
Statistical Density Prediction in Traffic Networks

Hans-Peter Kriegel Matthias Renz Matthias Schubert Andreas Zuefle
Ludwig-Maximilians University Munich, Germany

http://www.dbs.ifi.lmu.de
{kriegel,renz,schubert,zuefle}@dbs.ifi.lmu.de

Abstract

Recently, modern tracking methods started to allow
capturing the position of massive numbers of moving
objects. Given this information, it is possible to analyze
and predict the traffic density in a network which
offers valuable information for traffic control, congestion
prediction and prevention. In this paper, we propose
a novel statistical approach to predict the density on
any edge in such a network at a future point of time.
Our method is based on short-time observations of
the traffic history. Therefore, it is not required to
know the destination of each object. Instead, we
assume that each object acts rationally and chooses the
shortest path from its starting point to its destination.
This assumption is employed in a statistical approach
describing the likelihood of any given object to be
located at some position at a particular point of time.
Furthermore, we propose an efficient method to speed
up the prediction which is based on a suffix-tree. In our
experiments, we show the capability of our approach
to make useful predictions about the traffic density
and illustrate the efficiency of our new algorithm when
calculating these predictions.

1 Introduction

Traffic control systems for large traffic networks have
attracted much attention, recently. One large challenge
of traffic controlling is traffic prediction, i.e. methods
that are able to estimate the traffic density for a future
point of time. The information provided by a traffic
prediction system allows to initiate various types of
traffic control methods in order to avoid congestion
situations within a monitored network.

One of the most important application areas of traf-
fic control systems are road networks. In particular at
rush-hour when the risk of the occurrence of traffic jams
is very high traffic control systems will become be very
important. The combination of modern positioning and
mobile communication systems enables us to capture
real-time positions of mobile clients on a road network
at a central server. These systems can be used to con-

TAS

TCS

TJ1

TJ2

TJ3Traffic
Processor

Figure 1: Architecture of the Traffic Capture System
(TCS) and the Traffic Analysis System (TAS).

tinuously track the current traffic at arbitrary locations
in a traffic network. An example of a possible architec-
ture of a traffic analysis system is illustrated in Figure
1. This architecture consists of two modules, the Traffic
Capture System (TCS) and the Traffic Analysis System
(TAS).

The TCS captures the position of the mobile ob-
jects traveling in the network. Each mobile object is
a client equipped with a GPS-System that can capture
its actual position in space and a transmitter that can
determine its actual position to the next receiving an-
tenna. The receiving antennas forward the incoming
information to a central server which is a component
of the Traffic Analysis System (TAS). A possible in-
frastructure for the communication between the mobile
clients and the central server might rely on ordinary
cell-phones. This method is especially interesting be-
cause modern navigation systems are already able to
communicate via cell-phones.

Based on the information provided by the TCS,the
central server of the TAS can continually track the
positions of the captured moving objects within the
road network. This information is now used to estimate
future traffic situations. Thereby, further information
like common driving behavior and the assumption that
each mobile object moves on an intuitive path from its

8th SIAM Conf. on Data Mining (SDM'08), Atlanta, GA, USA

starting point to its destination can be incorporated in
order to improve the accuracy of traffic prediction. One
possible output of a traffic analysis system is depicted
in Figure 1. The output of the traffic processor in
our example shows the traffic network with marked
zones that indicate the location for which a large traffic
volume is expected within the next half an hour. Such
kind of information is reported back to the mobile
clients that can subsequently use this information to
plan an alternative route in order to avoid the predicted
traffic jams. Furthermore, a traffic control systems
can dynamically adjust the speed limits on highways
in order to counter the emerging congestion.

In this paper, we propose a novel statistical ap-
proach to predict the density of any edge in a road
network at some future point of time. Our method is
based on short-time observations of the traffic history,
i.e. the input for the traffic predictor are recent trajecto-
ries of the moving objects. The destinations and the fol-
lowing trajectories of the moving objects are unknown.
Therefore, we need to estimate the future motion of the
objects in the network. We assume that the moving ob-
jects will act rationally and choose the shortest path be-
tween their starting points to their destinations. Based
on this assumption, we introduce a statistical approach
for calculating the likelihood that a certain object is lo-
cated at a certain network position at a certain point of
time. Using the estimation for each object in the net-
work, it is possible to estimate the traffic density at a
certain position at a certain point of time. The allowed
traffic capacity, i.e. the maximal traffic density that does
not lead to a traffic jam, and the expected future traffic
density of an edge at a certain point of time indicate
the risk of a traffic jam. If the estimated traffic density
exceeds the allowed traffic capacity of the edge, we can
assume that a traffic jam is very likely to occur.

Formally this paper offers a solution to the following
problem: Given a set of moving objects in a road
network, we want to estimate the traffic density (i.e. the
expected number of objects located at a road segment
at the same time) for all network segments at a any
future point of time. Besides the current position of
each object, we additionally assume to have a short
time trajectory of each object, i.e. the recently
visited network segments of each object in the network.
Furthermore, it is assumed that the moving objects act
rationally, e.g. each object moves along the shortest
path between its starting point and its destination.

The road network is represented as a directed
weighted graph G(V,E). V denotes the set of vertices
that correspond to street crossings or points connecting
two intersecting road segments, and E denotes the set
of directed edges that connect adjacent vertices and

correspond to road segments. A weight is assigned to
each edge that reflects the time any object requires
to pass over the corresponding road segment. As an
alternative, the distance of the way between the two
adjacent vertices is used as weight and the time an
object requires to traverse this segment is calculated
by assuming some average speed on the road network.
If the future trajectory of an object is known, its future
location can be estimated by assuming an average speed
at each road segment. Without this information, we
would have to consider each possible location of the
object for the future point of time. Since the number
of possible future locations is often increasing strongly
with the length of the time interval between now and
the time of prediction, the prediction accuracy becomes
rather small for prediction times that are not within the
close future. However, assuming that each object moves
along a shortest path and that the recently traversed
trajectory is known for each object, it is possible to
significantly restrict the potential destinations. Thus,
our prediction model offers stable prediction results for
a much longer period of time. The main contributions
of this paper are:

• A statistical traffic model that can be used to
predict the traffic density in a network at any edge.

• A method to integrate the short time history of
the network to significantly improve the prediction
accuracy and allows to make useful predictions over
a significant period of time.

• Suitable algorithms and data structures to effi-
ciently compute the prediction of the traffic density
based on the provided information.

The remainder of this paper is organized as follows.
The next section contains a brief overview over existing
approaches for traffic analysis and traffic jam prediction.
In section 3, we introduce our statistical approach to
estimate the traffic in a network at a certain position
and at a certain point of time. An efficient method
to speed up the prediction which is based on a suffix-
tree is introduced in Section 4. In Section ??, we
experimentally show the capability of our approach
to make useful predictions about the traffic density.
Furthermore, we illustrate the efficiency of our new
algorithm when calculating these predictions and finally
conclude the paper with section ??.

2 Related Work

In recent years, a lot of work has been published in the
field of traffic data mining. One important problem in
traffic mining is to detect areas with a significant high
load of traffic. Some work has been published for the

detection of traffic jams. Approaches for traffic jam de-
tection are proposed in [?] and [?]. Both works address
the problem of clustering trajectories, namely sets of
short sequences of data like movements of objects. The
resulting clusters indicate routes with potentially high
traffic load as the clusters represent sets of objects that
simultaneously move nearly the same route. While in
[?] a model-based clustering algorithm is proposed that
clusters trajectories as a whole, the approach proposed
in [?] works on partitions of trajectories. Each trajec-
tory is first partitioned into a set of line segments. Af-
terwards, similar line segments of different trajectories
are grouped together in order to discover common sub-
trajectories from a trajectory database. An important
advantage of [?] against [?] is that it can also detect
routes that do not necessarily span the complete object
trajectories. Normally, the trajectory of objects moving
in a traffic network are very long compared to the sec-
tions which form routes with high traffic, so only rea-
sonably small parts of a trajectory contribute to such
routes.

Another approach for traffic jam detection is ad-
dressed by X. Li et al. in [?]. Their approach tries to
discover hot routes in a road network. Hot routes are
road segments that frequently or even regularly have a
high traffic density and mostly lead to a traffic jam prob-
lem. The detection of hot routes is an important prob-
lem because each larger city has such hot routes that
regularly block the traffic flow at rush hour and thus,
traffic participants spend long times waiting in traffic
jams. While the approaches proposed in [?] and [?] are
individual traffic analysis as the traffic is computed by
observing the motion of single individuals, the approach
in [?] is based on the FlowScan algorithm which is a
kind of aggregate traffic analysis. It is able to extract
hot routes by means of observing the traffic flow over
some adjacent road segments. The algorithm does not
completely fall into the category of aggregated traffic
analysis, since it considers more than the pure density
of traffic on single road segments. It is merely a mixture
between the individual and aggregated traffic analysis.

Further approaches concerning traffic jam detection
are based on the detection of dense areas of moving ob-
jects as proposed in [?]. This approach tries to find mov-
ing clusters in moving object databases. The difference
of the addressed problem compared to clustering trajec-
tories is that the identity of a moving cluster remains
unchanged while its location and content may change
over time. The same usually holds for traffic jams, in
particular if the traffic jam is due to an obstacle that
slows down the traffic. There are normally individuals
that pass the obstacle at the beginning of the traffic
jam, and thus, leave the traffic jam and those which

arrive at the end of the traffic jam. Consequently, the
contributors of the traffic jam change over time while
the identity of the traffic jam remains.

A quite similar problem is addressed in [?] where
areas of moving objects that remain dense in a long
period of time are detected. This approach is quite
related to our approach as it addresses predictions of
dense traffics where the prediction concerns any time
slot in the future. Furthermore, like in our approach the
predictions are made on the basis of observations of the
current motion. However, there is a big difference from
our approach concerning the assumption of available
information of the object motions. Previous traffic
prediction and traffic detection methods assume that
the traffic motion and thus, the object trajectories are
known in advance. However, the future trajectory of an
object is usually unknown in advance in our application
scenarios.

Another challenging problem is the detection of
general traffic patterns. There exist several approaches
for traffic prediction by means of historical observations
which are based on regression analysis as proposed in
[?]. Regression can be used to predict the future motion
of individual objects as long as they do not move in a
restricted environment as in our application. Another
method concerning traffic prediction based on current
traffic observations is the approach presented in [?].
In this work, the current traffic data is derived from
a sensor network measuring traffic at certain locations
in the traffic network. In the framework proposed in
[?], the sensor network includes about nine hundred
measurement stations. The data is collected in a data
warehouse and used to infer interesting patterns. This
kind of system may be used to learn patterns on the
observed data which could be used to predict traffic
jams. This method falls into the category aggregate
analysis and mainly differs from our approach as it
aggregates the traffic at certain road segments instead
of observing single individuals.

A further related topic in traffic mining is the
detection of suitable traveling paths for individuals that
want to travel to a certain destination in a possibly
most cost-efficient way. There is a lot of published work
related to fastest path computations [?, ?, ?, ?, ?, ?,
?, ?]. However none of these proposals take the actual
traffic into account. An efficient technique for fastest
path computation taking traffic patterns into account
has been addressed by H. Gonzales et al. [?]. The
authors propose an adaptive navigation method based
on historical traffic patterns mined from a large set of
given traffic data.

Another field related to traffic mining is graph min-
ing which has attracted a lot of attention in recent years.

At first sight, graph mining seems to be closely related
to traffic mining as traffic flows normally occur in a
network graph, e.g. a road network or the internet.
Hoverer, most graph mining approaches deals with the
topological structure within graphs or subgraphs. A
lot of graph mining approaches aim at finding interest-
ing patterns within graphs. A comprehensive survey of
graph mining techniques is given in [?]. A topic being
related to our approach is the discovery of center-piece
subgraphs [?] though the paper still works on static net-
work graph topology. The center-piece subgraph prob-
lem is to find the node(s) and the resulting subgraph,
that have strong connections to all or most of a given
set of query nodes. Usual applications are connectivity
mining in social networks, gene regularity networks and
viral marketing. In a traffic network, we usually have
certain places of preferred travel destinations or start-
ing points. Such kind of hot spots can be malls, theme
parks, city centers, commercial centers, conjunction to
highways and so on. These kind of hot spots can be
used as query points in order to find center-piece sub-
graphs which indicate places of expected high traffic.
Similar measures like “Closeness Centrality” and “Be-
tweenness Centrality” [?] which are traditionally used
for mining in biological interaction networks can be ap-
plied to identify road segments with high risk of traffic
jams.

3 Statistical Traffic Model

In this chapter, we will formalize our view on traffic
networks and the traffic that can be observed on them.
Furthermore, we will discuss a statistical model that
allows to predict future states of the network under the
knowledge of the current state and a short time history.

3.1 Traffic Density in a Network A traffic net-
work is modeled as a graph G(V,E) where the vertices
represent destinations and crossings. The edges repre-
sent ways or streets between the vertices. A walk is a
sequence of edges w = (e1, .., en) where successive edges
are connected, i.e. ei = (vl, vk) ⇒ ei+1 = (vk, vm) with
vl, vk, vm ∈ V . An object o may travel on this network
from one vertex v1 to another one v2 by following some
walk w = (e1, .., en), ei ∈ E where e1 is starting with v1

and en is ending with v2.
The point of time ti where the object reaches v2

depends on the speed the object is traveling at on each
edge. Therefore, we assume that there is a maximum
speed for objects traveling on a certain edge ei speedei

.
Knowing the length of edge ei length(ei), we can
determine the time it takes object o to travel from vl

to vk via ei. Thus, given the walk w = (e1, ...en) we can

calculate the time it takes object o to follow w by

time(o, w) =
n∑

i=1

length(ei)
speed(ei)

To find out the position of object o at time t
traveling on a walk w = (e1, .., en), we have to calculate
the time(o, (e1, .., ei)) for i = 2 to i = n. We can stop at
the first edge for which time(o, (e1, .., ei)) is larger than
t, because o will not reach ei in a time shorter than t.
As a result, we know that o will travel on edge ei−1 at
time t.

After describing the movement of individual objects
in the network, we will turn to describing the complete
state of the network. Thus, we define the density on
edge ei at time t as the number of objects traveling on
ei at time t. Formally, the density is defined as:

Definition 3.1. (Traffic Density) Let G(V,E) be
a traffic network and let O = o1, .., om be a set of objects
traveling on the network. Furthermore, let ρ : E ×O →
{0, 1} be the following indicator function

ρ(o, e) =
{

1 if o is on e
0 else

Then, the traffic density on edge e is defined as:

density(e) =
m∑

i=1

ρ(oi, e)

Clearly, it is possible to determine the density of
each edge at the current time t when observing the
network.

Additionally, it is possible to compute the density
for any future point of time t + ∆t if all objects
O = {o1, .., om} and their corresponding paths woi are
already known at time t. As mentioned above the
position of object oi at the point of t+∆t can be derived
easily when knowing the walk oi is traveling on.

The problem of traffic prediction is caused by the
absence of knowledge about the walk w an object o is
traveling on. In other words, we can observe each object
on the network at time t but without knowing its route,
we cannot exactly tell its position at time t + ∆t.

Though we cannot tell the exact density of each
edge at some future time t+∆t, it is possible to calculate
an expected density employing the available knowledge
about the objects and their behavior. Generally, our
model for determining the expected density is based on
the probability that a given object o is traveling on edge
e at time t + ∆t, Pr[o, e, t + ∆t].

This probability depends first of all on the existence
of a walk that allows o to travel on edge e at the time of

prediction t+∆t. If there is no walk allowing o to reach
e in ∆t time, then Pr[o, e, t + ∆t] can be considered to
be zero.

After finding all walks W = {w1, .., wl}that allow o
to be at e at time t+∆t, we can sum up the likelihoods
Pr[o, e, wi] that o would take walk wi:

Pr[o, e, t + ∆t] =
l∑

i=1

Pr[o, e, wi]

To determine Pr[o, e, wi], we assume that wi is the
result of a Markov chain on the network where the
vertices correspond to the states and the edges to the
allowed transitions. The chain is started at the current
position of o. Each time o reaches a new vertex v, o has
to decide for one of deg(v) + 1 options. deg(v) denotes
the degree of v, i.e. the number of adjacent edges. Thus,
an object can either stop traveling at the vertex v or
take any of the adjacent edges to continue its journey.
To find out the likelihood that o follows the walk w,
we need to assume a probability distribution describing
the likelihood of each of these options. Formally, we
can calculate the probability that object o follows walk
w = (e1, .., en) where starti and endi denote the starting
and ending node of edge ei as:

Pr[o, en] =
n∏

i=1

Pro[endi|starti]

Pro[endi|starti] is the likelihood that o enters ei

under the condition of being previously on node starti.
Let us note that we do not distinguish whether o intends
to stop at the endi or continues its travel. In a classical
Markov chain Pro[endi|starti] usually depends on the
previously visited edge ei−1. However, in order to keep
our framework as general as possible, we do not limit
our method to a certain type of distribution and thus,
allow arbitrary probability distributions. For example,
we might assume that the underlying probability distri-
butions are uniform. In this case, the likelihood that o
is taking walk w follows the random walk assumption,
i.e. at each node an object would take any of the given
options with the same likelihood with no regard of any
global destination. However, since objects in a traffic
network usually behave more rationally, we will intro-
duce more sophisticated probability distributions in the
next subsection.

After describing the likelihood Pr[o, e, t + ∆t] that
object o will be at edge e in ∆t time, we can now
calculate the expected density for edge e at t + ∆t.

Definition 3.2. (Expected Density) Let G(V,E)
be a traffic network and let O = {o1, .., om} be a set

of objects traveling on the network. Then, the traffic
density on edge e at time t + ∆t is defined as:

density(e, t + ∆t) =
m∑

i=1

Pr[oi, e, t + ∆t]

3.2 The Shortest Path Assumption Though the
expected density allows us to predict the expected
state of a traffic network for any future point of time,
its applications pose serious problems. First of all,
the prediction is strongly dependent on the underlying
probability distributions. Thus, if these distributions
do not model the behavior of the objects well enough,
the expected density will significantly differ from the
real density after a short period of time. A second
problem is the computational cost of determining all
walks between the current position of an object o and a
future position e. The number of possibilities we have to
check is exponentially increasing with ∆t. Thus, finding
all walks allowing o to travel on edge e an t+∆t is very
expensive for larger values of ∆t.

Fortunately, the random walk assumption made
above is not realistic for most traffic networks and
we can employ more realistic assumptions to derive
more suitable probability distributions and reduce the
number of walks.

For example, a driver traveling from New York to
Los Angeles would not randomly decide at each highway
intersection in which direction he drives next. The rea-
son for the more rationale behavior in traffic networks
is that each object has usually a predefined destination,
it wants to reach as fast as possible. Furthermore, the
topology of the network is known to each object and
thus, the object does not have to stray through the net-
work until it accidentally reaches its destination. Since
each object wants to reach its destination as fast as pos-
sible, we can assume that each object travels along a
shortest path where each edge e is weighted by the time
it takes to traverse it, i.e. lenght(e)

speed(e) . A path in con-
trast to a walk is not allowed to contain the same vertex
twice. We will refer to this observation as the Shortest
Path Assumption.

Though the general framework for computing the
expected density can remain unchanged, the shortest
path assumption has a major impact on the quality of
prediction and the computational complexity.

A first implication is that in order to determine
whether object o might be at edge e after the time
period ∆t, we only have to consider the shortest paths of
the current position of o to the end vertex of e. If there
is no path ending with edge e, then o travels on edge e
with a probability of 0%. If e is the last edge of some
shortest path, we can calculate the time period o would

travel on e. Only if t+∆t is within this time period, it is
possible to observe o on edge e at the time of prediction
t + ∆t . Let us note that it is not necessary to consider
any other shortest path because an object traveling on
any other shortest path must arrive at the end of e at the
same time. To conclude the shortest path assumption
significantly reduces the number of walks that have to
be considered.

A further implication of the shortest path assump-
tion is that it is possible to find meaningful probability
distributions that can be used to determine the likeli-
hood that object o travels along path p.

We know that each object o heads towards one pre-
defined destination vdest

o . Furthermore, we know that o
travels along a shortest path to reach vdest

o . Thus, the
set of all possible paths o could follow, is the union of all
shortest paths to any possible destination. Now the like-
lihood that o travels along path p = (v1, .., vn) depends
on the probability that vn is o’s target, Prdest[o, vn].
Without further knowledge we might assume that each
destination is equally likely. Additionally, it is possible
to increase the likelihood of more popular destination
to integrate domain knowledge. Let us note that in the
case that there is more than one shortest path leading
to vn, we assume that all paths are equally likely.

After assuming a distribution over all destinations,
it is possible to derive local probability distributions
that can be employed to estimate the likelihood that
object o travels on a certain edge e. Therefore, we
need to sum up the probabilities for each shortest
path containing edge e. Formally, we can define this
probability as follows:

Definition 3.3. (Visiting Probability) Let
G(V,E) be a traffic network, let o be an ob-
ject having the current position vstart and, let
sp(vstart, v) denote the set of shortest paths from
vstart to any other vertex v ∈ V . Furthermore, let
P̂vstart(en) = {p|p ∈ sp(vstart, v) ∧ v ∈ V ∧ en ∈ p} be
the set of all shortest paths beginning with vstart and
containing the edge en. Now, the probability that o
follows the path p = (vstart, ..., vk) Pro[p] is defined as :

Pro[p] =
1

|sp(vstart, vk)|
· Prdest[o, vk]

where Prdest[o, vk] is the likelihood that vk is the des-
tination of object o. Then, the probability under the
shortest path assumption that object o travels on edge
en is defined as follows:

Prsp[o, en] =
∑

pi∈P̂ (vstart,en)

Pro[pi]

The probability Prdest[o, v] describing the likeli-
hood of each possible destination has an important im-
pact on the accuracy of the prediction. Furthermore,
under the shortest path assumption this likelihood de-
pends on the path po

history,i.e. the path o has already
traversed until the current point of time. If po

history is
unknown, we generally have to assume that all vertices
are possible destination of o. However, knowing po

history

allows us to prune some of these destinations. Since o
is traveling on a shortest path, we can exclude all desti-
nations for which there exists no shortest path starting
with po

history. Thus, knowing the previous movement of
each object o significantly reduces the number of pos-
sible destinations and thus, allows us to find a better
estimation of Prdest[o, v].

To conclude, the shortest path assumption can be
derived from assuming that all objects have knowledge
of the network topology and try to reach a certain des-
tination as fast as possible. Based on the shortest path
assumption, we can derive more reasonable probabil-
ity distributions for the decisions each object makes at
some vertex. Thus, it is possible to find a more suitable
expected density for the edges in the traffic network.

4 Efficient Traffic Prediction

In the previous chapter, we defined the expected density
for single edges in a traffic network at a certain time of
prediction. In this chapter, we will turn to calculating
the complete density in a network at some future point
of time consisting of the expected densities of each edge
in the network. After introducing a straight-forward
method to calculate this expected network density, we
will introduce a data structure allowing a much more
efficient computation of density predictions.

4.1 Traffic Density Prediction The goal of our
approach to is to predict the state of a traffic network
for a future point in time or even a time period in the
future. Therefore, we first of all formalize the expected
density in a traffic network.

Definition 4.1. (Expected Network Density)
Let G(V,E) be a traffic network and let O = {o1, .., om}
be a set of objects traveling on G under the shortest
path assumption. For each object oi ∈ O, we know
a short time history po

history containing the path oi

has traversed before the current time t. Furthermore,
the destination of each object oi is unknown. Then,
the Expected Network Density at time t + ∆t is
defined as the set of expected densities for each edge e:
density(e, t + ∆t).

The Expected Network Density consists of the
complete traffic density that can be expected to be

observed at some future point of time.
In the following, we will discuss a straight-forward

method for calculating the expected network density,
i.e. the expected density of each edge in the network at
the time of prediction t + ∆t.

The basic idea of the following method is to deter-
mine all possible positions for each object o at prediction
time t + ∆t. Thus, we increase the density of each edge
e by the probability Prsp[o, e] if o might visit e at the
time of prediction. To find out all possible positions
and their corresponding likelihoods, we first of all have
to determine all possible destinations. As mentioned
before, the number of possible destinations depends on
the path po

history that o has already traversed. There-
fore, we start with the first known position of o,i.e. the
first node in po

history, and employ Dijkstra’s algorithm
to determine all shortest paths to any other node in the
network. Now, to determine all possible positions of
o at time t + ∆t, we only have to consider the shortest
paths being extensions of po

history. Each of these extend-
ing paths leads to a still possible destination. Thus, we
follow each of the paths p for the time period ∆t and
thus, determine a possible position of object o. Now,
the expected density of the edge corresponding to this
position is increased by Prsp[o, p], i.e. the likelihood
that o travels along path p. After processing each pos-
sible position for each object in the system, the expected
network density is derived.

A variation of this method can be applied if we are
not only interested in the traffic density at a special
point of time t + ∆t, but in the expected density at all
points of time between t and t + ∆t. In this case, the
prediction of the expected density is represented by a
time series displaying the expected change of traffic on
a given edge. However, computing the time series is
quite similar to computing a single prediction. For each
path p, extending po

history, we traverse p and update
the edges of p for the period of time o might travel on
them. Whenever o could enter a new edge the expected
density is increased by Prsp[o, p]. Correspondingly, the
expected density has to be reduced each time o leaves
some edge e.

Though this method can be employed to determine
predictions according to the traffic model introduced in
section 3, it has serious short-comings from a computa-
tional point of view. The problem is that in order to
determine the possible paths of object o, it is always
necessary to consider each node of the network and de-
termine all possible shortest paths starting with its first
known position. This poses an enormous computational
overhead because some of the paths are computed for
multiple objects. However, since the usefulness of a pre-
diction is rather perishable, a fast computation of the

(a) Network graph (b) Suffix tree

Figure 2: Example of a network graph and the corre-
sponding suffix tree used to efficiently compute an ob-
jects probability distribution.

prediction is mandatory. Thus, in order to derive predic-
tions in efficient time, a solution has to be found avoid-
ing this computational overhead at prediction time and
allowing efficient density predictions for the complete
network.

4.2 A Shortest Path Suffix Tree In the following,
we will present a data structure that is significantly
speeding up the computation of the expected network
traffic density. The core idea is to store all possible
shortest paths in a compact data structure. Thus, the
computation of shortest paths at prediction time can be
avoided.

Assuming that there exists an unique identifier
denoting each node in the network, we can use these
node identifiers as alphabet and represent each path
as a string over this alphabet. Our algorithm needs
an efficient way to determine all shortest paths being
extensions of the already observed history of a given
object o. Considering each shortest path as string, we
need to find a way to efficiently determine all suffixes
extending the prefix represented by po

history. Therefore,
we propose to store all shortest paths that can be found
in the given network in a suffix tree.

The suffix tree is well known in text processing and
bio informatics for its space-efficient storage of massive
amounts of string data. Formally, a suffix tree ST for
string S = S[0..n − 1] of length n over the alphabet A
is a tree with the following properties:

• ST has exactly n + 1 leaf nodes, numbered consec-
utively from 0 to n

• all internal nodes (except the root) have at least
two children.

• edges spell non-empty strings

• all edges from the same node start with a different
element of A

• for each leaf node i, the concatenation of all edges
from the root node to i matches S[i..n− 1]

In order to employ the suffix tree for our problem,
we store all shortest paths in the given network in the
suffix tree. Therefore we use the all-pair-shortest-path-
algorithm by Floyd and Warshall to efficiently derive
all possible shortest paths. Afterwards, all shortest
paths are converted to strings over the alphabet of node
identifiers and stored in the suffix tree. In this suffix
tree, each direct son of the root represents a vertex v in
the network and the corresponding sub tree represents
all shortest paths starting with v. Let us note that each
path in this sub tree corresponds to a shortest path
and the paths to the leaf node represent shortest paths
that are maximal, i.e. it is not possible to extend these
paths to any longer shortest path. Each inner node vn

of the suffix tree represents a crossing in the network
where some object o could arrive after traversing the
path corresponding to its history po

history. The sons
of vn represent all possible shortest paths extending
po

history. Figure ?? illustrates an example of an object
traversing a network graph. The corresponding suffix
tree representing all possible destinations is depicted in
Figure ??.

To efficiently calculate the expected network den-
sity, it is not sufficient to directly access the information
about the existence of a shortest path. Additionally,
the likelihood that an object o follows some path p is of
great importance. Therefore, we additionally store the
probability distributions describing Pro[endi|starti] in
the tree, i.e. the likelihood o would turn into the di-
rection of the node endi after reaching starti. In our
model, this probability depends on the cumulated like-
lihood that o takes any of paths being extensions of the
edge (starti, endi). In the tree, these paths are repre-
sented by the sub tree under the node endi. To speed up
the computation of the likelihood of each path during
prediction, we add up the likelihoods of possible direc-
tions right after generating the tree. Therefore, we first
of all mark each ending point of each path, with the
likelihood that o would take this path. Let us note that
inner nodes are valid ending points as well. Afterwards,
we assign the cumulated likelihood over all paths ex-
tending edge ê to ê in the tree. Let us note that for any
node e in the network there usually exist multiple edges
ê in tree, one for each possible prefix. Due to this mod-
ification, it is now possible to calculate the likelihood
that some object o might visit edge e while traversing
the tree.

Figure 3: Traffic network graph with simulated cars
used as experimental test bed.

To calculate the expected network traffic density
using the proposed shortest path suffix tree, we can
proceed as follows. For each object o, we enter the tree
traversing along the string corresponding to the already
observed path of o po

history. After reaching the node in
the tree corresponding to the current position of o, we
can derive all possible positions of o at t+∆t. Therefore,
we traverse every path in the sub tree under the current
position of o and calculate the likelihood that o would
travel this path during traversal. Traversing each path
is stopped if extending the path would demand more
time than ∆t. Finally, we add the current likelihood to
the expected density at the edge corresponding to the
current position of o and continue by extending the next
path in the sub tree.

To conclude, employing a shortest path suffix tree
allows us to avoid shortest path computations during
traffic density prediction. Furthermore, the number of
edges that have to be traversed for prediction is also
reduced to necessary sub paths.

5 Experimental Evaluation

In this section we show the capability of our approach
to make useful predictions about the traffic density and
illustrate the efficiency of our new algorithm when cal-
culating these predictions. For all experiments, we sim-
ulated the traffic in a realistic traffic network as depicted
in Figure ?? containing about 679 road segments and
533 intersection nodes. Our traffic simulator contains
about 1250 cars (illustrated by small dots in Figure ??)
moving from individual starting points to their destina-

Figure 4: Prediction using a spatial temporal poisson
model for the entry of new cars.

tions on a shortest path. The starting points as well as
the destinations are equally distributed over the entire
network graph. Here, each car moves with a certain ve-
locity which is assumed to be constant during the whole
journey. The velocities of the moving cars are randomly
selected for each car and it took about 60 minutes until
all cars have reached their destinations. If not stated
otherwise, as soon as a car has reached its destination
it was removed from the network and, thus, did not
contribute to the traffic anymore.

All experiments are based on java implementations.
The runtime experiments were conducted on a dual core
Opteron Dual Core processor with a clock time of 2.6
GHz and 32GB of RAM.

5.1 Experiments on Quality of the Traffic Den-
sity Prediction The first experiments concerns the
quality of our traffic density predictions. The traffic
density of a road segment is simply given by the num-
ber of cars that pass through this road segment at a cer-
tain point of time. In order to show the quality of the
traffic density prediction, we continuously measured the
traffic density prediction error during a certain range of
time. The prediction error is computed by the difference
between the predicted traffic density and the observed
traffic density for a road segment. In our experiments,
we use the parameter prediction time ∆t which denotes
the the forecasting horizon. In other words, the predic-
tion time denotes the difference between the time the
actual traffic is measured, (i.e., the time the traffic pre-
diction is related to) and the time at which the traffic
prediction was done.

Generally, in our experiments we only consider
those cars that are existent in the road network at pre-
diction time, i.e. all objects that enter the network graph

t0 Prediction Time t [min]

604020 90

Figure 5: Average number of cars on a road segment.

after the time the prediction was done are not consid-
ered. However, in realistic scenarios new cars continu-
ously enter the network. In order to evaluate traffic pre-
dictions under these circumstances, an additional statis-
tical model would be required. For example, the entry
of new objects in the network can be modeled using a
spatial temporal Poisson-process. The prediction based
on such a model is depicted in Figure ??. Obviously, the
absolute prediction error increases with the number of
new objects entering after the time the prediction was
done. The rational of this is that we have no informa-
tion of the new cars while the number of cars which are
considered for the prediction diminishes. The expected
number of cars which are considered for the traffic pre-
diction is the difference between the predicted number
of cars and the expected number of new cars. This num-
ber approaches zero when all objects considered for the
traffic prediction have reached their destination. In the
following experiments we only focus on objects which
are present in the network at the time the prediction is
done and do not allow objects to enter after that.

Since the prediction error is an absolute value mea-
sured in number of cars, the quality of the prediction
depends on both the prediction error and the number
of cars on the corresponding road segment. If not stated
otherwise, we averaged the prediction error over a set
of road segments. In order to achieve more represen-
tative results, we measured the prediction quality only
for a subset of road segments. Here we left out those
road segments that contain only very low traffic over
the measured time. Thereby, we try to avoid that the
quality results are inherently biased by road segments
with low traffic which are expected to yield high pre-
diction quality. Since there are a lot of such kind of
road segments with little traffic in our traffic network
we did not consider them in order to obtain fair qual-

t0

A
v
e

ra
g

e
 P

re
d

ic
ti
o

n
 E

rr
o

r
p

e
r

R
o

a
d

 S
e

g
m

e
n

t

[n
u
m

b
e
r

o
f
c
a
rs

]

history length:

last road segment

complete trajectory

604020 90

Prediction Time t [min]

Figure 6: Average prediction error in number of cars on
a relevant road segment.

ity measurements. In the remainder, we will call the
set of road segments taken into account for the quality
measurements relevant road segments. This set contains
twenty road segments.

The average number of cars on a relevant road
segment is given in Figure ??. It shows that the
number of cars decreases with the running time of the
simulation as the cars which reach their destination
are removed from the traffic simulation. Although
the overall number of objects in the simulation in
fact decreases monotonically, here we do not observe
a monotone decrease in the number of cars because we
only counted the objects on the relevant road segments
which can fluctuate a little bit.

Figure ?? shows the average prediction error w.r.t.
the prediction time ∆t (i.e. the forecasting horizon).
The figure presents two curves, one curve depicts the
prediction error when considering the complete history
of each car for the prediction. The other curve repre-
sents the prediction error when taking only the last two
passed road segments into account. Both curves have
similar characteristics, because within the prediction of
the close future the error increases drastically with in-
creasing prediction time. This is due to the fact that
the number of possible locations for each car is initially
very small and increases drastically when the car passes
through the first crossings. But with ongoing predic-
tion time, the absolute prediction error decreases again.
The rationale of this effect is the decreasing number of
cars in the simulation. Less cars in the simulation obvi-
ously lead to a smaller absolute prediction error. But it
can clearly be observed that the prediction based on the
complete history has a significantly better quality than
the prediction based on only the last two road segments.
Generally speaking, both predictions have a good pre-
diction quality, at least in the first few minutes. At a

Road Segment Id 0−∞ 18-22 min 38-42 min
4 11.97 16.93 3.00
17 24.94 30.50 6.00
157 11.68 16.88 4.46
433 14.72 16.33 5.14
sum. 142.84 257.19 74.12

Table 1: Traffic table for the experiments shown in
Figure ??.

prediction time of about 20 minutes the prediction error
adds up to two of fourteen cars in average, which is a
relative prediction error of about 14%. With increasing
prediction time the relative prediction error increases
rapidly, e.g. at a prediction time of about 40 minutes
the relative prediction error reaches 37%.

We also measured the relative prediction error at
the four most relevant road segments averaged over dif-
ferent prediction time intervals. The relative prediction
errors better reflects the quality of the traffic prediction
than absolute prediction errors. The results are shown
in Figure ??. The relative prediction error denotes the
quotient

absolute prediction error
traffic in terms of the number of cars

.

These results show that the relative prediction error is
between 5% and 15% for short-term predictions and
between 10% and 60% for long-term predictions when
taking the motion history into account.

Additionally, we measured the traffic at specific
time intervals in terms of number of cars. The results
are given in Table ??. If we compare the resulting traf-
fic of the single road segments to the average of all rele-
vant road segments, we can see that the road segments
selected for this experiment show a heterogeneous traf-
fic. This experiment shows that the consideration of
the history of each car has significant influence on the
prediction quality for short-term predictions (about 20
minutes prediction) as well as for long-term predictions
(about 40 minutes prediction).

In the next experiment we evaluated how the length
of the history which was taken into account for each car
influences the prediction quality. For this experiment
we have run the simulation with a set of 500 cars. We
measured the average prediction error for several pre-
diction times by varying lengths of observed histories.
The results are depicted in Figure ??. An interesting
observation is that the length of the history in terms
of passed nodes has similar effect for short-term predic-
tions and long-term predictions. A history longer than
ten nodes does not make any difference in the prediction
error.

R
e

la
ti
v
e

 A
v
e

ra
g

e
 P

re
d

ic
ti
o

n
 E

rr
o

r

Road Segment Id

avg. over all relevant

road segments

(a) prediction time = 0−∞

R
e

la
ti
v
e

 A
v
e

ra
g

e
 P

re
d

ic
ti
o

n
 E

rr
o

r

Road Segment Id

avg. over all relevant

road segments

(b) prediction time = 18-22 min

R
e

la
ti
v
e

 A
v
e

ra
g

e
 P

re
d

ic
ti
o

n
 E

rr
o

r

Road Segment Id

avg. over all relevant

road segments

(c) prediction time = 38-42 min

Figure 7: Relative traffic density prediction error averaged over certain intervals of prediction time.

Prediction Time t [min]

A
v
e

ra
g

e
 P

re
d

ic
ti
o

n
 E

rr
o

r
p

e
r

R
o
a

d
 S

e
g

m
e

n
t

[n
u
m

b
e
r

o
f
c
a
rs

]

0.03 0.43 2.03 3.63 7.23 19.63

Figure 8: Average prediction error in number of cars for
varying motion history taken into account.

0

100000

200000

300000

400000

500000

600000

with suffix-tree without suffix-tree

N
u

m
b

e
r

o
f

a
c

c
e

s
s

e
d

 n
e

tw
o

rk

n
o

d
e

s

Figure 9: Performance of one traffic density prediction
in terms of accessed network nodes.

5.2 Experiments Concerning the Efficiency In
the next experiments we show the performance compar-
ison between the proposed prediction strategies. In par-
ticular, we compare the first solution where the future
path probabilities for each car are computed at run-time
with the approach using the pre-computed suffix-tree.
The performance is measured in terms of the number
of network nodes which have to be accessed to predict
the traffic density at each road segment for one certain
point of time in the future. Additionally we measured
the absolute runtime required to make the prediction.
The results of the number of accessed network nodes are
shown in Figure ??.

Furthermore, we evaluated the scalability of our
traffic prediction approach when using the suffix-tree
in order to accelerate the prediction. Figure ?? demon-
strates the time required to make a 4-minute traffic-
prediction for the entire road network. We measured
the runtime for varying number of cars in the traffic
network. Obviously, the prediction runtime increases
linearly with increasing number of moving objects.

Figure 10: Performance of the traffic density prediction
in terms runtime for varying number of cars.

6 Conclusions

In this paper, we proposed an approach for density pre-
diction in traffic networks. We introduced a statisti-
cal model that is used to predict the traffic density
on any edge of the network at some future point of
time. Furthermore, we showed how short-term obser-
vations can be used to improve the prediction quality
and how the traffic densities can be computed in an ef-
ficient way. We experimentally demonstrated that our
approach achieves high prediction qualities in particular
when taking the history of the moving individuals into
account. However, we observed that only a quite small
history suffices to reach adequate prediction qualities for
both short-term and long-term predictions. In addition,
our runtime experiments showed that the computation
of the traffic predictions can be made in reasonable time.
In the future, we plan to extend our statistical predic-
tion model by taking further observable or even learn-
able motion parameters into account.

7 Extras

References

[1] D. Chakrabarti and C. Faloutsos. Graph mining:
Laws, generators, and algorithms. In ACM Comput.
Surv., 38(1), New York, NY, USA, 2006.

[2] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Highway hierarchies star. In In Proc. 9th DIMACS
Implementation Challenge, 2006.

[3] E. Dijkstra. A note on two problems in connexion with
graphs. In Numerische Mathematik, 1:269–271, 1959,
1959.

[4] L. Fu, D. Sun, and L. R. Rilett. Heuristic shortest
path algorithms for transportation applications: state
of the art. In Computers in Operations Research,
33(11):3324-3343, 2006.

[5] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In Proceedings of the
5th ACM International Conference on Knowledge Dis-

covery and Data Mining (SIGKDD), San Diego, CA,
1999.

[6] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P.
Sondag. Adaptive fastest path computation on a road
network: A traffic mining approach. In Proceedings of
the 33nd International Conference on Very Large Data
Bases (VLDB), Vienna, Austria, 2007.

[7] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and
V. Tsotras. On-line discovery of dense areas in spatio-
temporal databases. 2003.

[8] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hier-
archical optimization of optimal path finding for trans-
portaton applications. In Proceedings of the 5th In-
ternational Conferenc on Information and Knowledge
Management (CIKM), Rockville, MD, 1996.

[9] S. Jung and S. Pramanik. Hiti graph model of topo-
graphical road maps in navigation systems. In Pro-
ceedings of the 12th International Conference on Data
Engineering (ICDE), New Orleans, LA, 1996.

[10] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering
moving clusters in spatio-temporal data. pages 364–
381, 2005.

[11] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding
fastest paths on a road network with speed patterns.
In Proceedings of the 22st International Conference on
Data Engineering (ICDE), Atlanta, GA, 2006.

[12] J. Lee, J. Han, and K. Whang. Trajectory clustering:
A partition-and-group framework. In Proceedings of
the SIGMOD Conference, Beijing, China, 2007.

[13] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic
density-based discovery of hot routes in road networks.
In Proceedings of the 10th International Symposium on
Spatial and Temporal Databases (SSTD), Boston, MA,
2007.

[14] O. Mason and M. Verwoerd. Graph theory and
networks in biology. 2006.

[15] R. K. Oswald, W. T. Scherer, and B. L. Smith. Traffic
flow forecasting using approximate nearest neighbor
nonparametric regression. In Final project of ITS
Center project: Traffic forecasting: non-parametric
regressions, December, 2000.

[16] S. Pallottino and M. G. Scutella. Shortest path
algorithms in transportation models: classical and
innovative aspects. In Technical Report TR-97-06, 14,
1997.

[17] P. Sanders and D. Schultes. Highway hierarchies
hasten exact shortest path queries. In In Proc. 17th
European Symposium on Algorithms (ESA), 2005.

[18] S. Shekhar, C.-T. Lu, S. Chawla, and P. Zhang. Data
mining and visualization of twin-cities traffic data. In
Technical Report TR 01-015, Dept. of CSE, Univ. of
Minnesota, 2000.

[19] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In Proceedings of
the 12th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), Philadelphia,
PA, 2006.

