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Abstract

Graph classification is an increasingly important step in
numerous application domains, such as function prediction
of molecules and proteins, computerised scene analysis, and
anomaly detection in program flows.

Among the various approaches proposed in the liter-
ature, graph classification based on frequent subgraphs is
a popular branch: Graphs are represented as (usually bi-
nary) vectors, with components indicating whether a graph
contains a particular subgraph that is frequent across the
dataset.

On large graphs, however, one faces the enormous
problem that the number of these frequent subgraphs may
grow exponentially with the size of the graphs, but only few
of them possess enough discriminative power to make them
useful for graph classification. Efficient and discriminative
feature selection among frequent subgraphs is hence a key
challenge for graph mining.

In this article, we propose an approach to feature selec-
tion on frequent subgraphs, called CORK, that combines two
central advantages. First, it optimizes a submodular qual-
ity criterion, which means that we can yield a near-optimal
solution using greedy feature selection. Second, our submod-
ular quality function criterion can be integrated into gSpan,
the state-of-the-art tool for frequent subgraph mining, and
help to prune the search space for discriminative frequent
subgraphs even during frequent subgraph mining.

1 Introduction.

A typical graph classification problem has the following
formulation: given a set of training graphs associated
with labels {Gi, yi}n

i=1, yi ∈ {±1}, the task is to
learn a classifier that predicts the labels of unclassified
structures. The resulting classification algorithm has a
wide variety of real world applications.

In biology and chemistry, for example, graph clas-
sification quantitatively correlates chemical structures
with biological and chemical processes, such as active
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or inactive to virus, toxic or non-toxic to human be-
ings [19]. This makes graph classification scientifically
and commercially valuable (eg. in searching for new
drugs). In computer vision, images can be abstracted
as graphs, where nodes are spatial entities and edges
are their mutual relationships. A classical recognition
system can query ARG model databases by the scene
and identify the type of foreground objects. In soft-
ware engineering, a program can also be modeled as a
graph, where program blocks are nodes and flows of the
program are edges. Static and dynamic analysis of pro-
gram behaviors can then be carried out in these graphs.
For instance, anomaly detection of control flows is es-
sentially a graph classification problem.

Recent studies have proposed several effective graph
classification methods, including substructure (or so-
called fragment) based approaches [17, 8, 31], kernel-
based approaches [16, 22, 12], and boosting meth-
ods [20]. In the substructure based approach, each
graph is treated as a set of subgraph features, eg. acyclic
substructures [31] and frequent substructures [17, 8, 7],
which share the same concept as a convolution kernel.
In [7], the framework of frequent pattern-based classifi-
cation is examined, where a classification model is built
in the feature space of frequent itemsets. There are two
reasons for adapting frequent graphs in graph classifi-
cation. First, it is computationally difficult to enumer-
ate all of the substructures existing in a large graph
dataset, while it is possible to mine frequent patterns
due to the recent development of efficient graph mining
algorithms. Second, the discriminative power of very
infrequent substructures is bounded by a low value due
to their limited coverage in the dataset. Therefore, it is
a good approximation to take frequent substructures as
features to build classification models.

However, the vast number of substructures poses
three new challenges.

1. Redundancy: Most frequent substructures are
slightly different from each other in structure and
are highly correlated with the class labels.

2. Significance: While low-support features are not
representative of the graphs, frequent subgraphs



are not necessarily useful for classification. Statisti-
cal significance rather than frequency of the graph
patterns should be used for evaluation of their dis-
criminative power.

3. Efficiency: Very frequent subgraphs are not useful
since they are not discriminative between classes.
Therefore, frequent subgraph based classification
usually sets up a pretty low frequency threshold,
resulting in thousands or even millions of features.
Given such a tremendous number of features, a
complicated feature selection mechanism is likely
to fail.

Consequently, we need an efficient algorithm to
select discriminative features among a large number of
frequent subgraphs. In earlier work [7], we adopted
a heuristic approach and demonstrated that it could
outperform methods using low dimensional features.

Goal Our goal is to define an efficient near-optimal
approach to feature selection among frequent subgraphs
generated by gSpan [34]. The key idea is to pick frequent
subgraphs that greedily maximise a submodular quality
criterion, thereby guaranteeing that the greedy solution
to the feature selection problem is close to the global
optimal solution [23]. To make this approach efficient,
we integrate it into gSpan, the state-of-the-art tool for
frequent subgraph mining, and derive pruning criteria
that allow us to narrow down the search space when
looking for discriminative subgraphs.

Unlike its predecessors that use heuristic strategies
for feature selection (such as [7]) or do not provide opti-
mality guarantees, we define a principled, near-optimal
approach to feature selection on frequent subgraphs that
can be integrated into gSpan [34]. An excellent wrapper
approach to this problem has recently been published
by [28]. Our approach differs from Tsuda’s in two ways:
Our feature selection method is independent from the
choice of the classifier (filter method) and we can pro-
vide optimality guarantees for our solution.

2 Near-optimal feature selection among

frequent subgraphs

In the following we will first define the optimization
problem we want to tackle (Section 2.1) and then we
will review the essential ingredients of our graph feature
selector: first, submodularity and its use in feature
selection (Section 2.2); second, gSpan, the method to
find frequent subgraphs (Section 2.3).

Notation We are given a dataset G = A∪B of
graphs that each belong to one of two classes A or B.

As a notational convention, the vertex set of a graph
G ∈ G is denoted by V (G) and the edge set by E(G).
A label function, l, maps a vertex or an edge to a label.

A graph G is a subgraph of another graph G′ if there
exists a subgraph isomorphism from G to G′, denoted
by G ⊑ G′. G′ is called a super-graph of G.

Definition 2.1. (Subgraph Isomorphism) A sub-
graph isomorphism is an injective function f : V (G) →
V (G′), such that

1. ∀u ∈ V (G), l(u) = l′(f(u)), and

2. ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and l(u, v) =
l′(f(u), f(v)),

where l and l′ are the label function of G and G′,
respectively. f is called an embedding of G in G′.

Given a graph database G, GG1
is the number of

graphs in G where G is a subgraph and GG0
is the

number of graphs in G of which G is not a subgraph. GG1

is called the (absolute) support, denoted by support(G).
A graph G is frequent if its support is no less than a
minimum support threshold, min sup. As one can see,
the frequent graph is a relative concept: whether or not
a graph is frequent depends on the value of min sup.

2.1 Combinatorial optimization problem The
problem of feature selection among frequent subgraphs
can be cast as a combinatorial optimization problem.
We denote by S the full set of features, which in our
case corresponds to the frequent subgraphs generated
by gSpan. We use these features to predict class mem-
bership of individual graph instances: clearly, only a
subset T ⊆ S of features will be relevant. We denote the
relevance of a set of frequent subgraphs for class mem-
bership by q(T ), where q is a criterion measuring the
discriminative power of T . It is computed by restrict-
ing the graphs to the features in T . Feature selection
can then be formulated as:

(2.1) S† = arg max
T ⊆S

q(T ) s.t. | T | ≤ s

where | · | computes the cardinality of a set and s is the
maximally allowed number of selected features.

Unfortunately, solving this problem optimally re-
quires us to search all possible subsets of features ex-
haustively. The common remedy is to resort to heuristic
alternatives, the solutions of which cannot be guaran-
teed to be globally optimal or even close to the global
optimal solution. Hence the key point in this arti-
cle is to employ a heuristic approach which does allow
for these quality guarantees, namely a greedy strategy
which achieves near-optimal results.

2.2 Feature Selection and Submodularity As-
sume that we are measuring the discriminative power



q(S) of a set of frequent subgraphs S in terms of a qual-
ity function q. A near-optimality solution is reached for
a submodular quality function q when used in combi-
nation with greedy feature selection. Greedy forward
feature selection consists in iteratively picking the fea-
ture that – in union with the features selected so far -
maximises the quality function q over the prospective
feature set. In general, this strategy will not yield an
optimal solution, but it can be shown to yield a near-
optimal solution if q is submodular:

Definition 2.2. (Submodular set function)
A quality function q is said to be submodular on a set
D if for T ′ ⊂ T ⊆ D and X ∈ D

q(T ′ ∪ {X}) − q(T ′) ≥ q(T ∪ {X}) − q(T )(2.2)

If q is submodular and we employ greedy forward
feature selection, then we can exploit the following
theorem from [23]:

Theorem 2.1. If q is a submodular, nondecreasing set
function on a set D and q(∅) = 0, then greedy forward
feature selection is guaranteed to find a set of features
T ⊆ D such that

q(T ) ≥
(

1 − 1

e

)

max
U⊆D: |U|=s

q(U) ,(2.3)

where s is the number of features to be selected.

As a direct consequence, the result from greedy
feature selection achieves at least

(

1 − 1
e

)

≈ 63% of the
score of the optimal solution to the feature selection
problem. This is referred to as being near-optimal in
the literature (e.g. [13]).
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Figure 1: gSpan: Rightmost Extension

2.3 gSpan If we found a useful submodular criterion
for feature selection on frequent subgraphs, we could
yield a near-optimal solution to problem (2.1). But
how do we determine the frequent subgraphs in the
first place? For this purpose, we use the frequent
subgraph algorithm gSpan [34], which we introduce in
the following.

The discovery of frequent graphs usually consists of
two steps. In the first step, we generate frequent sub-
graph candidates, while in the second step, we check the
frequency of each candidate. The second step involves a
subgraph isomorphism test, which is NP-complete. For-
tunately, efficient isomorphism testing algorithms have
been developed, making such testing affordable in prac-
tice. Most studies of frequent subgraph discovery pay
attention to the first step; that is, how to generate as
few frequent subgraph candidates as possible, and as
fast as possible.

The initial frequent graph mining algorithms, such
as AGM [15], FSG [21] and the path-join algorithm
[30], share similar characteristics with the Apriori-based
itemset mining [1]. All of them require a join operation
to merge two (or more) frequent substructures into one
larger substructure candidate. To avoid this overhead,
non-Apriori-based algorithms such as gSpan [34], MoFa
[2], FFSM [14], and Gaston [24] adopt the pattern-
growth methodology, which attempts to extend graphs
from a single subgraph directly. For each discovered
graph G, these methods recursively add new edges until
all the frequent supergraphs of G have been discovered.
The recursion stops once no frequent graph can be
generated any more.

gSpan introduced a sophisticated extension method,
which is built on depth first search (DFS) tree. Given a
graph G and a DFS tree T , we call the starting vertex
in T , v0, the root, and the last visited vertex, vn, the
r ightmost vertex. The straight path from v0 to vn is
called the r ightmost path. Figure 1 shows an example.
The darkened edges form a DFS tree. The vertices are
discovered in the order v0, v1, v2, v3. The vertex v3 is the
rightmost vertex. The rightmost path is v0 ∼ v1 ∼ v3.

This method, called rightmost extension, restricts
the extension of new edges in a graph as follows: Given
a graph G and a DFS tree T , a new edge e can be added
between the rightmost vertex and other vertices on the
rightmost path (backward extension); or it can introduce
a new vertex and connect to vertices on the rightmost
path (forward extension). If we want to extend the
graph in Figure 1, the backward extension candidate
can be (v3, v0). The forward extension candidates can
be edges extending from v3, v1, or v0 with a new vertex
introduced. Since there could be multiple DFS trees
for one graph, gSpan establishes a set of rules to select
one of them as representative so that the backward and
forward extensions will only take place on one DFS tree.

Overall, new edges are only added to the vertices
along the rightmost path. With this restricted exten-
sion, gSpan reduces the generation of the same graphs.
However, it still guarantees the completeness of enumer-
ating all frequent subgraphs. For a detailed description



of gSpan, see [34]. Algorithm 2.1 outlines the pseu-
docode of gSpan. G ⋄r e means that an edge is ex-
tended from graph G using backward or forward exten-
sion. G 6= dfs(G) checks whether G has been discovered
before, where dfs(G) is the canonical form of graph G

[34].

Algorithm 2.1. gSpan(G, G, min sup, S)

Input: A graph G, a graph dataset G, and min sup.
Output: The set of frequent subgraphs S.

1: if G 6= dfs(G), then

2: return;
3: insert G into S;
4: set C to ∅;
5: scan G once, find all the edges e such that G can be

rightmost extended to G ⋄r e;
insert G ⋄r e into C and count its frequency;

6: for each frequent G ⋄r e in C do

7: Call gSpan(G ⋄r e, G, min sup, S);
8: return;

Once we have determined the frequent subgraphs
using gSpan, a natural way of representing each graph
G is in terms of a binary indicator vector of length |S|:
Definition 2.3. (Indicator vector) Given a graph
Gj from a dataset G and a set of frequent subgraph
features S discovered by gSpan. We then define an
indicator vector v(j) for Gj as

v
(j)
i =

{

1 if Si ⊑ Gj (Si is a subgraph of Gj)
0 otherwise

,

(2.4)

where v
(j)
i is the i-th component of v(j) and Si is the

i-th graph in S.

2.4 Definition of CORK

Definition 2.4. Let G be a dataset of binary vectors,
consisting of two classes G = A∪B. Let D denote the
set of features of the data objects in G, and let X be a
single feature from D, i.e., X ∈ D.

Definition 2.5. (Correspondence) A pair of data
objects (v(i), v(j)) is called a correspondence in a set
of features indicated by indices U ⊆ {1, . . . , |D|} (or,
w.r.t. to a set of features U) iff

(v(i) ∈ A) ∧ (v(j) ∈ B) ∧ ∀d ∈ U : (v
(i)
d = v

(j)
d ),(2.5)

Definition 2.6. (CORK) We define a quality crite-
rion q, called CORK (Correspondence-based Quality
Criterion), for a subset of features U as

q(U) = (−1) ∗ number of correspondences in U(2.6)

Theorem 2.2. q is submodular.

Proof. For q to be submodular, adding feature X ∈ D
with D[x] = X to a feature set T ′ ⊆ T ⊆ S has
to increase q(T ′) at least as much as adding feature
X increases q(T ). This is equivalent to stating that
whenever adding feature X removes one correspondence
of T , at least one correspondence of T ′ has to be
eliminated as well.

Let us first state that an instance pair (v(i), v(j)),
that is a correspondence in T must also be a correspon-
dence in T ′. Note that the opposite is not necessarily
true.

Furthermore, whenever adding a feature X to T
removes this correspondence from T , this means that

v
(i)
x 6= v

(j)
x , since the other features in T must match.

Therefore, the two formerly corresponding feature pat-
terns for (v(i), v(j)) cannot match in T ′ ∪ {X} either.
Thus, if a feature X eliminates a correspondence from
T , this very correspondence (possibly together with fur-
ther correspondences) is also removed from T ′, and we
satisfy the submodularity condition of Equation 2.2.

This submodular criterion can be turned (by adding
the constant |A| · |B|) into a submodular set function
fulfilling the conditions of Theorem 2.1.

We can now use q for greedy forward feature selec-
tion on a pre-mined set S of frequent subgraphs in G
and receive a result set T ⊆ S with a guaranteed qual-
ity bound. However, the success of T depends strongly
on the setting of min sup. If the support is chosen too
low we can quickly generate too many features for a
selection run finishing within reasonable time. Setting
min sup too high can cause the loss of all meaningful
features. In the following, we want to introduce a selec-
tion approach which directly mines only discriminative
subgraphs, which is nested in gspan and which can act
independently from a frequency threshold.

2.5 Pruning gSpan’s search space via CORK

gSpan exploits the fact that the frequency of a subgraph
S ∈ S is an upper bound for the frequency of all of its
supergraphs T ⊒ S (all subgraphs containing S) when
pruning the search space for frequent subgraphs. In
a similar way, we show that from the CORK-value of
a subgraph S, we can derive an upper bound for the
CORK-values of all of its supergraphs, that allows us to
further prune the search space.

Theorem 2.3. Let S, T ∈ S be frequent subgraphs, and
T be a supergraph of S. Let AS1

denote the number
of graphs in class A that contain S (‘hits’), AS0

the
number of graphs in A that do not contain S (‘misses’)



(and define BS0
, BS1

analogously). Then

q({S}) = − (AS0
∗BS0

+AS1
∗BS1

)(2.7)

and

q({T}) ≤ q({S}) + max







AS1
· (BS1

−BS0
)

(AS1
−AS0

) · BS1

0







(2.8)

Proof. Equation 2.7 arises from the definition of the
criterion: CORK counts the inter-class pairs of graphs
that both contain S or both do not contain S. We note
that the gSpan pruning criterion is also valid for each
class:

AS1
≥ AT1

∧BS1
≥ BT1

(2.9)

If we thus want to asses how many correspondences may
be eliminated by T , we can take into account, that
T can never create new hits but can only decrement
the number of hits in both classes. Naturally, the best
improvement for S is made, when T eliminates all hits
in one of the two classes and maintains the hits in the
other class. When all hits of T disappear from A, AS0

increases by AS1
and thus:

q({T}) = − ((AS0
+AS1

) · BS0
+ 0 · BS1

) =

= −(AS0
+AS1

) · BS0
(2.10)

Same holds for the elimination of all hits from B:

q({T}) = − (AS0
· (BS0

+BS1
) + AS1

· 0) =

= −AS0
· (BS0

+BS1
)(2.11)

The third bounding case to be considered occurs if T

changes nothing at all, i.e., q({T}) = q({S}). Our
maximal CORK value of T is thus

q({T}) ≤ max







− |A| · BS0

−AS0
· |B|

q({S})







=

eq. 2.7
= q({S}) + max







AS1
· (BS1

−BS0
)

(AS1
−AS0

) · BS1

0







¥(2.12)

We can now use inequality (2.8) to provide an upper
bound for the CORK values of supergraphs of a given
subgraph S and exploit this information for pruning the
search space in a branch-and-bound fashion.

Inequality (2.8) can be directly applied in the first
iteration of greedy selection. For later iterations of
greedy selection, we can define a similar bound for
pruning. For this purpose, we need the concept of
equivalence classes.

Definition 2.7. (Equivalence Classes) Given a
dataset G of graphs represented as binary indicator
vectors over the feature set U . Then the equivalence
class of an indicator vector v(i) is defined as the set

{v(j)|∀d ∈ U : v
(i)
d = v

(j)
d }(2.13)

Now let P ⊆ 2U be the set of all unique binary
indicator vectors occurring in G with |P| = l. Each
of these unique indicator vectors forms an equivalence
class Ec (c ∈ {1, ..., l}) containing all indicator vectors
which are identical to indicator vector Pc.

We denote by

APc
=

∣

∣

∣
{v(i) ∈ A | ∀d ∈ U : v

(i)
d = Pc[d]}

∣

∣

∣
(2.14)

the number of instances in A of equivalence class Ec

and by

BPc
=

∣

∣

∣
{v(i) ∈ B | ∀d ∈ U : v

(i)
d = Pc[d]}

∣

∣

∣
(2.15)

the number of instances in B of equivalence class Ec.

The number of correspondences for a feature set
U ⊆ {1, . . . , |D|} can be calculated by adding up the
correspondences of their equivalence classes Ec in U :

q(U) = (−1) ·
(

∑

Pc∈P

APc
· BPc

)

(2.16)

The bound of Equation (2.8) can then be extended
into:

q(U ∪ {T}) ≤ q(U ∪ {S}) +(2.17)

∑

Pc∈P

max







APc ∪ {S1} · (BPc ∪ {S1} −BPc ∪ {S0})
(APc ∪ {S1} −APc ∪ {S0}) · BPc ∪ {S1}

0







The main difference to (2.8) is that in later itera-
tions of greedy selection, we only have to consider those
graphs which are part of a correspondence (rather than
all graphs).

We can now define our feature mining process
in Algorithm 2.2: We initialize the set of selected
subgraphs as an empty set S† and follow a recursive
operation. In step 2, we require the next best subgraph
S with q(S† ∪ {S}) = maxT∈S q(S† ∪ {T}). It can be
obtained by simply running gSpan, always maintaining
the currently best subgraph S according to q. Whenever
in the course of mining, we reach a subgraph T with
q(S† ∪ {T ′}) < q(S† ∪ {S0}) for any supergraph T ′ ⊒
T according to the bound defined in (2.17), we can
prune the branches originating from S. As long as
the resulting subgraph S actually improves q(S†), it is
accepted as a discriminative feature and we start looking
for the next best subgraph.



Algorithm 2.2. gSpanCORK(G, min sup)

Input: Graph set G, min sup.

Output: Set of discriminative, frequent subgraphs S†.

1: S† = ∅;
2: S = best subgraph according to q(S† ∪ {S});
3: if q(S† ∪ {S}) > q(S†), then

4: S† = S† ∪ {S};
5: goto 2;

6: return S†;

In contrast to the definition in Equation 2.1, this
setting does not require a threshold s for the maximal
number of subgraphs since it terminates automatically,
when no new discriminative subgraph is found. In our
experiments, we further noticed that on most datasets,
CORK provides such a strong bound that it is even
possible to omit the support threshold min sup and still
receive a discriminative set of (not necessarily frequent)
subgraphs within a reasonable amount of time.

3 Experimental Evaluation

In this section, we conduct experiments to examine
the effectiveness and efficiency of CORK in finding
discriminative frequent subgraphs.

3.1 Datasets To evaluate our algorithm, we em-
ployed the 9 real-world datasets summarized in Table 1:

• Anti-cancer screen datasets (NCI): we use 8 data-
sets collected from the PubChem website as in [31].
They are selected from the bioassay records for
cancer cell lines. Each of the anti-cancer screens
forms a classification problem, where the class
labels on these datasets are either active or inactive
as a screen for anti-cancer activity. The active
class is extremely rare compared to the inactive
class. For a detailed description, please refer to [31]
and the website, http://pubchem.ncbi.nlm.nih.gov.
Each dataset can be retrieved by submitting queries
in the above website.

In order to have a fair comparison in those unbal-
anced datasets, each dataset has been resampled by
forming 5 data subsets with balanced classes, where
excessive instances from the larger class have been
removed.

• Dobson and Doig (DD) [9] molecule data set: it
consists of 1178 proteins, which can again be di-
vided up into two classes: 691 enzymes and 487
non-enzymes. An extracted graph’s vertices rep-
resent the Cα atoms of the corresponding protein’s

Dataset G |G| avg|V (G)| avg|E(G)| |LV | |LE |
NCI1 4117 29.8 32.3 43 3
NCI33 3298 30.1 32.6 39 3
NCI41 3108 30.2 32.8 28 3
NCI47 4068 29.8 32.4 44 3
NCI81 4812 29.1 31.6 44 3
NCI109 4149 29.5 32.1 44 3
NCI145 3911 29.6 32.1 37 3
NCI330 4608 24.9 26.6 47 3
DD 1178 284.3 715.7 82 1

Table 1: Topologies of used graph sets:
|G|: size of the dataset

avg|V (G)|: average number of vertices per graph
avg|E(G)|: average number of edges per graph

|LV |: number of vertex labels
|LE |: number of edge labels

amino acids. Together with all distinct special con-
formations, they sum up to 82 vertex labels and
are connected if they are at least within 6 Å of
each other in the 3D protein structure. In order
to retrieve edge labels, discretizing those distances
would be possible, but prone to arbitrary threshold-
ing. Consequently, edge labels are omitted. Even
in this compacted form, with an average size of 285
vertices and 716 edges, these proteins are larger
and stronger connected than the molecules from
the NCI screening.

In the experiments on these datasets, our CORK
procedure selected between 15 and 66 subgraphs of sizes
varying between 2 and 12 vertices (=atoms or amino
acids), around 5% of which contain cycles. This means
that subgraph mining procedures restricted to sub-
classes of graphs like trees [17] or graphs of restricted
size [32, 25, 31, 27], which have been developed for less
complex outputs and faster runtimes, would not enable
us to produce results similar to those of gSpan, the
graph miner we use.

3.2 Comparison to filter approaches CORK is
a filter, hence in the first experiment, we assessed
whether CORK selects subgraphs that generalise well
on classification benchmarks, comparing it to state-of-
the-art filter methods for subgraph selection.

We use 10-fold cross-validation for classification.
Each dataset is partitioned into ten parts evenly. Each
time, one part is used for testing and the other nine
are combined for frequent subgraph mining, feature se-
lection and model learning. In our current implemen-
tation, we use LIBSVM [6] to train a C-SVM classifier
based on the selected features. C is optimised within a



PC Delta IG SC CORK

Dataset

∣

∣

∣
S†

∣

∣

∣
AUC Std AUC Std AUC Std AUC Std AUC Std

NCI1 57 0.685 0.053 0.724 0.025 0.712 0.024 0.690 0.026 0.769 0.023
NCI33 53 0.667 0.049 0.718 0.027 0.698 0.027 0.681 0.029 0.759 0.028
NCI41 49 0.689 0.059 0.722 0.023 0.748 0.028 0.732 0.037 0.763 0.027
NCI47 56 0.709 0.054 0.728 0.022 0.698 0.026 0.687 0.025 0.779 0.024
NCI81 64 0.670 0.071 0.711 0.022 0.731 0.724 0.720 0.024 0.770 0.022
NCI109 56 0.696 0.061 0.716 0.026 0.749 0.025 0.719 0.028 0.774 0.023
NCI145 55 0.688 0.068 0.717 0.029 0.733 0.035 0.698 0.027 0.773 0.029
NCI330 66 0.695 0.044 0.699 0.027 0.676 0.028 0.660 0.025 0.769 0.023
DD 15 0.605 0.051 0.800 0.038 0.674 0.048 0.694 0.039 0.778 0.038

Table 2: Classification AUC values (and standard deviation (Std)) for filter approaches on the 8 NCI graph
datasets and on the DD graphs (PC = Pearson’s Correlation Coefficient, Delta = the Delta method, IG =
Information Gain, SC = Sequential Cover, CORK = Correspondence-based Quality Criterion). The number of

features
∣

∣

∣
S†

∣

∣

∣
was determined by CORK selection on frequent subgraphs with min sup 10%; best results are shown

in bold.

range of seven values {10−6, 10−4, 10−2, 1, 102, 104, 106}
/ (size of the dataset) by cross-validation on the training
dataset only. We employ a linear kernel on the selected
graph features, and normalise the resulting kernel ma-

trix K via Knormalised(i, j) = K(i,j)√
K(i,i)K(j,j)

. We repeat

the whole experiment 10 times and we report average
results from these 10 runs.

We compare CORK to four state-of-the-art filter
methods. Three of them are rankers using Pearson’s
Correlation Coefficient, the Delta Criterion which is
closely related to MoSS [3] and Information Gain as a
ranking criterion, and the last setting is the Sequential
Cover method [8].

Pearson’s Correlation The Pearson’s Correlation
Coefficient (PC) is commonly used in microarray data
analysis [29, 10], where discriminative genes for phe-
notype prediction need to be selected from thousands
of uninformative ones. As a selection criterion, the
squared correlation between the occurrence pattern and
the class label pattern is calculated for each feature in-
dependently and the k top-scoring features are selected.

Delta criterion The difference among subgraph
frequencies in different classes is another popular fea-
ture selection criterion. For instance, in [3], Borgelt et.
al. introduced MoSS, an approach for mining discrimi-
native subgraphs. Their approach is designed for phar-
macological screenings which specifically aim for char-
acterizing the positive class. Thus, the idea is to accept
only subgraphs which are frequent in the positive group,
and infrequent in the complement. From this, we derive
the following delta criterion as

qdelta(S) = max (AS1
−BS1

,BS1
−AS1

) ,(3.18)

which can be used as a ranker criterion, in a similar way
as (PC).

Information Gain As a final ranking method,
we compare CORK to the Information Gain (IG), an
entropy-based measure, which is frequently used in
feature selection [36, 26].

Sequential Cover Algorithm 3.1 outlines the se-
quential cover method (SC). Frequent graphs are first
ranked according to their relevance measure such as in-
formation gain, Fisher score, or confidence. In this ex-
periment, we use confidence as the relevance measure.
If a top-ranked frequent subgraph covers some of uncov-
ered training instances, it will be accepted and removed
from the feature set S. The algorithm terminates if ei-
ther all instances are covered or S becomes empty. SC
can be executed multiple times to make several covers
on the instances.

Algorithm 3.1. Sequential Cover (SC)

Input: Set of frequent subgraphs S, training dataset G
Output: Selected set of subgraphs S†

1: Sort subgraphs in S in decreasing order of the chosen
relevance measure;

2: while (G 6= ∅ ∧ S 6= ∅)
3: S = first subgraph of S;
4: If S covers at least one graph in G
5: S† = S† ∪{S};
6: S = S \{S};
7: for each graph G ∈ G covered by S

8: G = G \{G};
9: return S†



The results of the filter experiments are displayed in

Table 2. We show the number of selected subgraphs
∣

∣

∣
S†

∣

∣

∣

among frequent subgraphs of min sup 10%, together
with the area under the receiver operating characteristic
curve (AUC) and its standard deviation (Std) over the
100 experiments conducted per value. We observe that
in all but one dataset, CORK detects the best feature
combination for the 2-class classification problems at
hand.

3.3 Other target sizes The number of selected fea-

tures
∣

∣

∣
S†

∣

∣

∣
is an important parameter in feature selec-

tion. In order to demonstrate the fairness of our eval-
uation, Figure 2 displays a screening over the number
of selected features for the tested filter approaches on
NCI330. We see that the number of 66 subgraphs se-
lected by CORK does not represent the optimal number
of features for any of the criteria. However, in all cases,
the improvement for larger feature sets increases slower
for the higher set sizes. Moreover, CORK returns the

best results for all tested feature sizes
∣

∣

∣
S†

∣

∣

∣
≥ 25.
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Figure 2: Screening over the number of selected features
∣

∣

∣
S†

∣
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∣
for CORK selection, the rankers using Pearson’s

Correlation, the Delta method and Information Gain,
and Sequential Cover Selection.

3.4 Experimental runtime analysis In our third
experiment, we evaluated the runtime performance of
nested feature selection (i.e. during mining) versus un-
nested feature selection (i.e. after mining). We run
nested CORK on two datasets (the DD dataset and
the NCI1 screening in Figures 3 and 4) and record
the number of correspondences and the number of
subgraphs examined per iteration.

In the DD experiment (Figure 3), we observe that in
the beginning, we achieve a steep decrease in the number
of correspondences, whilst enumerating a comparable
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Figure 3: Nested feature mining experiment for the DD
dataset (min sup is set to 10%): each iteration corre-
sponds to one selected feature. Upper plot: num-
ber of subgraphs (in 103) enumerated for the selection
of one feature (in red, left scale) and number of corre-
spondences (in 103) present at each iteration (in blue,
right scale). Lower plot: percentaged decrease in the
number of correspondences due to the current feature
(in blue, left scale) and runtime per iteration (in green,
right scale).

number of subgraphs for the first 10 iterations and thus
maintaing an almost constant runtime per iteration.
In the end, CORK prunes a larger percentage of the
enumerated subgraphs and the iterations speed up. The
enumeration stops when all instances from the two
classes are separated.

This attractive behaviour can be observed if there
exists a (small) subset of subgraph features that elim-
inates all correspondences. In the other, unseparable
case, CORK alone is not able to fully separate the two
classes. This does not present a problem in un-nested
feature selection, as the procedure simply ends when no
new useful features can be identified. However, in the
gSpan-nested setting, it may happen, that the complete
DFS search tree has to be searched in order to discover
that there is no better subgraph. This is illustrated in
Figure 4, where the search space cannot be completely
resolved with 11 correspondences remaining.

A way out of this problem is to allow CORK to
terminate even if not all correspondences have been
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Figure 4: Nested CORK feature mining experiment
for the NCI1 dataset. Same setting and types of
figures as in Figure 3. After selecting 55 features, 11
correspondences remain (upper plot).

resolved, i.e. to introduce a tolerance threshold on the
number of remaining correspondences.

3.5 Impact of tolerance threshold for corre-

spondences In our fourth experiment, we assessed the
impact of employing a tolerance threshold t that leads
to the termination of CORK, i.e. CORK feature selec-
tion ends once the number of correspondences falls be-
low t. As demonstrated in Section 3.4, in later itera-
tions on unseparable datasets, expensive subgraph min-
ing results in relatively few resolved correspondences.

time [min, s]
t #selected AUC Std nested un-nested

10000 5 0.748 0.044 4’51” 8’05”
1000 8 0.765 0.044 6’21” 14’14”
100 11 0.772 0.043 10’15” 18’33”
10 13 0.776 0.037 10’44” 19’39”
0 15 0.778 0.038 10’49” 20’02”

Table 3: Nested CORK versus un-nested CORK feature
selection on the DD dataset with varying tolerance
thresholds t. The un-nested runtimes are omitting
the 20 minutes needed for the initial enumeration of
frequent subgraphs.

In order to improve the effectiveness of CORK and to
prevent overfitting by meaningless features, we define a
tolerance threshold t on the number of correspondences
that lead to the termination of the nested mining pro-
cedure.

We used the same setting as for the validation runs
in Section 3.2 on the DD dataset. Both CORK selection
variants are stopped as soon as they result in less than
t correspondences. The results are displayed in Table 3.

This summary shows a slight advantage in accuracy
of the lower tolerance thresholds 100 and 10, however,
the additional runtime does not seem to be worth such
an improvement over the quicker alternative of using
a threshold of 1000 correspondences. The by far lower
runtimes of the nested experiments further demonstrate
the power of nested feature selection over the convential
un-nested variants.

3.6 Comparison to wrapper approaches The
last experiment compares CORK to state-of-the-art
wrapper approaches. These wrapper approaches al-
legedly outperform filter-based approaches in graph
mining [28], hence we wanted to get a feeling for the dif-
ference in performance. We used the same experimental
setup as in Section 3.2 and compare CORK to LAR-
LASSO and decision-tree based classifiers (Table 4).

The LAR-LASSO method by [28] is a nested feature
selection approach as well. Unlike CORK, it is a
wrapper method as it minimizes a loss-function based
on an active set of currently selected features using path
regularization.

Another class of discriminative pattern mining ap-
proaches for graph mining was proposed by [37] and [11]
who use a decision-tree like classifer. For a given
dataset, [11] iteratively mine for the most meaningful
feature according to information gain, and split this
dataset into two separate problems. They proceed until
the subproblems are solved or are of a smaller size than
a given threshold. Using the gSpan extension Close-
Graph [35], they have published experiments on the
NCI screenings which we compare to ours in Table 4.
Note, however, that the experiments of [11] have been
conducted on the complete graph sets, while ours are
resulting from balanced subsets of the whole dataset.

4 Discussion

Similar to information theoretic criteria used for deci-
sion trees, CORK measures the quality of a set of fea-
tures to separate target classes using a specific set of
features. Applying an efficient greedy forward selection
scenario, CORK clearly performs best in comparison to
other filter methods (see Table 2). It is not surprising
that in such a vast space of interdependent features,



feature combinations are more valuable than the simple
ranking approach we used with Pearson’s Correlation,
the Delta method and the Information Gain. The Se-
quential Cover method at least takes into account that
all instances should be covered by the selected set of
features, yet, can never compete with CORK. We have
been rather surprised by the mightiness of the Delta
method since it actually scored better than Pearson Cor-
relation. However, the complexity of the problem obvi-
ously requires the consideration of the various features’
interdependence. CORK respects this interdependence
by iteratively picking the subgraph feature which opti-
mally complements the set of features selected so far (in
terms of resolving correspondences).

Among the wrapper methods (see Table 4), CORK
usually scores better than the model-based search tree
approaches MbT and DT MbT (from [11]), even though
these employ by far more subgraphs than CORK.
Let us note, that those two feature selectors usually
perfom slightly better than the simple ranker approach
also employing Information Gain (cf. Tables 2 and 4).
This criterion can be submodular, given certain pre-
conditions [18]. This, however, is not the case here,
since subgraphs are neither independent nor do they
represent a subset of features mined previously. Thus,
our less complex selection criterion still leads to higher
quality results.

CORK cannot yet fully compete with the LAR-
LASSO wrapper approach by [28]. It seems, however, to
be more successful in matters of time on the Dobson &
Doig problem, consisting of significantly larger graphs
(see Table 1). This observation suggests that CORK
pruning may be a useful alternative for datasets of large
graphs. Furthermore, CORK as a filter method is useful
when searching for features irrespective of a specific
classifier.

One potentially helpful extension of our method was
used in [28]. They store the DFS search tree for a set of
previously mined frequent subgraphs. When restricting
the mining procedure to a fixed min sup value, this
entails much shorter mining times, since gSpan only
has to be called once per feature selection step and
not several times. Still, the feasibility of this approach
obviously depends on the size of the DFS tree that has
to be stored.

We are currently exploring other submodular crite-
ria [4] for subgraph feature selection that might allow for
even higher levels of prediction accuracy. However, in
preliminary experiments we have not yet found a more
complex criterion permitting a feasible runtime.

An interesting question for future research is to
find optimality guarantees for the horizontal leap search
strategy for pattern mining which was recently proposed

in [33], or to speed up CORK by employing this search
strategy while maintaining its theoretical properties.

Another exciting question is whether our results
on the optimality of supervised feature selection can
be transfered to techniques for unsupervised feature
selection on frequent subgraphs [5]. We are positive
that this is possible (S. Nijssen, personal communication
(2008)).
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Filter Wrapper
CORK MbT AUC values LAR SVM

Dataset

∣

∣

∣
S†

∣

∣

∣
AUC Std

∣

∣

∣
S†

∣

∣

∣
MbT MbT DT MbT AUC Std

NCI1 57 0.769 0.023 77 0.685 0.74 0.805 0.021
NCI33 53 0.759 0.028 344 0.743 0.745 0.792 0.024
NCI41 49 0.763 0.027 376 0.765 0.763 0.802 0.025
NCI47 56 0.779 0.024 587 0.708 0.727 0.809 0.023
NCI81 64 0.770 0.022 685 0.696 0.723 0.792 0.021
NCI109 56 0.774 0.023 605 0.699 0.746 0.808 0.022
NCI145 55 0.773 0.029 491 0.747 0.752 0.807 0.022
NCI330 66 0.769 0.023 n.a. 0.797 0.020
DD 15 0.778 0.038 n.a. 0.789 0.039

Table 4: Classification AUC values (with standard deviation (Std)) on the 8 NCI graph datasets and of the
DD graphs (CORK = Correspondence-based Quality Criterion, MbT and DT MbT = Model based search tree

approaches – results taken from [11], LAR-SVM = features selected (the same number
∣

∣

∣
S†

∣

∣

∣
as CORK) by LAR-

LASSO evaluated via SVM). Frequency threshold for frequent subgraphs is 10%.


