
Similarity Search on Uncertain Spatio-Temporal Data
Johannes Niedermayer1, Andreas Züfle1, Tobias Emrich1, Matthias Renz1

Nikos Mamoulis2, Lei Chen3, Hans-Peter Kriegel1
1Institute for Informatics, Ludwig-Maximilians-Universität München

{niedermayer,zuefle,emrich,renz,kriegel}@dbs.ifi.lmu.de
2University of Hong Kong, nikos@cs.hku.hk

3Hong Kong University of Science and Technology, leichen@cse.ust.hk

Abstract: In this work, we address the problem of similarity search in a database
of uncertain spatio-temporal objects. Each object is defined by a set of observations
((time,location)-tuples) and a Markov chain which describes the objects uncertain mo-
tion in space and time. To model similarity - which is an important building block
for many applications such as identifying frequent motion patterns or trajectory clus-
tering - we employ the well-known Longest Common Subsequence (LCSS) measure,
which becomes a distribution on uncertain spatio-temporal data (ULCSS). We show
how the aligned version (without time shifting) of the ULCSS can be exactly computed
in PTIME, which is also verified by extensive experiments.

1 Introduction
Similarity search on trajectory data has an increasing number of applications, especially
after the widespread availability of location data, such as GPS tracks. Exemplarily, data
analysis tasks such as identifying frequent motion patterns or trajectory clustering require
finding objects that moved in a similar way or followed a certain motion pattern. A number
of similarity measures have been proposed for trajectory data. One of these is the Longest
Common Subsequence (LCSS). The LCSS between two trajectories (i.e., moving objects)
can be interpreted as the maximum amount of time the two objects were located at the
same position. However, most of the previous work on similarity search in trajectory
databases assumes the data to be certain or deterministic, which is not the case in many
real applications. For example, even though we can get snapshots of the positions of a
mobile object through RFID technology, the trajectory data is incomplete and uncertain:
because the locations of the object between two consecutive RFID readers are unknown,
they have to be derived from the observations which introduces uncertainty. Therefore,
it is essential to develop new techniques to find similar trajectories on uncertain data.
In this paper we study how the LCSS can be extended to apply to uncertain trajectories
(ULCSS). Since in our scenario the exact motion of an object is unknown, we can model
the ULCSS as a distribution of all possible LCSS results. The LCSS over uncertain data
has many applications. For example, it can be used to evaluate the spread of flu or other
diseases. Suppose that an object was diagnozed with a serious communicable disease
(source object). To curtail such diseases, a facebook app could identify all individuals
possibly been infected by the source object. Let us assume that enough virus cells are
transmitted between two individuals if the two persons share the same location for at least
k points in time. To identify individuals that might have been infected, the app could run
an ULCSS query to find all objects having a large enough probability of being at the same
location as the source object for at least k points in time, warning the affected persons.

2 Problem Definition
A spatio-temporal databaseD stores triples (oid, location, time), where oid ∈ {o1, ..., o|D|}
is a unique object identifier, location ∈ S is a spatial position and time ∈ T is a point
in time. Semantically, each such triple corresponds to an observation that object oi has
been seen at some location at some time. In D, an object can be described by a func-
tion troi : T → S that maps each point in time to a location in space; this function
is called trajectory. In this work, we assume a discrete time domain T = {0, . . . , n}.
Thus, a trajectory becomes a sequence, i.e., a function on a discrete and ordinal scaled
domain. Furthermore, we assume a discrete state space of possible locations (states)
S = {s1, ..., s|S|} ⊂ Rd.

Uncertain Trajectory Model. Since we consider uncertainty, a trajectory may not be
modeled by a simple single path but rather by a (possibly large) set of paths, i.e., a set
of possible worlds. In particular, let D = {o1, ..., o|D|} be a database containing |D|
uncertain moving objects. For each object o ∈ D we store a set of observations Θo =
{< to1, θ

o
1 >,< to2, θ

o
2 >, . . . , < to|Θo|, θ

o
|Θo| >} where toi ∈ T denotes the time and θoi ∈

S the location of observation Θo
i . W.l.o.g. let to1 < to2 < . . . < to|Θo|. According to

[EKM+12], we can interpret the location of an uncertain spatio-temporal object o ∈ D at
time t as a realization of a random variable o(t). Given a time interval [t0, t1], the set of
corresponding uncertain locations becomes an uncertain trajectory. A formal definition of
uncertain trajectories can be found in [EKM+12].

This technique allows us to assess the probability of a possible trajectory (i.e., a realiza-
tion of all random variables). In this work we follow the approaches from [EKM+12]
and employ the first-order Markov Chain model as a specific instance of a stochastic pro-
cess. Markov Chains have been employed for modelling human movement in [MJS11];
furthermore, according to [EKM+12] they enable query processing of a class of queries in
polynomial time while following possible worlds semantics. A Markov chain T is a matrix
containing the conditional transition probabilities T oij(t) := P (o(t + 1) = sj |o(t) = si)

of o from state si to state sj at a given time t. Let ~so(t) = (p1, . . . , p|S|)
T be the distribu-

tion vector of an object o at time t, where ~soi (t) = P (o(t) = si). The distribution vector
~so(t+ 1) can be inferred from ~so(t) as follows: ~so(t+ 1) = T o(t)T · ~so(t)
Similarity between Uncertain Trajectories. Given two database objects o1 and o2, our
goal is to assess the similarity between these two uncertain objects by employing the LCSS
[VGK02]. Let A and B be two trajectories of moving objects with size n and m respec-
tively, where A = (a1, . . . , an) and B = (b1, . . . , bm). Let Head(A) := (a1, . . . , an−1).
Given an integer δ and a real number ε, the Longest Common Subsequence is defined as
follows: LCSSδ,ε(A,B) :=

0 if A = ∅ or B = ∅,
1 + LCSSδ,ε(Head(A), Head(B)) if dist(an − bm) < ε and |n−m| ≤ δ
max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A,Head(B))) otherwise

Parameter ε constraints the spatial distance between two locations in order to match in
space; in many applications, objects rarely visit the same locations, but being ”close
enough” is equivalent to meeting. Parameter δ controls how far in time we can ex-

pand in order to match a given point from one trajectory to a point in another trajec-
tory. In this work, we aim at working towards efficiently computing LCSSδ,ε(o1, o2)
for two uncertain trajectories o1 and o2. According to possible world semantics, the re-
sult of LCSSδ,ε(o1, o2) is not a single scalar, but rather a probability density function on
N, mapping each possible outcome k ≤ min(length(o1), length(o2)) to a probability
P (LCSSδ,ε(o1, o2) = k).
Definition 1 (ULCSS) Let o1 and o2 be two uncertain trajectories. The Uncertain Longest
Common Subsequence (ULCSS) between o1 and o2 is a random variable, defined by the
following probability density function:

ULCSSδ,ε(o1, o2) : D ×D → (N→ [0, 1] ∈ R)

ULCSSδ,ε(o1, o2) := pdf(x ∈ N) = P (LCSSδ,ε(o1, o2) = x)

However, calculating the exact distribution and the expected value of the length of the
LCSS between two random sequences can currently only be achieved by employing expo-
nential algorithms [FL08]. Therefore, we study the special case of ULCSS, where δ = 0;
for this case, we propose a PTIME algorithm for its exact computation:
Definition 2 (UALCSS) Let o1, o2 be two uncertain trajectories. The Uncertain Aligned
Longest Common Subsequence is defined by UALCSSε(o1, o2) = ULCSS0,ε(o1, o2).

3 Related Work
The stochastic model used in this paper is taken from [EKM+12], where window queries
in an uncertain setting have been addressed. Existing approaches for measuring trajectory
similarity mainly adapt to trajectories in a certain setting. [VGK02] relaxed this assump-
tion by taking the effect of noise into account. Uncertain trajectory similarity has been
investigated in the context of trajectory clustering by [PKK+09]. However this work ad-
dresses position (e.g. GPS) uncertainty instead of motion uncertainty, where neither posi-
tion nor motion are known at a given point in time, but might have been known at some
time in the past. Recently, [LG12] addressed the problem of computing the windowed
LCSS on strings. However, the different characters in a word are drawn independently
in this context, whereas the state at time t depends on the previous state in our problem
setting. Statistical work such as [AW85] provides statistical approximations of the length
of the (unaligned) longest common subsequence on the Markov model, e.g. under the as-
sumption that the underlying Markov chains are aperiodic and irreducible and if the length
of the underlying sequence is large. Another common application area of Markov models
is in the area of bioinformatics where gene sequences have to be matched (e.g.[HK96]).
When employing hidden Markov models, viterbi-like algorithms and extensions that can
handle insertions and deletions (c.p. e.g. [AV98]) are usually employed for computing
the maximum likelihood, and not a distribution. Besides their advantage of estimating the
edit distance between sequences, these approaches can only be used to match sequences to
Markov chains but not two Markov chains. There further exists an exponential approach
for calculating the exact distribution and the expected value of the length of the LCSS be-
tween two random sequences [FL08]. This algorithm neither considers observations, nor
the amount of time shifting δ. Furthermore, the size of its transition matrix depends on the
length of the time interval for which the LCSS has to be computed.

4 UALCSS Computation
Overview. While it remains unsolved how to compute the exact ULCSS in the general
case, in this section we show how to exactly compute the UALCSS (ULCSS for the special
case of δ = 0) between two uncertain spatio-temporal objects, which represents the pdf
over all possible lengths of the LCSS between the two evaluated objects with a polynomial
time algorithm. The UALCSS is relevant to many spatial applications, like the infection
application mentioned in the introduction; virus particles in a droplet infection can only be
spread through space, but not through time.

Figure 1: Possible worlds {w1−4} of two uncer-
tain objects.

Figure 1 (left) shows the uncertain tra-
jectory of objects o1 (represented by the
solid line) and o2 (represented by the dot-
ted line). From these, we derive four possi-
ble worlds as illustrated in Figure 1 (right).
We can see that in w1 the (certain) LCSS
equals 3, in worlds w2 and w4 LCSS=2,
while inw3 LCSS=1. If we assume, in this
example, that for each object each alterna-

tive trajectory has a probability of 0.5, we get a probability vector [0,0.25,0.5,0.25] for the
UALCSS, where the kth element in the list denotes k hits between two paths. Clearly,
such an approach of enumerating all possible worlds, and aggregating their probabilities
is not a viable option, since in general, the number of possible trajectories of an uncertain
trajectory is exponential in the length of the uncertain trajectory.

Algorithm 1 UALCSS(o1, o2, tmax)
1: M0 = ~so2(0) · ~so1(0)T

2: M1
i 6=j = 0

3: M1
ii = M0

ii

4: M0
ii = 0

5: for t = 1; t ≤ tmax; t+ + do
6: for k = t; k ≥ 0; k −− do
7: Mk = T o1(t−1)T ·Mk ·T o2(t−1)

8: Mk+1
ii = Mk+1

ii +Mk
ii

9: Mk
ii = 0

10: end for
11: if ∃to1i : to1i = t∨ ∃to2j : to2j = t then
12: reweight({Mk}, θo1i , θo2j)
13: end if
14: end for
15: p = Array[tmax + 1]
16: for t = 0; t ≤ tmax; t+ + do
17: pk = |Mk|L1

18: end for
19: return p

Algorithm. Algorithm 1 is a pseudocode
of the UALCSS algorithm. For comput-
ing UALCSS, we have to take certain de-
pendencies of the two objects into account,
i.e., the relative position of o1 to o2 at
time t = 0 (w.l.o.g. we assume that the
first observations of o1 and o2 are at time
t = to11 = to21 = 0) will affect the length
of the UALCSS at a later time t > 0. For
this reason, we have to take the conditional
probabilities of object o1 being in state si
when o2 is in state sj into account: At the
initial time t = 0 we assume both object
locations to be independent, and therefore
we can write P (o1(0) = si ∧ o2(0) =
sj) = P (o1(0) = si) · P (o2(0) = sj).
Let M(t) be a probability matrix with
Mij(t) = P (o1(t) = si∧o2(t) = sj), de-
noting that the corresponding objects are
within state si and sj at time t. The ma-
trix M0(0) can be easily computed as fol-
lows (the superscript 0 denotes the num-

bers of hits gained so far): M0(0) = ~so2(0) · ~so1(0)T . This is the case because we have
M0
ij(0) = ~so1(0)i · ~so2(0)j = P (o1(0) = si) · P (o2(0) = sj). The elements M0

ii(0) de-
note the probabilities that both uncertain objects are located within the same state i at time
0, increasing the longest common subsequence by 1, such that these possible worlds have
to be marked. This can be simply achieved by moving them into a second matrix M1(0),
where M1

ii(0) = M0
ii(0) and M1

ij(0) = 0 for i 6= j. Besides, the shifted elements have to
be deleted from M0(0) by performing M0

ii(0) = 0. Now both matrices contain possible
worlds, split by their number of hits.

After initialization, this method can be applied in a similar manner to compute the equiva-
lence classes of possible worlds within each time t 6= 0, which is achieved by updating all
state matrices Mk(t− 1). As a first step, the states of o1 and o2 in Mk(t− 1) have to be
transitioned. Given a state vector ~soi(t− 1), this transition is usually performed by multi-
plying ~soi(t−1) with its corresponding, pre-determined, transition matrix T oi(t−1), i.e.,
~soi(t) = T oi(t− 1)T · ~soi(t− 1). However, in our scenario, we do not have a single state
vector, but a state matrix Mk(t− 1), containing conditional probabilities of both objects.
The elements in this matrix have to be transitioned according to both transition matrices
T o1(t−1) and T o2(t−1). It can be proven thatMk(t) = T o1(t−1)T ·Mk(t−1)·T o2(t−1).

After performing the transition, the matrix element Mk
ij(t) again contains the conditional

probabilities at time t that o1 is in state j while o2 is in state i. After transitioning, the
hits are extracted from the matrix, by shifting the diagonal elements to Mk+1

ii (t) and re-
moving them from Mk

ii(t). Therefore each of the t transitions leads to at most one ad-
ditional matrix; thus, the total space complexity of this algorithm is at most O(|S|2 · t)
and the runtime complexity is O(∆t2 · |S|3), with ∆t beeing the number of considered
timesteps. In practice, these costs are much lower since vectors ~soi(t) and T oi(t) are both
sparse and we can save space and computations by employing sparse matrix operations
on compressed representations. After having completed t transitions, we can derive the
probability distribution for the relative frequency of worlds that had a given number k of
hits: P (|{x ∈ T |o1(x) = o2(x)}| = k) =

∑
∀i,jM

k
ij(t) Incorporating further observa-

tions (function reweight() in Algorithm 1) can be achieved as follows. Let us first assume
that o1 was observed at state s. Then all columns j 6= s in Mk have to be set to 0 and
all matrices have to be reweighted such that

∑
x∈tM

k = 1. Accordingly, if o2 has been
observed at a given state, the corresponding rows have to be set to zero. Furthermore, the
algorithm can be easily adapted for ε > 0. In this case, not only diagonal elements from
Mk have to be shifted, but also further matrix elements that correspond to locations with
a distance ≤ ε to a given location of an uncertain object.

5 Experiments
The experiments are based on a discrete state space in the two-dimensional Euclidean
space, consisting of n states. Each of these states is drawn uniformly from the [0, 1]2 space.
Afterwards, a graph was created from these states by connecting points with an Euclidean

distance smaller than r =
√

b
n∗π , with b being the average number of neighbours of a

state, i.e. the branching factor. The graph’s edge weights, i.e. the transition probabilities
were assigned indirectly proportionally to the distance of a state to its neighbour, assuming
that it is more probable that during a transition an object moves to a closer state than to

Figure 2: Experimental Results
a state further away. Based on the resulting transition matrix, a random trajectory was
drawn to construct (certain) observations of an uncertain object, and every i-th point from
this trajectory was used as an observation of the uncertain object. In the evaluation, we
varied the number of states n from 100 to 50K (default 10000), the length l from 25 to 125

(default 50), and the range r from 0.01 to 0.075 (default
√

b
n∗π). The interval between

two observations is 10 timestamps. In the first experiment we aimed at varying the
worlds size (n), keeping the graph’s branching factor constant, while increasing r (the next
experiment) can be interpreted as increasing the resolution of a world, i.e. the branching
factor. As shown in Figure 2 (left), with increasing n, matrix operations become more
costly such that the performance of the UALCSS drops. Varying the range of connectivity
r (Figure 2 (center)) clearly shows a negative impact on the performance of the UALCSS
algorithm. With a higher connectivity, the filling degree of transition matrices increases,
such that more states can be reached in a shorter amount of time. Increasing the length of
the time interval for which the UALCSS has to be computed (Figure 2 (right)) increases
the number of iterations such that more matrix multiplications have to be performed. Note
that the number of matrix multiplications for this algorithm is O(t2).

To compute the general ULCSS, we plan to investigate sampling techniques. The main
problem for sampling approaches is to incorporate observations.

References

[AV98] J. C. Amengual and E. Vidal. Efficient Error-Correcting Viterbi Parsing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20:1109–1116, 1998.

[AW85] Richard Arratia and Michael S. Waterman. An Erdös-Rényi Law with Shifts, 1985.
[EKM+12] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Querying Uncertain

Spatio-Temporal Data. In Proc. ICDE, 2012.
[FL08] J. C. Fu and W. Y. Wendy Lou. Distribution of the length of the longest commmon

subsequence of two multi-state biological sequences. Journal of Statistical Planning
and Inference, 138:3605–3615, 2008.

[HK96] Richard Hughey and Anders Krogh. Hidden Markov models for sequence analysis:
extension and analysis of the basic method, 1996.

[LG12] Zheng Li and Tingjian Ge. Online windowed subsequence matching over probabilistic
sequences. In Proc. SIGMOD, pages 277–288, 2012.

[MJS11] Arezu Moghadam, Tony Jebara, and Henning Schulzrinne. A markov routing algorithm
for mobile DTNs based on spatio-temporal modeling of human movement data. In Proc.
WSIM, 2011.

[PKK+09] Nikos Pelekis, Ioannis Kopanakis, Evangelos E. Kotsifakos, Elias Frentzos, and Yannis
Theodoridis. Clustering Trajectories of Moving Objects in an Uncertain World. In
Proc. ICDM, pages 417–427, 2009.

[VGK02] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. Discovering Similar Mul-
tidimensional Trajectories. In Proc. ICDE, pages 673–684, 2002.

