
Robust Clustering in Arbitrarily Oriented Subspaces

Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, Arthur Zimek

Department Institute for Informatics
Ludwig-Maximilians Universität München

http://www.dbs.ifi.lmu.de

{achtert,boehm,david,kroegerp,zimek}@dbs.ifi.lmu.de

Abstract

In this paper, we propose an efficient and effective
method to find arbitrarily oriented subspace clusters
by mapping the data space to a parameter space defin-
ing the set of possible arbitrarily oriented subspaces.
The objective of a clustering algorithm based on this
principle is to find those among all the possible sub-
spaces, that accommodate many database objects. In
contrast to existing approaches, our method can find
subspace clusters of different dimensionality even if they
are sparse or are intersected by other clusters within a
noisy environment. A broad experimental evaluation
demonstrates the robustness, efficiency and effectivity
of our method.

1 Introduction

Subspace clustering is a data mining task which has
attracted considerable attention during the last years.
There are two main reasons for this popularity. Firstly,
conventional (full space) clustering algorithms often fail
to find useful clusters when applied to data sets of higher
dimensionality, because typically many of the attributes
are noisy, some attributes may exhibit correlations
among another, and only few of the attributes really
contribute to the cluster structure. Secondly, the
knowledge gained from a subspace clustering algorithm
is much richer than that of a conventional clustering
algorithm. It can be used for interpretation, data
compression, similarity search, etc. as we will discuss
in the next paragraph.

We can distinguish between subspace clustering
algorithms for axis-parallel subspaces [5, 12, 3, 15, 6] and
those for subspaces which are arbitrarily oriented (called
oriented clustering, generalized subspace clustering, or
correlation clustering, e.g., [4, 7, 17]). In both cases,
the data objects which are grouped into a common
subspace cluster, are very dense (i.e., the variance is
small) when projected onto the hyperplane which is
perpendicular to the subspace of the cluster (called the

perpendicular space plane). The objects may form a
completely arbitrary shape with a high variance when
projected onto the hyperplane of the subspace in which
the cluster resides (called the cluster subspace plane).
This means, that the objects of the subspace cluster are
all close to the cluster subspace plane. The knowledge,
that all data objects of a cluster are close to the cluster
subspace plane is valuable for many applications: If
the plane is axis-parallel, this means that the values
of some of the attributes are, more or less, constant for
all cluster members. The whole group is characterized
by this constant attribute value, an information which
can definitely be important for the interpretation of the
cluster. This property may also be used to perform a
dedicated dimensionality reduction for the objects of
the cluster and may be useful for data compression
(because only the higher-variance attributes must be
stored at high precision individually for each cluster
member) and similarity search (because only the high-
variance attributes need to be individually considered
for the search and an index needs only be constructed
for the high-variance attributes).

If the cluster subspace plane is arbitrarily oriented,
the knowledge is even more valuable. In this case,
we know that the attributes which define the cluster
subspace plane, have a complex dependency among
each other. This dependency defines a rule, which
again characterizes the cluster and which is potentially
useful for cluster interpretation. Similarly to the case
of axis-parallel clusters, this dependency rule may also
be used for dimensionality reduction, data compression,
similarity search, and indexing. Consider, for example,
Figure 1 which contains two general subspace clusters
in a very noisy environment. For each of the subspace
clusters, we know that the x and y coordinates are
approximately linearly dependent from each other (y ≈
mi · x + ti), and, therefore, only one of them needs to
be stored at full precision, indexed, etc. Furthermore,
the knowledge of the degree of dependency, as well

In Proc. 8th SIAM Int. Conf. on Data Mining (SDM'08), Atlanta, GA, 2008.
- Best Paper Honorable Mention Award Winner -

Figure 1: Data set with two non-dense general subspace
clusters in a noisy environment

as the slope and intercept may be important for the
interpretation of the cluster in the context of the
application.

One well-known effect of the “curse of dimen-
sionality” is the correlation among attributes in high-
dimensional data. While full-dimensional clustering ap-
proaches are easily misled by these correlations, gener-
alized subspace clustering approaches, hence also called
correlation clustering, make use of this effect to iden-
tify clusters in subspaces of arbitrary dimensionality.
However, finding axis-parallel or generally oriented sub-
space clusters is not a trivial task. The number of possi-
ble axis parallel subspaces is exponential in the number
of dimensions, and the number of general subspaces is
even infinite. Therefore, a complete enumeration of all
possible subspaces to be checked for clusters is not feasi-
ble. Consequently, all previous solutions rely on specific
assumptions and heuristics, and try to find promising
subspaces during the clustering process, for instance in
an iterative optimization. We will see that this previ-
ous approach of learning suitable subspaces works well
if (but only if) subspace clusters are locally well sepa-
rated and no outlier objects (belonging to no cluster)
exist. In the presence of outliers in the local neigh-
borhood of cluster points or cluster representatives in
the entire feature space, most previous subspace cluster-
ing algorithms fail to detect subspace clusters, because
the algorithms try to find suitable subspaces for each
cluster from the local neighborhood of cluster points
or cluster representatives in the entire feature space.
Outliers in the neighborhoods, that do not belong to
the corresponding cluster prevent the algorithms from
finding suitable subspaces, and the absence of a precise
subspace prevents the algorithm from effectively filter-
ing out the outliers. In high dimensional spaces, where
distances cannot be used to differentiate between near
and far points, the concept of local neighborhoods is
meaningless. Consequently, the neighborhoods of clus-
ter points or cluster representatives will contain a large
number of outliers that do not belong to the correspond-
ing cluster. However, those problems arise even if the

number of outliers is very small (e.g. 5-10 outliers in
the complete data set). Thus, an environment of heavy
noise such as that of Figure 1 is completely out of the
scope of previous subspace clustering methods even in
lower dimensional data spaces, as we will discuss more
deeply in Section 2 for locally optimizing approaches
such as ORCLUS [4] and for density-based approaches
such as 4C [7].

To escape from this circular dependency of subspace
finding and outlier filtering, we propose in this paper
to reconsider the problem of finding generally oriented
subspace clusters from a new perspective. The main
idea is to transform every object into a new space,
the space of all possible subspaces in which this object
is contained. Since the number of all such subspaces
is infinite, we do neither enumerate these subspaces
nor represent each object by an infinite (or very high)
number of transformed objects. Instead, we consider
a continuum of many possible subspaces represented
by a small number of parameters. This continuum is
split up on demand during the clustering process to
set limits to the allowed cluster subspace planes and
finally identify subspace clusters. We will describe this
method in detail in Section 3, and then experimentally
evaluate our method in Section 4. Section 5 concludes
our paper.

2 Related Work

Existing approaches for subspace clustering rely on
certain heuristics that use specific assumptions to shrink
down the search space and thus to reduce the runtime
complexity. However, if these assumptions are not true
for a given data set, the methods will either fail to detect
any suitable patterns or exhibit an exponential runtime.

Many subspace clustering algorithms (e.g. [5, 12,
3, 15, 6]) assume that the subspace clusters are axis-
parallel. Otherwise, they will not find any pattern.
Pattern-based subspace clustering algorithms (e.g. [19,
18, 14, 13]) are limited to find only clusters that
represent pairwise positive correlations in the data set.
In contrast, arbitrarily oriented hyperplanes (subspace
clusters) may also represent more complex or negative
correlations.

In this paper we focus on the generalized problem of
finding arbitrarily oriented subspace clusters. All exist-
ing algorithms for this problem assume that the cluster
structure is significantly dense in the local neighborhood
of the cluster centers or other points that participate in
the cluster. In the context of high-dimensional data
this “locality assumption” is rather optimistic. Theo-
retical considerations [10] show that concepts like “local
neighborhood” are not meaningfull in high dimensional
spaces because distances can no longer be used to dif-

ferentiate between points. This is a consequence of the
well-known curse of dimensionality.

ORCLUS [4] is based on k-means and iteratively
learns the similarity measure capturing the subspace
containing a given cluster from the points assigned to
the cluster in each iteration by applying PCA on these
points. Since the algorithm starts with the Euclidean
distance, the algorithm learns the subspaces from the
local neighborhood of the initial cluster centers. How-
ever, if this local neighborhood contains some noise or
the clustering structure is too sparse within this lo-
cal neighborhood, the learning heuristic will be misled
because PCA is rather sensitive to outliers. In those
cases, ORCLUS will fail to detect meaningful patterns.
These considerations accordingly apply to the method
proposed in [8] which is a slight variant of ORCLUS
designed for enhancing multi-dimensional indexing.

4C [7] integrates PCA into density-based clustering.
It evaluates the Euclidean neighborhood of each point
p to learn the subspace characteristics in which p can
be clustered best. Similar to ORCLUS, 4C thus relies
on the assumption that the clustering structure is dense
in the entire feature space. Otherwise 4C will also fail
to produce meaningful results. The same holds true to
some variations of 4C like COPAC [2] and ERiC [1].

The method CURLER [17] merges the clusters com-
puted by the EM algorithm using the so-called co-
sharing level. The resulting clusters need not to rep-
resent linear correlations. Rather, any dense pattern in
the data space is found that may represent a more com-
plex, not necessarily linear correlation. CURLER also
relies on the assumption that the subspace clustering
structure is dense in the entire feature space because
both the generation as well as the merging of micro-
clusters uses local neighborhood information.

3 Algorithm CASH

Obviously, the locality assumption that the clustering
structure is dense in the entire feature space and that
the Euclidean neighborhood of points in the cluster or
of cluster centers does not contain noise is a very strict
limitation for high dimensional real-world data sets. In
[10] the authors show that in high dimensional spaces,
the distance to the nearest neighbor and the distance
to the farthest neighbor converge. As a consequence,
distances can no longer be used to differentiate between
points in high dimensional spaces and concepts like the
neighborhood of points become meaningless. Usually,
although many points share a common hyperplane,
they are not close to each other in the original feature
space. In those cases, existing approaches will fail to
detect meaningful patterns because they cannot learn
the correct subspaces of the clusters. In addition, as

long as the correct subspaces of the clusters cannot
be determined, obviously outliers and noise cannot be
removed in a preprocessing step.

In this paper, we propose to use the ideas of the
Hough transform [11, 9] to develop an original principle
for characterizing the subspace containing a cluster.
The Hough transform was originally designed to map
the points from a 2-dimensional data space (also called
picture space) of Euclidean coordinates (e.g. pixels of
an image) into a parameter space. The parameter
space represents all possible 1D lines in the original
2D data space. In principle, each point of the data
space is mapped into an infinite number of points in
the parameter space which is not materialized as an
infinite set but instead as a trigonometric function in
the parameter space. Each function in the parameter
space represents all lines in the picture space crossing
the corresponding point in data space. The intersection
of two curves in the parameter space indicates a line
through both the corresponding points in the picture
space. The objective of a clustering algorithm is to
find intersections of many curves in the parameter space
representing lines through many database objects. The
key feature of the Hough transform is that the distance
of the points in the original data space is not considered
any more. Objects can be identified as associated
to a common line even if they are far apart in the
original feature space. As a consequence, the Hough
transform is a promising candidate for developing a
principle for subspace analysis that does not require the
locality assumption and, thus, enables a global subspace
clustering approach.

In the following, we will first present a novel prin-
ciple for subspace analysis inspired by the ideas of the
Hough transform (cf. Section 3.1). This principle en-
ables us to transform the task of subspace clustering
(in data space) into a grid-based clustering problem (in
parameter space). Unlike grid-based methods operat-
ing directly in the data space, our method does not
suffer from grid resolution and grid positioning prob-
lems. In order to perform this transformation, we first
need to define the boundaries of the grid (cf. Section
3.2). Then we will show how to identify dense grid cells
that represent potential subspace clusters (cf. Section
3.3). Since the parameter space is d-dimensional for a
d-dimensional data space, finding dense grid cells be-
comes rather costly for higher dimensional data sets.
Thus, we will propose a more efficient search strategy
for finding regions of interest in the parameter space (cf.
Section 3.4). We will also summarize our subspace clus-
tering algorithm CASH (Clustering in Arbitrary Sub-
spaces based on the Hough transform) and discuss some
of its properties (cf. Section 3.5).

3.1 Subspace Analysis: a Novel Principle
Our novel principle for subspace analysis is based on a
generalized description of spherical coordinates. Gener-
alized spherical coordinates combine d − 1 independent
angles α1, . . . , αd−1 with the norm r of a d-dimensional
vector x = (x1, . . . , xd)T to completely describe the vec-
tor x w.r.t. the given orthonormal basis e1, . . . , ed.

Definition 1. (Spherical coordinates) Let ei,
1 ≤ i ≤ d, be an orthonormal basis in a d-dimensional
feature space. Let x = (x1, . . . , xd)T be a d-dimensional
vector on the hypersphere of radius r with center at
the origin. Let ui be the unit vector in the direc-
tion of the projection of vector x onto the manifold
spanned by ei, . . . , ed. For the d − 1 independent angles
α1, . . . , αd−1, let αi, 1 ≤ i ≤ d− 1, be the angle between
ui and ei. Then the generalized spherical coordinates
of vector x are defined by:

xi = r ·
(∏i−1

j=1 sin(αj)
)
· cos(αi), where αd = 0.

For any point p ∈ D ⊆ R
d there exists an infinite

number of hyperplanes containing p. The spherical
coordinates are utilized to define the normal vector of
the Hessian normal form for any of those hyperplanes,
i.e., each hyperplane is uniquely defined by a point p
and d− 1 angles α1, . . . , αd−1, with αi ∈ [0, π), defining
the normal vector. Thus, any point p together with
any tupel of angles α1, . . . , αd−1, can be mapped by the
following parametrization function to the distance of the
corresponding hyperplane to the origin.

Definition 2. (Parametrization Function) Let
p = (p1, . . . , pd)T ∈ D ⊆ R

d be a d-dimensional vector,
and let n = (n1, . . . , nd)T be a d-dimensional unit
vector specified by d − 1 angles α1, . . . , αd−1 according
to Definition 1. Then the parametrization function
fp : R

d−1 → R of vector p denotes the distance of the
hyperplane defined by the point p and the normal vector
n to the origin:

fp(α1, . . . , αd−1) = 〈p, n〉
=

∑d
i=1 pi ·

(∏i−1
j=1 sin(αj)

)
· cos(αi)

Based on Definition 2, we can map any point p ∈
R

d to a function in a d-dimensional parameter space
P representing all possible hyperplanes containing p.
This parameter space is spanned by the d − 1 angles
α1, . . . , αd−1 of the normal vectors defining the hy-
perplanes in Hessian normal form and their distances
δ = fp(α1, . . . , αd−1) to the origin.

By means of the parametrization function (Defini-
tion 2), we can also extend the properties of the original

Hough transform as stated in [9] for the mapping of 2-
dimensional points to d-dimensional data spaces and the
corresponding parameter spaces:

Property 1. A point p ∈ D ⊆ R
d in data space is

represented by a sinusoidal curve fp : R
d−1 → R in

parameter space P.

Figure 2 illustrates a 3-dimensional example of this
property. Three points p1, p2, and p3 in data space are
mapped onto the corresponding sinusoidal curves fp1 ,
fp2 , and fp3 , respectively, in parameter space.

Property 2. A point (α1, . . . , αd−1, δ) ∈ P in param-
eter space corresponds to a (d − 1)-dimensional hyper-
plane in data space.

In Figure 2, the point (αs
1, α

s
2, δ

s) in parameter
space represents the 2-dimensional plane s with

δs = cos(αs
1)·x1+sin(αs

1)·cos(αs
2)·x2+sin(αs

1)·sin(αs
2)·x3

in data space.

Property 3. Points that are located on a (d − 1)-
dimensional hyperplane in data space correspond to
sinusoidal curves through a common point in parameter
space.

The three points p1, p2, p3 ∈ D (Figure 2) are lo-
cated on the 2-dimensional plane s. Their correspond-
ing sinusoidal curves fp1 , fp2 , fp3 intersect in the point
(αs

1, α
s
2, δ

s) ∈ P, where αs
1, α

s
2 and δs are the parameters

of plane s as given above (cf. Property 2).

Property 4. Points lying on the same sinusoidal
curve in parameter space represent (d − 1)-dimensional
hyperplanes through the same point in data space.

For example, in Figure 2, fp1 in parameter space
represents all 2-dimensional planes through p1 in data
space. Thus, any point on fp1 in parameter space
represents a given 2-dimensional plane in data space
that passes through p1.

Properties 1 – 4 induce that an intersection point
in the parameter space indicates points in the data
space that are located on a common (d−1)-dimensional
hyperplane. In order to detect those linear hyperplanes
in the data space, the task is to search for points
in the parameter space where many sinusoidal curves
intersect. Since computing all possibly interesting
intersection points is computationally too expensive,
we discretize the parameter space by some grid and
search for grid cells with which many sinusoidal curves
intersect. For that purpose, for each grid cell the

1p

2p

3p

1x

2x

3x

s

(a) Three points p1, p2, p3 on a plane s ⊆ R
3.

1p
f

1

2

2p
f

3p
f

),,(21

sss

(b) Corresponding parametrization functions.

Figure 2: Transform of a 3-dimensional data space into a 3-dimensional parameter space.

number of intersecting sinusoidal curves is aggregated.
Due to this discretization of the parameter space, exact
intersections are no longer considered. Rather, a slight
impreciseness is allowed modelling a certain degree of
jitter given by the grid resolution. The higher the grid
resolution is, the lower is the allowed degree of jitter, i.e.
the more accurate the recognition of the line segments.

With the proposed concepts, we transform the
original subspace clustering problem (in data space) into
a grid-based clustering problem (in parameter space).

3.2 Specifying the Boundaries of the Grid
To define a discretization of the parameter space, the

range of the axes must be known. The axes for the
angle-parameters α1, . . . , αd−1, are bounded by [0, π).
The δ-axis ranges from the minimum of all minima of all
parametrization functions to the maximum of all their
maxima within [0, π)d−1. Each fp is a sinusoid with
a period of 2π. Thus, any fp has exactly one global
extremum in the interval [0, π)d−1. If the extremum of
fp is a maximum, the minimal value for fp in the given
interval has to be determined and vice versa.

To find the global extremum of a parametriza-
tion function fp in the interval [0, π)d−1, those angles
α1, . . . , αd−1 need to be determined where all the first
order derivatives of fp are zero, and the Hessian matrix
of fp is either positive or negative definite. As noted
above, fp is guaranteed to have exactly one global ex-
tremum fp(α̃1, . . . , α̃d−1) in [0, π)d−1. The values for
the angles α̃n (n = 1, . . . , d− 1) of the global extremum
of fp are given by (cf. Appendix A for details):

α̃n = arctan
(Pd

j=n+1 pj ·[
Qj−1

k=n+1 sin(α̃k)]·cos(α̃j)

pn

)

Given the global extremum of a parametrization func-
tion fp in the interval [0, π)d−1, we have to distinguish

several cases to determine the opposite value, i.e., to
determine the maximum of fp if the global extremum of
fp is a minimum, or, to determine the minimum of fp

if the global extremum is a maximum. In the following,
we describe how to determine the point αmin where the
parametrization function fp has a minimum in inter-
val [0, π)d−1 given that the global extremum is a max-
imum. In the opposite case, the point αmax where the
parametrization function fp has a maximum in interval
[0, π)d−1 given the global extremum is a minimum can
be determined analogously. Please refer to Appendix B
for a detailed formalization of this step.

We determine the point αmin = (αmin
1 , . . . , αmin

d−1)
where the parametrization function fp has a minimum
in interval [0, π)d−1 as follows: First, the angle αd−1 on
axis (d − 1) is determined where fp has an extremum
on this axis. Dependent on the type of the extremum in
αd−1 and the location of αd−1 in the interval [0, π), the
minimum angle αmin

d−1 on axis (d − 1) in interval [0, π)
is determined. In the next step, axis (d − 2) will be
considered: Now, the angle αd−2 will be determined,
where fp has an extremum on this axis under the
constraint of the known minimum on axis d−1, which is
given by αmin

d−1. Analogously to the first step, dependent
on the type of the extremum in αd−2 and the location
of αd−2 in the interval [α̌d−2, α̂d−2), the minimum angle
αmin

d−2 is determined. In this way, all minimum angles are
determined under the constraint of the known minima
on the already processed axes.

In summary, given for each parametrization func-
tion fp its minimal and maximal value αmin

p and αmax
p

in interval [0, π)d−1, the δ-axis of the parameter space
P is bounded by

[δmin, δmax] = [minp∈D(fp(αmin
p)), maxp∈D(fp(αmax

p))]

and P = [δmin, δmax] × [0, π)d−1.

C1

C2

(a) Two lines in data space.

dense region

cluster C1

α

δ

dense region

cluster C2

(b) Dense regions in parameter space.

Figure 3: Dense regions in parameter space capturing
two lines in data space.

3.3 Identifying Dense Grid Cells
Given a discretized parameter space, now those grid

cells (hypercuboids) have to be found that are inter-
sected by parametrization functions of a minimum num-
ber m of functions. Hypercuboids containing at least
m parametrization functions are called dense regions
of the parameter space. Those dense regions represent
arbitrarily oriented subspaces in the data space accom-
modating at least m points. This is illustrated in Figure
3. The two subspace clusters forming lines in the data
space (cf. Figure 3(a)) are represented by two distinct
dense regions in the parameter space (cf. Figure 3(b)).

To find those dense regions in the parameter space,
for each grid cell or hypercuboid the number of parame-
trization functions which intersect this hypercuboid has
to be counted. This can be done conveniently by deter-
mining those values αmin

p and αmax
p in a given interval

[α̌, α̂) ⊆ [0, π)d−1 that minimize and maximize a param-
etrization function fp. Then, all hypercuboids based
on this interval and positioned between fp(αmin

p) and
fp(αmax

p) are intersected by fp. The values αmin
p and

αmax
p in a given interval [α̌, α̂) ⊆ [0, π)d−1 that mini-

mize and maximize fp can be determined analogously
to the algorithm specified in Section 3.2 where the given
interval was assumed to be [0, π)d−1.

3.4 Efficiently Finding Regions of Interest
A region qualifying as a dense region, but containing

exclusively one cluster, possibly need to be defined
by a rather small interval of angles and also a rather
small interval of distances from the origin because
otherwise the same interval could also contain functions
representing points of other clusters (cf. the dense region
of cluster C1 in Figure 3). For that purpose, a rather
high number of intervals in each dimension of the
parameter space is needed, resulting in a huge number
of grid cells possibly qualifying as dense regions. Thus,
searching the parameter space with a predefined grid
in the range [0, π) for each angle and [δmin, δmax] for
the distance from the origin, is not feasible for high
dimensional data in terms of space and time complexity.

To avoid exponential complexity, the following
search strategy for the parameter space is proposed:

1. The axes (distance and angles) are divided suc-
cessively in a static order given by δ, α1, . . . , αd−1. After
dividing one axis, from the resulting 2 hypercuboids the
one containing most points is selected for refinement. If
both hypercuboids contain an equal amount of points,
the first one is selected (arbitrarily). The selected hy-
percuboid is divided recursively by splitting the next
axis. The neglected hypercuboid is kept in a queue.

2. If both children of a divided hypercuboid contain
less than m points, the search in the corresponding
path is discontinued. Unless the queue is empty, the
next hypercuboid in the queue is examined using the
same procedure. In the queue, hypercuboids are ordered
descendingly by the amount of points contained by a
hypercuboid. If two hypercuboids contain an equal
amount of points, the smaller one is preferred, since
a smaller interval containing an equal amount of data
points is a more promising candidate.

3. At a predefined depth (i.e. a given number s of
successive splits), a hypercuboid (i.e. the corresponding
interval) is considered to be sufficiently small to define a
hyperplane containing a subspace cluster. If the number
of points within the hypercuboid exceeds a predefined
number m of points, these points are considered to
build a subspace cluster. The corresponding subspace
is treated as a new data space containing all the points
accounted for in the hypercuboid. This new data space
of dimensionality d − 1 undergoes the same procedure
recursively, while d > 2, i.e., CASH is called for
the points in the hypercuboid using the corresponding
subspace as data space. If no subspace cluster of lower
dimensionality is found in this (d−1)-dimensional space,
all the points in this subspace are supposed to build a
(d − 1)-dimensional subspace cluster.

4. All points participating at a (d− 1)-dimensional
subspace cluster derived at a search path are removed

from the d-dimensional data space. The queue is
reorganized and hypercuboids are removed, if they
contain now less than m points. A new search path
based on the next hypercuboid in the queue is pursued.

5. The search is complete, if in the d-dimensional
space no interval is found containing at least m points.

This search strategy determines clusters of at least
m points in any arbitrarily oriented subspace and pro-
vides a description with an accuracy regarding the ori-
entation α and the distance δ from the origin as defined
by the predefined number s of splits.

Unlike traditional grid-based clustering approaches,
CASH has no problems if a region of interest (i.e., a
cluster) is located at the boundary of two connected
grid cells, g1 and g2. In that case, the functions will
intersect both neighboring grid cells and both grid cells,
g1 and g2, will be dense. CASH will refine one of these
grid cells (e.g. g1 – cf. step 1) until the cluster is found.
After that, CASH eliminates the participating points
(i.e., functions) and, thus, the second grid-cell (g2) will
not be dense anymore (step 4).

Due to the recursive search in an obtained cluster
(step 3), a cluster hierarchy is gained along the way,
i.e., a subspace cluster may in turn contain nested
subspace clusters of lower dimensionality. In that case,
it may be interesting to report all nested clusters and
the information of the “contained-in” relationships.

3.5 Properties of the Algorithm
The algorithm CASH transforms the data objects from
D ⊆ R

d into a corresponding parameter space (based on
radius and angles) P = [δmin, δmax] × [0, π)d−1. After
that, CASH identifies dense regions in that parameter
space using the search strategy proposed above. These
dense regions represent arbitrarily oriented subspace
clusters in the data space.

Complexity. Let N be the number of data points
in a d dimensional data space. When bisecting the
parameter space of αi and δ, we need to determine those
database points, whose parameter functions intersect
with the generated cells in the parameter space. This
is done by the maximization and minimization of δ
given the constraints on αi (i.e., α̌i ≤ αi < α̂i for all
1 ≤ i ≤ d− 1) requiring O(d3) time per object and cell.

The CASH algorithm performs a recursive bisection
of the data space where all bisections with fewer than
m associated database points are discarded. Since bi-
section cells which do not belong to any cluster are only
randomly associated to a few arbitrary points, the bi-
section process for those cells stops at a high level of the
bisection tree. Only cells belonging to actual subspace
clusters are bisected until the defined maximum number
s of bisection levels is reached. Therefore, for a data set

0

500

1 000

1 500

2 000

2 500

3 000

10 20 30 40 50 60 70 80 90 100

size * 1000

ru
n

ti
m

e
 [

s
e

c
] CASH

4C

ORCLUS

Figure 4: Scalability w.r.t. size.

containing c clusters, a number O(s · c) of nodes in the
bisection tree are encountered, each causing O(N · d3)
work to find all subspace clusters. Together, we have a
time complexity in O(s · c · N · d3).

Input Parameters. CASH requires the user to spec-
ify two input parameters: The first parameter m speci-
fies the minimum number of sinusoidal curves that need
to intersect a hypercuboid in the parameter space such
that this hypercuboid is regarded as a dense area. Ob-
viously, this parameter represents the minimum number
of points in a cluster and thus is very intuitive. The sec-
ond parameter s specifies the maximal number of splits
along a search path (splitlevel). Thus, it controls the
maximal allowed deviation from the hyperplane of the
cluster in terms of orientation and jitter. We show in
our experiments, that CASH is rather robust w.r.t. s.
Since CASH does not require parameters that are hard
to guess like the number of clusters, the average dimen-
sionality of the subspace clusters, or the size of the Eu-
clidean neighborhood based on which the similarity of
the subspace clusters is learned, it is much more usable
and stable than its competitors.

4 Evaluation

4.1 Efficiency

To evaluate the scalability of CASH w.r.t. the size
of the data set, we created ten data sets containing four,
equally sized one dimensional clusters in a 5 dimensional
data space with an increasing number of points ranging
from 10,000 to 100,000. CASH performs comparably
well to ORCLUS. Both outperform 4C significantly (cf.
Figure 4). As a fair setting, we gave as parameter k
to ORCLUS the exact number of clusters in the data
set (i.e. k = 4), and parameter l has been set to the
correct correlation dimensionality of the clusters (i.e.
l = 1). For 4C, the parameters have been set to
k = µ = 100, ε = 0.1, λ = 1, and δ = 0.01, reflecting the
actual cluster structure in the synthetic data sets. The

1

10

100

1 000

10 000

100 000

1 000 000

1 10 100

dimensionality

ru
n

ti
m

e
 [

s
e

c
]

slope = 3.14

corresponding to O (d ³)

Figure 5: Scalability of CASH w.r.t. dimensionality.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

maximum splitlevel

[%
]

F-Measure

Runtime

Figure 6: F-measure and runtime of CASH w.r.t.
maximum split level.

parameter setting for CASH was s = 40 and m = 2, 500.
To assess the impact of the dimensionality of the

data space on the runtime of CASH, we created 10
data sets ranging in dimensionality from 5 to 50, each
data set containing a one dimensional cluster of 10.000
points. The parameters were set to s = 50 and m =
5, 000. Figure 5 shows the scalability of CASH loga-
rithmically on both axes, dimensionality and runtime.
The graph is a line with slope 3.14, approximately cor-
responding to the expected runtime behavior.

In both test scenarios, the objective was to find 1-di-
mensional clusters in a d-dimensional data space, since
this is the most complex task for CASH, requiring a
maximal recursive descent from d − 1 until subspace
dimensionality 1 is reached.

4.2 Effectivity

The parameter s clearly influences the runtime be-
havior to a certain degree. However, CASH reaches
satisfying behavior in terms of effectivity for even rel-
atively low values for s. Figure 6 illustrates the ef-
fect of s on runtime and effectivity simultaneously. On
a 5-dimensional data set containing two 1-dimensional
clusters, each containing 500 points, and 500 points of
noise, CASH reaches an F -measure of 100% already for
s = 35, while the runtime remains relatively low with

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90

level of noise objects [%]

F
-M

e
a

s
u

re
 [

%
]

CASH

4C

ORCLUS

Figure 7: F-Measure w.r.t. noise level.

3.29% compared to the maximum runtime for s = 75.
To assess the robustness of CASH against noise, we

created ten data sets containing an increasing level of
noise objects ranging from 0 to 90% of the complete data
set. Figure 7 shows the comparison in robustness with
ORCLUS and 4C. The parameter setting for ORCLUS
has been l = 1 and k = 2, reflecting the true number of
clusters and their dimensionality. For 4C, the optimal
parameter setting has been used with k = µ = 5,
ε = 0.12, λ = 1, and δ = 0.01. For CASH, the
parameters have been chosen as s = 30 and m = 50.
Let us note that CASH did not require any efforts for
optimization of parameter settings. While both 4C and
ORCLUS performed relatively well for very low levels
of noise objects, their performance deteriorates for a
higher degree of noise. CASH remains constantly on an
F -measure of 100% up to a noise level of 80%. Even
for an extremely high level of noise (90%), CASH still
reaches an F -measure of 94%.

We illustrate the robustness of CASH against noise
on an exemplary 3-dimensional data set depicted in
Figure 8(a). CASH finds the 2 1-dimensional subspace
clusters (each of size 50) embedded in 500 noise points
exactly (cf. Figure 8(b)). The results of ORCLUS
(with optimal parameter setting l = 1 and k = 2) are
shown in Figures 8(c) and 8(d). As it can be seen, the
clusters found by ORCLUS do not reflect the real cluster
structure at all. For 4C, we tried several parameter
settings. Unfortunately, 4C was never able to find a
meaningful cluster structure at all.

Further experiments on high dimensional data sets
have been performed with CASH, 4C, and ORCLUS.
The data sets contained complex subspace cluster struc-
tures with sparse clusters, including subspace clusters
of significantly differing dimensionality, subspace clus-
ters hierarchically embedded in higher dimensional sub-
spaces, and noise objects. In none of the performed
experiments, 4C or ORCLUS were able to find mean-
ingful clusters, while CASH exactly detected the cluster

(a) Synthetic data set DS1. (b) CASH - Clustering.

(c) ORCLUS - Cluster 1. (d) ORCLUS - Cluster 2.

Figure 8: Clustering synthetic data set DS1.

(a) Data set DS2. (b) CASH – Cluster 1 - 5.

(c) 4C – Cluster 1 - 8. (d) ORCLUS – Cluster 1 - 5.

Figure 9: Clustering results on synthetic data set DS2.

(a) 4C – Cluster 1 - 8. (b) ORCLUS – Cluster 1 - 5.

Figure 10: Clustering results on DS2 after noise removal.

Table 1: CASH clustering on Wages data.
c ID dim # objects Description

1 2 215 YE = 12; A - YW = 18

2 2 70 YE = 16; A - YW = 22
3 3 247 YE + YW = A - 6

structures in most cases. As an example, we present
the results on a complex 3-dimensional data set shown
in Figure 9(a), containing three 1-dimensional clusters
each of 500 points, two 2-dimensional planes each con-
taining 500 points, and 500 points of noise. One of the
planes is intersected by two lines, the other plane is in-
tersected by one line. Here, CASH is able to identify
the cluster structure of all 5 clusters exactly (Figure
9(b)). In contrast, 4C (cf. Figure 9(c), parameters op-
timized to k = µ = 20, ε = 0.1, λ = 2, and δ = 0.01)
and ORCLUS (cf. Figure 9(d), parameters k = 5 and
l = 2 reflect the cluster structure exactly) could not
compete. Both missed very large and important parts
of the clustering structure. This bad behaviour of the
two competitors can partly be explained by the high de-
gree of noise present in the data set. The influence of
noise on the existing approaches can be observed in Fig-
ure 10. Omitting the noise points, 4C is able to detect
the cluster structure relatively well (cf. Figure 10(a))
but cannot handle intersecting clusters. Even on the
data set without noise points, ORCLUS was not able to
identify the 5 clusters correctly (cf. Figure 10(b)). This
again illustrates the superiority of CASH over existing
methods especially in terms of noise robustness.

4.3 Real-World Data

We applied CASH on the Wages data set1, a data
set containing average career statistics of current and

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages

Table 2: CASH clustering on NBA data.
c ID dim Description

1 1 “go-to-guys”

2 2 shooting guards
3 2 point guards
4 2 starting centers

5 8 point guards
6 9 power forwards
7 9 small forwards
8 10 well-known rebounder
9 12 role players/reserves

former NBA players2 and a gene expression data set
[16]. The Wages data consist of 534 4D observations
(A=age, YE=years of education, YW=years of work ex-
perience, and W=wage) from the 1985 Current Popula-
tion Survey. As parameters for CASH we used m = 70
and s = 40. The results are summarized in Table 1:
CASH detected three pure subspace clusters in this data
set, two data objects have been identified as noise ob-
jects. The first cluster consists only of people having
12 years of education and having started their working
life at the age of 18. The second cluster consists only of
people having 16 years of education and having started
their working life at the age of 22. In the third cluster
only those employees are grouped, which started school
in the age of 6 years and after graduation immediately
began working. Thus, the sum of years of education and
work experience equals the age minus 6.

The NBA data contains 15 statistical measures such
as “games played” (G), “games started” (GS), “minutes
played per game” (MPG), “points per game” (PPG),
etc. for 413 former and current NBA players. As pa-
rameters for CASH we used m = 30 and s = 45. CASH
detected 9 interesting clusters of very different dimen-
sionality each containing players of similar characteris-

2obtained from http://www.nba.com

tics (cf. Table 2). In addition, several players were noise.
The detected correlations confirmed basketball funda-
mentals. For example, in cluster 1 containing superstars
like Michael Jordan, Larry Bird, Shaquile O’Neal, and
James Worthy, PPG of all players were negatively de-
pendent on G and MPG. On the other hand, the more
games the players were in (G), the higher the number of
starting line-up appearances (GS). Let us note that this
cluster also contains less well-known players that had
similar characteristics such as Rik Smits, Dan Majerle,
and Rick Fox. The three clusters containing guards all
showed correlations between G and MPG on the one
hand, and the number of assists and steals per game on
the other hand. For the guards in cluster 3, this cor-
relation was positive, whereas for the guards in cluster
5, this correlation was negative. On the other hand,
cluster 3 exhibits a positive correlation between the G
and GS. In cluster 5 these two attributes are also corre-
lated but in a negative fashion. This indicates that the
coaches in the NBA usually decided to start with the
better point guards.

In the gene expression data set (24 dimensions,
4,000 genes) CASH found several clusters of function-
ally related genes that are biologically interesting and
relevant (details are omitted due to space limitations).

Neither ORCLUS nor 4C were able to detect mean-
ingful clusters in our real-world data sets. One reason
for this may be that the found clusters are highly over-
lapping. Thus, neither ORCLUS nor 4C can learn the
appropriate similarity measure capturing the subspaces
of the clusters from the local neighborhood.

5 Conclusions

Existing subspace clustering methods only find clusters
that are dense and not noisy in the original feature
space. In this paper, we overcome this severe limita-
tion by introducing CASH, a novel approach for de-
tecting any oriented subspace cluster regardless of its
density even in a very noisy environment. Our experi-
mental evaluation confirms that CASH significantly out-
performs competing approaches in terms of robustness
and effectivity.

References

[1] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and
A. Zimek. On exploring complex relationships of corre-
lation clusters. In Proceedings of the 19th International
Conference on Scientific and Statistical Database Man-
agement (SSDBM), Banff, Canada, 2007.

[2] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and
A. Zimek. Robust, complete, and efficient correlation
clustering. In Proceedings of the 7th SIAM Interna-

tional Conference on Data Mining (SDM), Minneapo-
lis, MN, 2007.

[3] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S.
Yu, and J. S. Park. Fast algorithms for projected clus-
tering. In Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD), Philadel-
phia, PA, 1999.

[4] C. C. Aggarwal and P. S. Yu. Finding generalized pro-
jected clusters in high dimensional space. In Proceed-
ings of the ACM International Conference on Manage-
ment of Data (SIGMOD), Dallas, TX, 2000.

[5] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van. Automatic subspace clustering of high dimen-
sional data for data mining applications. In Proceed-
ings of the ACM International Conference on Manage-
ment of Data (SIGMOD), Seattle, WA, 1998.

[6] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger.
Density connected clustering with local subspace pref-
erences. In Proceedings of the 4th International Confer-
ence on Data Mining (ICDM), Brighton, U.K., 2004.

[7] C. Böhm, K. Kailing, P. Kröger, and A. Zimek.
Computing clusters of correlation connected objects.
In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), Paris, France,
2004.

[8] K. Chakrabarti and S. Mehrotra. Local dimensionality
reduction: A new approach to indexing high dimen-
sional spaces. In Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB), Cairo,
Egypt, 2000.

[9] R. O. Duda and P. E. Hart. Use of the Hough
transformation to detect lines and curves in pictures.
Communications of the ACM, 15(1):11–15, 1972.

[10] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What
is the nearest neighbor in high dimensional spaces? In
Proceedings of the 26th International Conference on
Very Large Data Bases (VLDB), Cairo, Egypt, 2000.

[11] P. V. C. Hough. Methods and means for recognizing
complex patterns. U.S. Patent 3069654, December 18
1962.

[12] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-
connected subspace clustering for high-dimensional
data. In Proceedings of the 4th SIAM International
Conference on Data Mining (SDM), Orlando, FL,
2004.

[13] J. Liu and W. Wang. OP-Cluster: Clustering by
tendency in high dimensional spaces. In Proceedings
of the 3th International Conference on Data Mining
(ICDM), Melbourne, FL, 2003.

[14] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu.
MaPle: A fast algorithm for maximal pattern-based
clustering. In Proceedings of the 3th International
Conference on Data Mining (ICDM), Melbourne, FL,
2003.

[15] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali. A Monte Carlo algorithm for fast projec-
tive clustering. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD),

Madison, WI, 2002.
[16] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer,

K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and
B. Futcher. Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae
by microarray hybridization. Molecular Biology of the
Cell, 9:3273–3297, 1998.

[17] A. K. H. Tung, X. Xu, and C. B. Ooi. CURLER:
Finding and visualizing nonlinear correlated clusters.
In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), Baltimore, ML,
2005.

[18] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering
by pattern similarity in large data sets. In Proceedings
of the ACM International Conference on Management
of Data (SIGMOD), Madison, WI, 2002.

[19] J. Yang, W. Wang, H. Wang, and P. S. Yu. δ-clusters:
Capturing subspace correlation in a large data set. In
Proceedings of the 18th International Conference on
Data Engineering (ICDE), San Jose, CA, 2002.

A Global Extremum
Each parametrization function fp is a sinusoid with a period
of 2π. Thus, any fp has exactly one global extremum in the
interval [0, π)d−1. To find the global extremum of fp, those
angles α1, . . . , αd−1 need to be determined where all the first
order derivatives of fp are zero, and the Hessian matrix is
either positive or negative definite. The first order partial
derivatives of the parametrization function fp are given by:

∂fp

∂αn
(α) =

n−1Y
i=1

sin(αi)

·
“
−pn · sin(αn) +

Pd
j=n+1 pj · cos(αn)

·
hQj−1

k=n+1 sin(αk)
i
· cos(αj)

”

For any first order partial derivative
∂fp

∂αn
(α̃)

.
= 0, (1 ≤

n ≤ d − 1), one of the following conditions holds:

sin(α̃1) = 0

...

sin(α̃n−1) = 0

tan(α̃n) =
Pd

j=n+1 pj ·[
Qj−1

k=n+1 sin(α̃k)]·cos(α̃j)

pn

Since the first n − 1 conditions yield an indefinite
Hessian matrix, according to the last condition, a point α̃ =
(α̃1, . . . , α̃d−1) can be an extremum point of parametrization
function fp only if

α̃n = arctan

„ Pd
j=n+1 pj ·[

Qj−1
k=n+1 sin(α̃k)]·cos(α̃j)

pn

«

As noted above, fp is guaranteed to have exactly one

global extremum fp(α̃1, . . . , α̃d−1) in [0, π)d−1. The values

for the angles α̃n, n = 1, . . . , d − 1 of the global extremum

are given by the equation above.

B Minimum and Maximum Value
Let α̌ = (α̌1, . . . , α̌d−1) and α̂ = (α̂1, . . . , α̂d−1) for a given
interval [α̌, α̂) ⊆ [0, π)d−1, 1 ≤ i ≤ d − 1. To determine the
point αmin = (αmin

1 , . . . , αmin
d−1) where the parametrization

function fp has a minimum in interval [α̌, α̂) the following
steps for each dimension n = d − 1, . . . , 1 have to be
performed:

1. Let

αn = arctan

„ Pd
j=n+1 pj ·[

Qj−1
k=n+1 sin(αmin

k)]·cos(αmin
j)

pn

«

be the value where fp has an extremum on the n-th
axis under the constraint of known minimum angles
αmin

n+1, . . . , α
min
d−1.

2. Given α = (c1, . . . , cn−1, αn, αmin
n+1, . . . , α

min
d−1) ∈

[α̌, α̂)n−1 × [0, π)× [α̌, α̂)d−1−n, where ci are arbitrarily
chosen values in [α̌, α̂), we differentiate the following
cases:

i. fp has a maximum in α:

A. α̌n ≤ αn ≤ α̂n:

A1. αn − α̌n ≤ α̂n − αn: αmin
n → α̂n.

A2. αn − α̌n > α̂n − αn: αmin
n = α̌n.

B. αn < α̌n: αmin
n → α̂n.

C. αn > α̂n: αmin
n = α̌n.

As illustrated in Figure 11, if αn is inside the
interval and nearer to the left boundary (A1),
the minimum value αmin

n is located at the right
boundary and vice versa (A2). If αn is outside
the interval (B and C), the minimum value αmin

n

is located at the opposite boundary.

ii. fp has a minimum in α: The same principle of
reasoning has to be applied contrarilywise.

A. α̌n ≤ αn ≤ α̂n: αmin
n = αn.

B. αn < α̌n: αmin
n = α̌n.

C. αn > α̂n: αmin
n → α̂n.

The maximum αmax = (αmax
1 , . . . , αmax

d−1) of fp in a
given interval [α̌, α̂) ⊆ [0, π)d−1 can be determined analo-
gously.

-2

0

2

n

nnn

min

-2

0

2

n

n nn

min

-2

0

2

n

nn

min

n
-2

0

2

n

nnn

min

A1. A2.

B. C.

Figure 11: Different cases for finding the minimum of a
parametrization function in a given interval.

