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ABSTRACT

In recent years, a considerable amount of methods have been proposed for detecting and reconstructing the spine
and the vertebrae from CT and MR scans. The results are either used for examining the vertebrae or serve as a
preprocessing step for further detection and annotation tasks. In this paper, we propose a method for reliably
detecting the position of the vertebrae on a single slice of a transversal body CT scan. Thus, our method is not
restricted by the available portion of the 3D scan, but even suffices with a single 2D image. A further advantage
of our method is that detection does not require adjusting parameters or direct user interaction. Technically, our
method is based on an imaging pipeline comprising five steps: The input image is preprocessed. The relevant
region of the image is extracted. Then, a set of candidate locations is selected based on bone density. In the
next step, image features are extracted from the surrounding of the candidate locations and an instance-based
learning approach is used for selecting the best candidate. Finally, a refinement step optimizes the best candidate
region. Our proposed method is validated on a large diverse data set of more than 8 000 images and improves the
accuracy in terms of area overlap and distance from the true position significantly compared to the only other
method being proposed for this task so far.
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1. INTRODUCTION

Detecting the position and the form of the spine or vertebrae is a useful task for various purposes in medical
imaging. In spine reconstruction, information being extracted from a body scan is used to build a 3D model
of the spine allowing the examination of spinal maladies like scoliosis. Further areas are not directly interested
in the particular characteristics of the spine but rather employ the gained information to acquire positioning
information within a scan. The position and the form of the spine are well-suited for determining the position of
the patient on the table because vertebrae have different shapes in varying parts of the body. Furthermore, bone
structures are well suited for automatic detection tasks due to their clear and invariant display in CT scans. To
solve these problems the research community proposed several methods for detecting, segmenting, analyzing and
reconstructing meshes of vertebrae and the complete spine being based on a complete 3D body scan. However,
there are applications where a limited number of CT slices is available. For example, the slices being contained
in a medical record which is sent to a specialist without access to the complete data in the PACS. To provide
valuable information in this or similar applications, we focus on detecting the vertebrae in the smallest possible
input, a single 2D image.

In this paper, we propose a new method for detecting the position of the vertebrae in 2D CT slices on the
transverse plane. The information being derived by our approach can be employed for localizing the center of
the body w.r.t. the position of the patient on the examination table. Additionally, our method is suitable for
distinguishing the cervical-, thoracic- or lumbar spine area which yields value information about the body regions
of the given image. Finally, our method shows reliable results even if larger regions of the considered body scan
are available. Thus, it can be used as a preprocessing step for reconstructing 3D models of the spine as well.

To make our new method suitable for the named applications it meets several important requirements. For
example, it is not necessary to adjust parameters to the characteristics of the given scan. Furthermore, the method
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works fully automatic, i.e. the systems marks the spine in the image without any user interaction. Finally, our
method works efficiently without requiring large amounts of main memory which makes it a suitable component
for larger imaging systems.

Technically, our method employs five steps: In the first step, the input image is preprocessed by rescaling
and smoothing. Then, the system extracts relevant pixels and weights each pixels. Both the search mask for
determining the relevant pixels and the weighting functions are learned from an image repository containing
slices with spine annotations. In the next step, we extract candidate locations in the selected area. Afterwards,
image features for each candidate are extracted and the best candidate locations are selected for employing
instance-based learning. In a final step, the annotation box around the best candidate location is fitted to the
boundaries of the given vertebra.

The rest of the paper is organized as follows: Section 2 briefly surveys related work. The algorithm will
be described in Section 3, followed by the description of our experimental setting and the achieved results in
Section 4. Section 5 concludes the paper and gives an outlook to future work.

2. RELATED WORK

In the works of Vrtovec et al.1–4 the authors construct 3D shape models of the spine and analyze the spinal
curvature in CT images. Stern et al.5,6 determine the spinal centerline in both CT and MR volume scans. There
are also several methods aiming at the detection and segmentation of the spine.7–9 Nyúl et al.10 propose methods
for detecting the spinal cord and the spinal canal in 3D CT scans by using deformable fences or models. Methods
being based on 3D MR scans are proposed by Schmidt et al.,11 Corso et al.12 and Huang et al.13 Though each of
these methods are reported to achieve convincing results, all of them require a complete 3D volume scan. When
considering this more challenging setting, the number of related methods is considerably smaller. Rangayyan et
al.14 use a Hough-Transformation to detect the spinal canal. However, the proposed method relies on reducing
the search space to an area that should not be larger than a region comprising the vertebra. Graf et al.15 propose
a method for verterbrae detection from 2D slices which is the same task as in this paper. Therefore, we will
compare to this method in our experimental evaluation and show how our new method outperforms this first
solution to the given problem.

3. ALGORITHM

The detection of vertebrae consists of the five major steps, which are: image preprocessing, region extraction and
weighting, candidate generation, candidate selection and refining the best candidate.

3.1 Preprocessing

In the first step, the original CT image I is rescaled to a unified width and height of 512× 512 pixels. Afterwards,
a 2D Gaussian kernel G(x, y, σ) with σx,y = 1 is applied to I. The Gaussian blur has the effect of reducing noise
in the CT slice. This noise can be caused by a high resolution along the z-axis of the body or in case of low-dose
CTs.

3.2 Region Extraction and Weighting

On a transversal CT slice, the spine is always located in the lower middle region of the image if the scan was
recorded in a dorsal position of the patient (which is the case in a huge majority of the cases). Thus, we limit the
image I to the subregion which possibly could contain the spine by applying a search mask ρsm.

In contrast to the method of Graf et al.,15 where the search space was set heuristically to 1
3 of the patient’s

body, we determine ρsm empirically based on a training database denoted DB. As a result, we can further restrict
the relevant region of the image without losing relevant information.

In particular, the training database DB consists of a set of CT volume scans Vj ∈ DB where each volume
scan is represented by an ordered set of images Ii,j ∈ Vj (i ∈ [1, n]). Additionally, each vertebral body of a volume
scan is annotated with a paraxial bounding box representing the ground truth. Thus, each Ii,j ∈ Vj refers to a
set Mi,j = {MBR(Ii,j)} that contains the minimum bounding rectangles (MBR) which are generated by the
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intersection of the annotation boxes of Vj with the image Ii,j . The cardinality of Mi,j can thus be [0..m] where
m is usually no more than 3. |Mi,j | = 0 occurs, if the CT slice displays the section between two vertebral bodies,
so that only a spinal disc is visible. |Mi,j | = 1 is the obvious case where the slice shows exactly one vertebral
body. |Mi,j | > 1 occurs, if the rotation of the spine is large enough so that a slice along the transversal plane
shows not only one vertebral body but also parts of neighboring vertebral bodies.

To define the search mask ρsm, we first create the union U of all sets of MBRs Mi,j of all volumes Vj ∈ DB.
Afterwards, we compute the convex hull of the set U using Graham’s scan algorithm,16 so that ρsm is defined by:

ρsm = ConvexHull(U) (1)

U = {∪Mi,j | Mi,j = ∪MBR(Ii,j ∈ Vj) ∧ Vj ∈ DB} (2)

This step requires that DB is large and diverse enough. Otherwise, ρsm will be too selective and small so that no
correct points of interest can be selected in the following steps. Building the convex hull around the set of ROIs
is used to avoid that ρsm is overfitting to the database.

3.3 Candidate Generation

We aim to detect points within the image that are candidate locations for a vertebra. Compared to it’s surrounding,
a vertebra itself is a very locale bone structure. Thus, we create a bone density map for all suitable bone pixels
bx,y ∈ ρsm. Suitable bone pixels are all pixels bx,y with an HU-value in a certain HU window [βlower, βupper]. For
our algorithm, we defined the window to the typical HU range for compact bones,17 so that βlower was set to
300HU and βupper was set to 1000HU. Spongy bones which can be seen in an HU-range of βlower = 50− 200HU
can also be observed in the inner part of the vertebral bodies of elderly patients. Nevertheless, the outer part of
the vertebral bodies is typically compact and thus in a higher HU-range, so that pixels with less than 200HU
need not be taken into account. Furthermore, a too low value for βlower can lead to an increased rate of false
candidates. The set B of suitable bone pixels is thus defined as

B = {bx,y | (x, y) ∈ ρsm ∧ p(x, y) ∈ [βlower, βupper]} (3)

where p(x, y) denotes the HU-value at location (x, y). The bone density map D is then calculated by computing
the accumulated distance for each bone pixel in the search mask to all other bone pixels within the search mask.
The bone density D(x, y) for a pixel (x, y) is then defined as

D(x, y) =
∑

p∈B

(|x− px|+ |y − py|) (4)

with px and py denoting the x and y coordinates of a pixel p respectively. The L1 distance is preferred to the L2

distance due to faster computation. Thus, the bone pixels with the smallest accumulated distances D(x, y) have
the highest bone density because they are closer to other bone pixels than the pixels with larger accumulated
distance values.

This rather simple distance map still leads to false candidate detections in the area of the sternum, the clavicle
and the hips. In these cases, very dense bone structures extend into the search mask and might be selected as
false candidate locations. A further refinement of the candidate region is not an applicable solution as the mask
will either overfit or crop other true candidates from the search mask. For this reason, we propose to apply a
weighting function w which is also derived from our training database DB:

w(x, y) = arg max(1, log(|Rx,y|)) (5)

Rx,y = {Ri | Ri ∈ ROIDB ∧ (x, y) ∈ Ri} (6)

where ROIDB is the set of all annotations in the database DB. Thus, w(x, y) can be regarded as a measure for
the likelihood that location (x, y) displays a true candidate. The logarithmic function is applied as a damping
function in order to reduce the impact of pixels with large values of |Rx,y| and thus to avoid overfitting. In
general, any kind of monotone damping function with a co-domain of [1,∞[ would be applicable. The weighting
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Figure 1. (a): Illustration of the weighting function w. The height value denotes the value of w(x, y). The bottom right of
the illustration represents the bottom line of ρsm. Fig. (b) shows the parameters used in the refinement process. The
column and row on the left/bottom are ommited for simplification. Fig. (c) shows the search mask ρsm (yellow line), and
the densest pixels in D(x, y) (green dots) including the λ neighborhood marked by circles.

function is then applied to the distance map D by a pixel wise multiplication (7) building the weighted distance
map Dw. An illustration of w can also be seen in Fig. 1(a).

Dw = D ◦ w (7)

After the computation of the weighted bone density map Dw, the algorithm detects the η most promising
candidate locations for the position of the vertebrae. This set will be denoted by Ccand. Simply extracting
the η densest locations from Dw is not feasible because it is very likely that all of the η candidates are
located within a small region around the global minimum of Dw. Thus, we first remove the densest pixel
({(x, y) ∈ Dw|∀(u,w) ∈ Dw : Dw(u,w) > Dw(x, y)}) from Dw and add it as a first candidate to Ccand. This
pixel is denoted by cx,y. Afterwards, we remove all pixels from Dw in the λ-neighborhood of cx,y which is defined
by:

Nλ = {px,y|(x, y) ∈ Dw ∧ d(px,y, cx,y) < λ}; (8)

d(px,y, qx,y) =
√

(p.x− q.x)2 + (p.y − q.y)2. (9)

This procedure is repeated until Ccand contains η candidates. The locations of the densest pixels is illustrated in
Fig. 1(c).

3.4 Candidate Selection

After the extraction of the candidate locations, we extract image features from areas around each candidate
location and select the most promising location based on an instance-based learner.

To extract the image features, we first center an ROI φbox at each location in Ccand. The size of φbox is set to
twice the size of an average vertebral body. Thus, the texture information of the vertebral body includes the
surrounding tissue. After positioning the φbox, the image features are extracted and a feature vector φdesc ∈ R

n is
built from the extracted data. As proposed in the works of Bosh et al.18 and Graf et al.,15,19 φdesc is designed to
take the spatial distribution of the pixel values into account so that shapes of objects in φbox also have influence
on the feature vector. This is done by sub-dividing φbox in equally sized sub-regions from which the features are
extracted. Afterwards, the features are serialized to build the feature vector φdesc(i) with i denoting the type of
feature.

In our experiments we evaluated different kinds of well known image features which are: HU-Histograms
(φdesc(1)), Haralick texture features20 (φdesc(2)), a derivate of Pyramid Histograms of oriented Gradients (PHoG)18

(φdesc(3)), binary histograms (φdesc(4)) and resized image regions (thumbnails) (φdesc(5)). In particular, our image
features are built by dividing the φbox into 3× 3 = 9 sub-regions and create a HU histogram for each sub-region.
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The HU-histograms (φdesc(1)) consist of 16 bins corresponding to 16 equally sized intervals in the HU color
space respecting the applied windowing ([βlower, βupper]). After building the histograms, all histograms are
serialized in order to build a 16× 9 = 144 dimensional feature vector φdesc(1).

After building a φdesc for each location in Ccand, we apply instance-based learning by determining the nearest
neighbor of each φdesc ∈ Ccand in the training database DBfeat containing the same feature description of the
annotations in DB. For searching the nearest neighbor, we employ the L1-distance function: distL1

(�u,�v) =∑
i |ui − vi|. The location corresponding to the feature vector with the smallest distance to database annotation

is finally selected as the best candidate position of the vertebrae.

3.5 Refinement

At this stage φbox of the selected candidate describes the area which was used for feature extraction and thus, it is
significantly larger than the vertebral body. This issue is addressed in this section, where the size of φbox is reduced
to fit the result box as tight as possible to the detected vertebra. Our dynamic refinement algorithm reduces the
width and height of φbox under consideration of the bone density at the borders of φbox. A standardized scale
factor is not applicable in this case, because the size of the vertebrae increases from the thoracic vertebrae to the
last lumbar vertebrae. The refinement process is applied for each border (top, right, bottom, left) separately. In
the following, we describe the method for relocating the top border downwards. The other borders are relocated
respectively.

First, an ROI of κblock pixel rows is aligned at the inner top row of φbox. This ROI is moved downwards until
each pixel row of the ROI contains at least κrow pixels with an HU value greater than κHU or until the lower
border of φbox is reached. Thus, the y-location of the ROI can be defined as:

ROI.y = {min(y) ∈ φbox|∀rowi ∈ ROI : |p(x, yi) > κHU | > κrow} (10)

The resulting region is denoted by κbox. If κbox is empty (e.g. if the above ROI was moved up to the opposite
side), the values κblock, κHU , κrow and κcol respectively are softened (c.f. Tab. 1). If κbox was refined too little, so
that the area decrease is less than κ% compared to φbox, the values are hardened (c.f. Tab. 1) and the refinement
is restarted in a second iteration. If the second iteration again produces a κbox which is either too small or
too large, κbox is set back to the default size of φbox. Finally, it is ensured that κbox has a minimum size of
κlimit × κlimit pixel which is achieved by rescaling the width/height accordingly if width or height fall below the
limit. The default values used for the refinement process are shown in Tab. 1, illustrations of the ROIs are shown
in Fig. 1(b).

κblock 8 px κrow 8 px κcol 17 px
κHU 250HU κ% 0.04 κlimit 60 px

κblock +2/− 2 px κrow −3/+ 3px κcol −3/+ 3px
κHU −50/+ 100HU

Table 1. Values for the refinement procedure. The upper 2 rows show the default values, the lower rows show the deltas for
each value which are applied if the values are softened and hardened respectively.

We also tested the approach proposed by Rangayyan et al. 14 to detect the spinal canal by using a Hough
transformation and thus refine the position even further. Unfortunately the method was too unstable on our data
so that no positive contribution of the method could be observed.

4. EXPERIMENTS

4.1 Data set

Our experiments are based on thorax CT scans of 34 different male and female patients (8 362 images). The scans
were recorded with different CT scanners having various resolutions along the z-axis and some scans showing the
application of contrast media. The scans also show differing body size, gender and age of the patients. The ground
truth annotations were created by a clinician by annotating each vertebral body of the spine by an enclosing
single 3D paraxial bounding box. The spinous processes were not included in the annotation boxes to avoid
spatially large annotations and also large overlaps between consecutive vertebrae.
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4.2 Quality Measure

Graf et al.15 propose to employ the area overlap between the detected area and the annotation box which is
doubled in height and width (= αd). Since their method does not use any refinement step, the result boxes have
a fixed size. Thus, the size of the compared boxes is very similar. In our new method, the predicted region can be
much smaller than αd due to the refinement. Thus, a prediction being completely contained in the annotation box,
can still be strongly displaced which indicates a bad prediction quality. To overcome this problem, we propose to
employ a smaller annotation box. Thus, for our experiments the annotation box around the vertebral body is
only extended vertically to the bottom by a factor of 2, building the new ROI αv. Let us not that this extension
is necessary to make sure that the spinal process is part of the annotation. Nonetheless, our new annotation boxes
are only half of the size of the boxes employed in Graf et al.15 Summarizing the overlap is measured as follows:

Oformer =
area(αd

⋂
ROIdetected)

min(area(αd), area(ROIdetected))
(11)

ξoverlap =
area(αv

⋂
κrefined)

min(area(αv), area(κrefined))
(12)

To have a second quality measure which is independent of box sizes, we also propose to measure the distance
ξdistance between the centers of the ROIs αv and κrefined in order to measure the spatial derivation of the search
result to the true position.

ξdistance =
√

(p.x− q.x)2 + (p.y − q.y)2 (13)

p = center(αv) ; q = center(κrefined) (14)

4.3 Evaluation

The evaluation was done by applying a cross validation, where a complete CT scan was defined as the source for
query slices and all other scans were used as training data sets. This guarantees that slices from the same patient
are not in the test and training set at the same time. In the following, we will compare our proposed algorithm
(named EVD) to the state-of-the-art15 named VD.

4.3.1 Comparison to VD and quality metric

Comparing EVD to VD shows a significant improvement throughout the complete cumulative distribution function
(CDF) (Fig. 2(a)) measuring the overlap between the detected ROI and the annotated ground truth. Especially
in the region of 70− 80% area overlap, an improvement of 15% can be observed. Also, P (overlap > x%) > 0.9 is
now reached at x = 72% of the cases compared to x = 62% using VD. Also the distance between the centers
of the detected ROIs to the true ROI is reduced significantly as can be seen in Fig. 2(b): The detected ROIs
now deviate less than 17mm using EVD from the true position in 90% of the cases compared to 28mm when
using VD. As the former quality metric of simple area overlap is not very selective if the detected ROI becomes
smaller, we show the performance of the algorithms in both quality metrics in Fig. 2. This figure also illustrates
the impact of the new way the area overlap is calculated.

4.3.2 Impact of search mask ρsm

By applying the new region extraction, the search space in the image is reduced to an average of less than 9% of
the original image’s area. This is comparable to the simple approach proposed in Graf et al.,15 where the search
space was reduced to the mid third of the patients body, which caused an average reduction of less than 21%
without employing any knowledge in the database.
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Figure 2. Comparing VD and EVD by using the new overlap measure (a) and distance deviation (b). In Fig. (a) the
difference of the dashed blue line to the solid blue line shows the impact of the stricter quality measure.

4.3.3 Refinement

One of the major concerns of VD was the size of the detected ROI which was defined by the size of an average
annotation box doubled in width and height. The refinement method introduced in Sec. 3.5 addresses this issue
and is able to reduce the width, height and area of the ROI to an average of 62% (width) and 80% (height) which
results in an average area decrease of 49%. Also, the 2-step refinement fails in just less than 1% of the cases where
the ROI is reset to the unmodified size of φbox. Figure 3 shows the positive impact of the refinement process on
both area overlap and distance deviation. Figure 3(b) shows the large impact on the distance deviation in the
first two columns of the diagram. Using EVD, the probability to achieve < 35mm distance deviation is now 0.35
(P (dist < 5mm) = 0.35) compared to 0.11 using VD. Also P (dist < 10mm) was raised from less than 0.5 to
more than 0.72.
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Figure 3. Impact of refining and of the tighter area overlap measured by area overlap (a) and by distance deviation (b).
Fig. (a) also shows the impact on the area overlap using the new area overlap (red lines) and also the area overlap function
using αd as proposed for VD (blue lines).

4.3.4 Feature Descriptors / Candidate selection:

The evaluation of different feature descriptors (φdesc(1), . . . , φdesc(5)) mentioned in Section 3.4 showed that HU
histograms perform better than the other tested feature descriptors. The diagrams shown in Figure 4 illustrate
the results.
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Regarding the area overlap (Fig. 4(a)), it can be seen that the different performance measures of HU histograms,
Haralicks, PHoGs and Thumbnail features are quite close together up to P (overlap > 0.80). Just the performance
of the binary histogram features is clearly below the other features.

Regarding the distance deviation (Fig. 4(b)), HU histograms are more clearly outperforming the other
descriptors in case of distance deviations of less than 5mm (first column group). In case of distance deviations of
less than 10mm (second column group) HU histograms, Haralick and PHoG features perform almost equal. This
diagram also demonstrates the needs for a second quality measure in order to obtain a more diverse view to the
results.
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Figure 4. Comparison of feature types regarding both quality measures (Area overlap (a) and distance deviation (b)).
Regarding both quality measures, HU histograms perform better than all other tested feature types.

Figure 5 shows the evaluation of the λ and η parameters which are both affecting the selection of candidate
points (cf. Section 3.4). Obviously, the experiments proved a strong stability with respect to the values for both
parameters so that neither the amount of candidates (λ), nor the size of the neighborhood η pose critical issues
to the stability of the results.

5. CONCLUSION

In this paper, we have proposed a new method for the automatic detection of vertebrae in 2D CT images. Our
method is based on an imaging pipeline of five steps. In the first step, input images are rescaled and blurred.
In the second step, we apply an empirically derived search mask and weighting function for the pixels within
this mask. The third step, derives a weighted bone density map which is employed to select a set of candidate
location. Step four of our pipeline selects the most promising candidate based on nearest neighbor selection on HU
histograms of the candidate locations. In the final step, the selected candidate box is fit to the particular position
of the vertebra. In our experimental evaluation, we compare our new method to a state-of-the-art method on
a dataset being annotated by a clinical expert. The results indicate an increased prediction quality w.r.t. two
quality measures, overlap and position derivation.

For future work, we plan to extend the work to 3D volume scans and also combine and compare the algorithm
with segmentation and reconstruction. We also plan to test and add algorithms for metal artifact reduction21 as
artifacts can have significant impact on the algorithms.
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Figure 5. Impact of the amount of candidates (η) ((a),(b)) and the size of the neighborhood λ ((c),(d)). It can be seen
that the proposed method is rather stable in both parameters as no significant minimum can be observed.
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APPENDIX A. PARAMETERS

Annotation ROI
αs standard annotation box
αd αs doubled in height and width
αv αs doubled in height

Feature Description/Extraction
φdesc(i) Type of feature
ρbox ROI used for feature extraction

Candidate selection
λ neighborhood radius (pixels)
η maximum amount of candidates

Refinement
κbox result ROI after candidate selection
κrefined refined ROI
κblock minimum of rows/colums for borders
κrow minimum number of pixels per row
κcol minimum number of pixels per column
κHU lower bound for pixel detection (HU)
κ% minimum area difference to κbox (%)
κlimit minimum width/height of final ROI

Quality measure
ξoverlap area overlap
ξdistance distance

Table 2. List of all parameters used in our algorithm including their meaning and measures.

APPENDIX B. ADDITIONAL FEATURE DESCRIPTORS

Most feature descriptors used in this work were obtained or derived from features implemented in JFeatureLib.22

B.1 Haralick Texture Features

Haralick texture features20 are not uncommon in medical image processing, PACS retrieval23 or tissue de-
tection.24,25 These features describe the spatial correlations in gray level images between adjacent pixels by
calculating statistics based on the co-occurrence matrix of the pixel values. In the original work, 13 different yet
strongly correlated features are proposed which are created under consideration of a certain distance. Again, we
divide φbox into 3× 3 = 9 sub-regions and compute for each sub-region all image features for five different distance
values (1, 3, 5, 7, 11). The resulting features are concatenated and build a feature vector φdesc(2) of 9×13×5 = 585
dimensions.

B.2 PHOG (Pyramid Histograms of Oriented Gradients)

In the past years, gradient representations have gained significant interest in the imaging community. Thus we
apply a slightly modified PHOG descriptor.18 In the original work, histograms of gradient orientations were
extracted from a region of interest (ROI), afterwards this ROI is subdivided in 4 equally sized sub regions and
the process is started recursively on each of these sub-regions until a specified maximum level is reached. The
recursive sub-division builds a pyramid of ROIs from which the histograms are extracted. For edge detection,
we are using the well known Canny edge detector26 and extract the first two levels of the pyramid. In contrast
to Bosch et al.18 we decide to split the ROI into 3 × 3 sub-regions instead of 2 × 2. This is done because we
extract features from φbox which is significantly smaller than the complete image. Another reason is the trade off
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Name Sub-regions dimensionality Short description
HU-Histograms 9 144 HU-range
Haralick 9 585 Texture features
PHoGs 9 120 Edge detection
Binary-Histograms 121 121 binarized HU-scale
Thumbnails none 256 HU value

Table 3. Overview of the tested feature descriptors and their dimensionality.

between spatial conformity and dimensionality of the resulting feature vector. For each sub-region, we compute a
12 bin gradient histogram and build a single feature vector φdesc(3) consisting of (9 + 1)× 12 = 120 dimensions.

B.3 Binary-Histograms

Binary histograms are a modified version of HU-histograms. In the binary case, the value of a histogram bin i
describes the amount of pixels (x, y) ∈ ROIi that have an HU value greater than a threshold τ so that

bini = {|(x, y)| : (x, y) ∈ ROIi ∧ p(x, y) > τ} (15)

with p(x, y) denoting the HU value of a pixel at location (x, y). Thus, each bin of a histogram denotes the amount
of pixels > τ of an ROIi. As an ROIi only generates a single value, we can divide φbox into more sub regions
without creating a feature vector with a too high dimensionality. In our case divide φbox in 11× 11 sub ROIs an
use τ = 300HU which can be regarded as a lower bound of HU values for compact bones [17, p. 233]. Thus we
create a feature vector φdesc(4) ∈ R

121 representing the distribution of bone pixels ∈ φbox.

B.4 Thumbnails

Same as color histograms, down sampled images are also often used as a base line in image retrieval tasks.27,28

In this case, the image to be analyzed is rescaled to a uniform size to x× y pixels where w and h are usually less
than 32 pixels. The resulting w ·h = d pixels are then for example converted to gray scale and used as the features
of a feature vector fv ∈ R

d. In our case we do not rescale the complete image but only the according ROI. chose
w = h = 16. The HU values of the resulting 256 pixels are used to build the feature vector φdesc(5) ∈ R

256.

APPENDIX C. REFINEMENT ALGORITHM

Algorithm 1 Pseudocode for the refinement process. The delta of the values applied in the
soften/hardenParameters() are displayed in Table 1 of the main part of the paper.

κrefined ← refine(κbox)
if isEmpty(κrefined) then

softenParameters()
κrefined = refine(κbox)

else if area(κrefined) > κ% · area(κbox) then
hardenParameters()
κrefined = refine(κbox)

end if
κrefined.height← increase if width < κlimit

κrefined.width← increase if height < κlimit

result← κrefined
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