction steps. Since the borders on each side
do not have to display the same width, the method centers the patient. Furthermore, the expansion of the body
on the image is unified and thus, the body regions of the 25 patches can be much better compared among scans
displaying different patients.

3.1.3 Image Features

As mentioned before, we use Haralick texture features10 as the first patch representation in our method. For
our proposed method, we compute all 13 Haralick features for five different distance values (1, 3, 5, 7, 11). This
computation is done for each subregion of the spatial pyramid kernel defined above (including level 0, representing
the complete image). After extracting the features for all subregions, all feature values of a level are serialized
and then normalized. This is done for an equal weighting of the different levels of the spatial pyramid kernel.
The resulting feature vector contains 26 ·13 ·5 = 1690 features. As stated in Haralick et al,10 some of the features
are highly correlated. This means that the resulting feature vector contains a lot of redundant information in its
full representation. To remove the redundancies, we apply principal component analysis (PCA) on the features
and thus transform the features into a more descriptive and less redundant feature space. The impact of the
PCA upon accuracy and runtime will be discussed later in Section 4.3.5.

The second patch representation is a histogram of oriented gradients: Before extracting gradient features
from an ROI, some preprocessing steps have to be applied. This includes the application of a Gaussian blur with
a radius of 1 px to remove noise and the extraction of important edges Pedge from the image by applying the
Canny operator11 C. Important edges are defined by all locations, where the Canny operator computes values
greater than zero (1). In the next step, we compute the gradient’s angle G(x, y) at the locations of important
edges (2).

Pedge = {(x, y)|C(x, y) > 0} (1)

G(x, y) = arctan
∂y

∂x
; where (x, y) ∈ Pedge (2)

Afterwards, a 7 bin histogram is built for all G(x, y) within an ROI. These histograms are then serialized and
normalized just as the Haralick features above. In the end, this process creates a feature vector with (1 + 5 ·
5) · 8 = 182 dimensions which represents the complete image (or ROI, if a bounding box was detected before).
This representation is referred to as Phog (pyramid histograms of oriented gradients) in the rest of the paper.
Even though the dimensionality of this representation is much lower compared to the Haralick representation,
the dimensionality is still very large. Therefore, we also apply a PCA to this representation without heavy loss
in accuracy. Let us note that keeping the dimensionality as small as possible is very important to achieve a
good runtime behaviour for most learning algorithms. Especially for the employed instance-based learners, using



feature vectors with a moderate dimensionality significantly reduces the costs for distance computations and
might allow the use of spatial index structures12 to manage large amounts of training examples.

3.2 Localization

The task of slice localization is to receive the slice descriptor presented in the previous section and predict its most
likely position in the standard model within the domain [0..1]. To solve this task, we employ an instance-based
regression model which is based on a training set consisting of the CT slices from a number of patients. Each
example slice xi taken from the scan s(xi) is described by l feature representations (xi,1, .., xi,l) ∈ R1× ..×Rl and
is labeled with its relative position in the scan yi ∈ [0..1]. From a machine learning point of view, localization
can be regarded as a regression task. However, there are two important differences in the object representation
that prevent ordinary regression techniques from offering accurate results in our scenario: The first problem is,
that we need to rely on all of our l object representations and thus, our learner should be suitable for multi-
modal problems. The second problem is the heterogeneity of the example set. Since the example objects are
combinations of various CT scans, we cannot consider the training set to be drawn from the same statistical
distribution. Instead, the images within the same scan are usually more similar to each other than to the images
of other scans having a comparable position. Our proposed localization method is designed to consider both
aspects to allow a good positioning accuracy.

The core idea of the employed method is instance-based regression which is very robust and easy to implement.
The basic approach behind this method is to find in the training set the k-nearest neighbors to the target slice
t and examine their positional labels. The final prediction is now derived by aggregating the labels of these
neighbors. After having received the k-nearest neighbour positions, we employ the mean value of the position
labels as target value. To decide the similarity between two objects, we use the Euclidean distance which is the
standard metric in similarity search and instance-based learning.

Having training examples taken from several similar but not identical distributions, i.e. various CT scans,
sometimes causes problems for prediction. We can basically distinguish two reasons for the similarity between
the target slice and an example slice in the training set. The first is, that the positions of the slices in the scan are
quite similar while the second is, that the complete scans, the slices are contained in, are generally quite similar.
While the first reason is the phenomenon our method is based on, the second reason can seriously distort the
prediction result by the following effect. Due to the general similarity between the scans, the method preferably
takes examples from the most similar scan instead of taking the examples of various scans having comparable
positions in the scanned body. To prevent this effect, we proceed in a different way: We first search for the most
similar CT slice in each scan. Afterwards, we take the k slices having the smallest distance in the underlying
feature space to the target slice. By taking at most one slice from each scan, we avoid that the localization
process is overly dependent on a single scan but derives its results from k different scans.

As mentioned before, our method is based on l different feature representations and thus, we have to extend
the learner to base its prediction on a mixture of all l input spaces. In our application, we face the problem
that certain feature representations are less suited for certain regions of the body, while they provide excellent
results in certain other regions as we will show in the following experiments. For example, Phog descriptors are
well-suited for areas with a rich bone structure resulting in various edges. However, they are less descriptive in
the abdomen area. To integrate this diversity, our method bases its decision on the feature representation that
most probably offers the best prediction quality for the current input image. In other words, we predict the
position of the current input slice in each of the available feature representations and afterwards determine how
coherent the prediction in each representation is. To measure the degree of coherence, our method calculates
the variance of the positions within the k-nearest neighbors in each representation. If the variance is large, the
k-nearest neighbors are placed in different parts of the body and thus the given representation does not yield a
consistent statement about the slice’s position. On the other hand, if the labels of the k-nearest neighbors are
placed in similar positions, the variance is small. Thus, the given representation offers a coherent prediction. To
conclude, we choose the prediction corresponding to the representation providing the smallest positional variance
for a given target slice t.



4. EXPERIMENTAL VALIDATION

4.1 Dataset

Feulner et al5 used landmarks as described in Ref. 4 for creating their training data. In our experiments, we use
34 CT scans (15 neck, 19 thorax scans) recorded from 24 patients (11 male, 13 female) of different age, resulting
in a total number of 10,443 DICOM images using 5.3 GB space. All scans are composed of multiple images which
are represented in 16 bit Hounsfield units and have a resolution of 512x512 pixels. During the initial setup of the
dataset, we ensured, that each patient contributes at most one head and/or one thorax scan to the dataset in
order to avoid adding near duplicate scans.

These 34 scans cover the complete area between the top of the head up to the end of the coccyx. It should be
mentioned that the dataset shows multiple kinds of heterogeneity as the dataset represents a real world dataset
that was recorded under real conditions. The scanned body region shows a clear varying coverage of the patients’
z-axis. Also, the scans were recorded with different CT scanners and different settings like varying kVp value,
which has a clear impact on the granularity of the recorded images. Moreover, the transversal resolution varies
between more than 1,400 slices and less than one hundred slices per scan. Further more, the resolutions along
the x- and y-axis are varying in the range of about 1.3-1.4 px/mm for thorax scans and about 1.7-2.2 px/mm for
scans of the head.

Besides those technical diversities, there are of course the regular challenges originating from the use of con-
trast media, medical devices like cables, cardiac pacemakers or simply metallic dental implants (which obviously
cause major disturbances in the images) and of course the differing shapes of the patients’ bodies.

4.2 Annotation

As mentioned before, one cannot rely on the information of the DICOM header for obtaining the position of a
slice. Additionally, different scans are highly varying with respect to resolution and patient body size. Thus,
two people annotated the data above independently by hand using the annotation tool shown in Fig. 3. Let us
note, that the position labels were assigned by computer scientists without a medical background.

Furthermore, even a small mistake in the annotation tool of about 5 pixels leads to an annotation error of
1.5 cm. Thus, a small positioning error of the data remains, which limits the accuracy of our proposed method
on this dataset. Another issue is that the patients in our dataset have their arms raised above their heads in case
of thorax scans, whereas our annotation tool only provides a skeleton with the arms beside the thorax (Fig. 3).
This setting has some impact on the area of neck and clavicle, which can be seen in the following evaluation.

4.3 Evaluation

In the following section, we want to demonstrate the evaluation of the proposed method. We first briefly describe
the test setup, followed by an evaluation of the proposed method using single representations only. Then we show
the effect of combining different representations and discuss the influence of the parameter k of k-NN regression
on the accuracy, followed by a discussion about the impact of reducing the dimensionality of the feature vectors
using principal component analysis (PCA) on accuracy and runtime. Finally, we can show that our proposed
method using a single query slice performs better than the approach of Feulner et al5 in the case of 44 mm query
volumes.

4.3.1 Test Setup

In order to evaluate the proposed method, we remove one CT scan from the database and use the slices of this
scan as separate queries on the remaining dataset. After all slices of the scan have been processed, we return
the scan to the database and proceed with the next scan until all scans have been processed. After processing
the complete dataset, we have posed 10,443 k-NN queries to the database.

As some scans are very dense (with more than 1,400 slices per scan), removing the complete scan of the
query slice from the database is an important step because we want to ensure that the results of the query are
not from the same scan. Especially in these dense scans, at least one nearest neighbour would most likely be a
self match to the scan of the query slice because feature vectors from nearby slices will most likely produce very
similar feature vectors.



Figure 3: Tool for annotating the dataset.

In order to measure the quality of the proposed method, we employed the following procedures: First of
all, we measure the distance between the true position of the query slice and the found position and call this
distance the error of a query. The total mean error for all 10,443 queries is the average of all single errors. The
mean errors of all experiments can be seen in Table 1. One phenomenon of the mean error is, that certain body
regions perform better than others.

Therefore, we divide the [0, 1] model introduced in Sec. 3 into 180 separate regions (representing bins with
1 cm width for an average western European male) and build an error histogram of the query data. As our
dataset only covers regions from the top of the head up to the coccyx, we only present the 95 bins of the error
histogram. The rest of the histogram is zero as there is no data for this body region. It should be noted that
we only use the value of 180 to illustrate the accuracy of the proposed method. The complete evaluation could
of course also be done in the domain of [0, 1]. Please note that by assuming an average height of 180 cm, all
following error values are relative to this value.

In addition to the average error and the error histogram, we also generate the cumulative distribution function
(CDF) for the observed errors which indicates the probability that the error stays below x cm: P (error < x cm).
This is mainly done for two reasons: First, we are able to compare our results to the work of Feulner et al5 who
demonstrate the accuracy of their work by the values of the according CDFs. On the other hand, the CDF very
clearly shows the ratio of big errors in the overall experiments. This is important, because it is preferable to
lower the ratio of bigger errors compared to optimizing the ratio of small errors.

4.3.2 Single Representations

In order to explain the use of multiple representations, we first want to evaluate single representations. Fig. 4a,
shows the error histograms of both Phog and Haralick features, both with and without an applied bounding box.
In spite of achieving quite acceptable error rates in the area of the head (< 3 cm), there are strong errors in the
region of the shoulders (> 10 cm) and in the lower thorax (up to 25 cm).

An interesting observation at this point is, that the method performs better in the average case when a
bounding box is applied as can be seen in Fig. 4b. Nevertheless, the application of a bounding box also raises
the error in the neck area by about 5 cm in both representations. However, the detection in the area of the lower
thorax region clearly benefits from the application of the bounding box, where errors are reduced by up to 10 cm.
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Figure 4: Comparison of the performance of the examined feature representations. (BB) indicates that features
were extracted only from the region defined by a bounding box, (no BB) indicates that the whole image is used
for the feature extraction. Ref.44mm in 4b and 4d shows the CDF given in Feulner et al5 for 44 mm volumes.
The x-axes in Fig. 4a and 4c show the body position in cm relative to a body height of 180 cm with 0 indicating
the top of the head. The x-axis in Fig. 4f starts with k = 2 as our method of multi-modal localization always
needs at least two nearest neighbours so that k = 1 is not applicable.



Representation(s) Mean Error
Phogs (BB) 4.37 cm
Phogs (noBB) 6.50 cm
Haralick (BB) 4.60 cm
Haralick (noBB) 5.25 cm
Phog/Haralick (BB) 3.10 cm
Phog/Haralick (noBB) 4.43 cm
Phog/Haralick (noBB,BB) 3.89 cm
Phog/Haralick (BB, noBB) 3.26 cm
Phog/2xHaralick (BB) 3.10 cm
Phog/2xHaralick (BB, noBB,BB) 2.83 cm
Phog/2xHaralick (BB, noBB, noBB) 3.69 cm
Phog/2xHaralick (noBB) 4.43 cm
Phog/2xHaralick (noBB, noBB, BB) 3.70 cm

Table 1: Mean Errors of all tested representations and combinations of representations. BB indicates the
application of a bounding box, noBB indicates that the features were extracted from the complete image.

Concluding this setting, we can say that using one representation alone does not perform very well as this
always implies that a higher error rate must be accepted in some body regions. Furthermore, Fig. 4b shows that
even though the use of single feature representations performs nearly as well as the volume set approach5 that
uses volume sets with a width of 44 mm, it is not yet able to outperform the competitor indicated by the solid
black line.

4.3.3 Combinations of Features

Motivated by the results in the previous section, we decided to test several combinations of the mentioned
representations. In order to avoid overloading Fig. 4c and 4d, we only show three of the nine possible combinations
which realize the worst, medium and best combinations according to their mean errors. The mean error values
of the remaining combinations can be seen in Table 1.

Comparing the combination of Phogs and Haralicks with bounding box from Fig. 4c with the single repre-
sentations in Fig. 4a, it is obvious that the multi-represented approach can significantly enhance the accuracy
of the method. Nevertheless, the error in the shoulder region is still comparatively high compared to the neigh-
bouring regions. Although combining different representations enhances the performance in the shoulder region,
we observe the same situation as before: errors in a different region increase by almost the same amount as the
performance in another area improves.

This leads directly to our approach to change the modality of a representation and use it as a third rep-
resentation, yielding the expected results. We combine Phog feature vectors, which were extracted from a
region bounded by a box, with Haralick feature vectors that were extracted both from the complete image and
from the detected ROI. The according graph in Fig. 4c leads to the observation, that the combination of these
representations joins the positive characteristics of the single representations.

This assumption can be supported both by the mean error of 2.83 cm (see Table 1) as well as by the CDF
in Figure 4d, where the combination of the three representations clearly outperforms all other competitors,
including the approach based on volume sets, which requires up to 50 times more information than our proposed
method.

4.3.4 Impact of Parameter k to Accuracy

In the following, we want to briefly discuss the impact of the Parameter k upon k-NN regression. In Fig. 4f, we
have illustrated the influence of k upon the best combination evaluated in the section above. It can be seen that
the effect of k is small in the range between 2 and 5, whilst the mean error increases significantly in the range
of k > 5. The decreasing performance can be explained by the number of scans in the database. Regarding
neck scans for example, there can be at most 14 true hits (15 neck scans excluding the query scan). Taking into



consideration the diversity of the CT scans, the probability of false hits into thorax scans obviously raises with
the increase of k.

4.3.5 Impact of dimensionality reduction to Accuracy and Runtime

Regarding the dimensionality of the extracted feature vectors (1690 in case of Haralick, 182 in case of Phogs)
it is obvious that the system cannot easily be supported by the use of index structures due to the well-known
curse of dimensionality. Even though we ran all our experiments in main memory, we wanted to prepare the
system for a later support of index structures. Besides the support of index structures, the computational cost
for distance calculations of course also decreases with the reduction of dimensionality - by the price of accuracy,
which we want to show in the following experiment, illustrated in Fig. 4e. It may be noted that we ran all our
experiments multi-threaded on a 3GHz Intel Xeon 5365 dual quad core with the given runtimes denoting the
overall runtime per experiment.

We chose the well-known technique of principal component analysis (PCA) in order to reduce the dimensions
of the feature vectors. As expected, the runtime of the experiments scales almost linearly with increasing number
of dimensions. The development of regression quality is more interesting: the mean error decreases significantly
with a rising amount of dimensions until we reach about 50 dimensions. Though later on, there is still a decrease
of the mean error, the improvement is almost negligible. Thus we chose 50 dimensions for all our experiments
in Fig. 4 and Table 1.

5. CONCLUSION

In this paper, we proposed a new method for localizing single CT slices by using multiple image representations
combined with instance-based regression techniques. We have shown that the approach is competitive to other
volume-based approaches even though only a fraction of the input information is required. Furthermore, our
regression approach is not limited to one target dimension. In PET-CT scans, for instance, the user may also
be interested in the rotation of a query slice. Given enough example data, an extension of our method is
straightforward. In our future work, we plan to extend the proposed approach to support volume-based queries
for further refinement in precision and to apply index structures for an even faster processing. Additionally, we
are working on extensions which provide additional information to the predicted body localization such as the
concrete organ or vascular context.
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