
Probabilistic Frequent Pattern Growth for
Itemset Mining in Uncertain Databases

(Technical Report)

Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein?

and Andreas Zü�e
{bernecker,kriegel,renz,verhein,zue�e}@dbs.i�.lmu.de

Institute for Informatics, Ludwig-Maximilians-Universität München, Germany

Abstract. Frequent itemset mining in uncertain transaction databases
semantically and computationally di�ers from traditional techniques ap-
plied on standard (certain) transaction databases. Uncertain transaction
databases consist of sets of existentially uncertain items. The uncertainty
of items in transactions makes traditional techniques inapplicable. In this
paper, we tackle the problem of �nding probabilistic frequent itemsets
based on possible world semantics. In this context, an itemset X is called
frequent if the probability thatX occurs in at leastminSup transactions is
above a given threshold τ . We make the following contributions: We pro-
pose the �rst probabilistic FP-Growth algorithm (ProFP-Growth) and
associated probabilistic FP-Tree (ProFP-Tree), which we use to mine all
probabilistic frequent itemsets in uncertain transaction databases with-
out candidate generation. In addition, we propose an e�cient technique
to compute the support probability distribution of an itemset in linear
time using the concept of generating functions. An extensive experimen-
tal section evaluates the our proposed techniques and shows that our
ProFP-Growth approach is signi�cantly faster than the current state-of-
the-art algorithm.

1 Introduction

Association rule analysis is one of the most important �elds in data mining. It is
commonly applied to market-basket databases for analysis of consumer purchas-
ing behavior. Such databases consist of a set of transactions, each containing the
items a customer purchased. The most important and computationally intensive
step in the mining process is the extraction of frequent itemsets � sets of items
that occur in at least minSup transactions. It is generally assumed that the items
occurring in a transaction are known for certain. However, this is not always the
case. For instance;

� In many applications the data is inherently noisy, such as data collected by
sensors or in satellite images.

? Contact author. verhein@dbs.i�.lmu.de or http://www.�orian.verhein.com/contact/

� In privacy protection applications, arti�cial noise can be added deliberately
[19]. Finding patterns despite this noise is a challenging problem.

� By aggregating transactions by customer, we can mine patterns across cus-
tomers instead of transactions. This produces estimated purchase probabil-
ities per item per customer rather than certain items per transaction.

In such applications, the information captured in transactions is uncertain
since the existence of an item is associated with a likelihood measure or existen-
tial probability. Given an uncertain transaction database, it is not obvious how
to identify whether an item or itemset is frequent because we generally cannot
say for certain whether an itemset appears in a transaction. In a traditional
(certain) transaction database on the other hand, we simply perform a database
scan and count the transactions that include the itemset. This does not work in
an uncertain transaction database.

An example of a small uncertain transaction database is given in Figure 1,
where for each transaction ti, each item x is listed with its probability of existing
in ti. Items with an existential probability of zero can be omitted. We will use
this dataset as a running example.

Prior to [6], expected support was used to deal with uncertain databases [7,
8]. It was shown in [6] that the use of expected support in probabilistic databases
had signi�cant drawbacks which led to misleading results. The proposed alter-
native was based on computing the entire probability distribution of itemsets'
support, and achieved this in the same runtime as the expected support approach
by employing the Poisson binomial recurrence relation. [6] adopts an Apriori-like
approach, which is based on an anti-monotone Apriori property [3] (if an item-
set X is not frequent, then any itemset X ∪ Y is not frequent) and candidate
generation.

However, it is well known that Apriori-like algorithms su�er a number of
disadvantages. First, all candidates generated must �t into main memory and
the number of candidates can become prohibitively large. Secondly, checking
whether a candidate is a subset of a transaction is non-trivial. Finally, the entire
database needs to be scanned multiple times. In uncertain databases, the e�ective
transaction width is typically larger than in a certain transaction database which
in turn can increase the number of candidates generated and the resulting space
and time costs.

In certain transaction databases, the FP-Growth Algorithm [11] has become
the established alternative. By building an FP-Tree � e�ectively a compressed
and highly indexed structure storing the information in the database � candidate
generation and multiple database scans can be avoided. However, extending this
idea to mining probabilistic frequent patterns in uncertain transaction databases
is non-trivial. It should be noted that previous extensions of FP-Growth to
uncertain databases used the expected support approach [1, 14]. This is much
easier since these approaches ignore the probability distribution of support.

In this paper, we propose a compact data structure called the probabilistic
frequent pattern tree (ProFP-tree) which compresses probabilistic databases and
allows the e�cient extraction of the existence probabilities required to compute

the support probability distribution and frequentness probability. Additionally,
we propose the novel ProFPGrowth algorithm for mining all probabilistic fre-
quent itemsets without candidate generation.

TID Transaction

1 (A, 1.0), (B, 0.2), (C, 0.5)
2 (A, 0.1), (D, 1.0))
3 (A, 1.0), (B, 1.0), (C, 1.0), (D, 0.4)
4 (A, 1.0), (B, 1.0), (D, 0.5)
5 (B, 0.1), (C, 1.0)
6 (C, 0.1), (D, 0.5)
7 (A, 1.0), (B, 1.0), (C, 1.0)
8 (A, 0.5), (B, 1.0)

Fig. 1. Uncertain Transaction Database (running example)

1.1 Uncertain Data Model

The uncertain data model applied in this paper is based on the possible worlds
semantic with existential uncertain items.

De�nition 1 An uncertain item is an item x ∈ I whose presence in a transac-
tion t ∈ T is de�ned by an existential probability P (x ∈ t) ∈ (0, 1). A certain
item is an item where P (x ∈ t) ∈ {0, 1}. I is the set of all possible items.

De�nition 2 An uncertain transaction t is a transaction that contains uncer-
tain items. A transaction database T containing uncertain transactions is called
an uncertain transaction database.

An uncertain transaction t is represented in an uncertain transaction database
by the items x ∈ I associated with an existential probability value 1 P (x ∈ t) ∈
(0, 1]. An example of an uncertain transaction databases is depicted in Figure
1. To interpret an uncertain transaction database we apply the possible world
model. An uncertain transaction database generates possible worlds, where each
world is de�ned by a �xed set of (certain) transactions. A possible world is in-
stantiated by generating each transaction ti ∈ T according to the occurrence
probabilities P (x ∈ ti). Consequently, each probability 0 < P (x ∈ ti) < 1 de-
rives two possible worlds per transaction: One possible world in which x exists
in ti, and one possible world where x does not exist in ti. Thus, the number
of possible worlds of a database increases exponentially in both the number of

1 If an item x has an existential probability of zero, it does not appear in the trans-
action.

transactions and the number of uncertain items contained in it. Each possible
world w is associated with a probability that that world exists, P (w).

We assume that uncertain transactions are mutually independent. This as-
sumption is reasonable in real world applications. Additionally, independence
between items is often assumed in the literature [7, 8]. This can be justi�ed
by the assumption that the items are observed independently. In this case, the
probability of a world w is given by:

P (w) =
∏
t∈I

(
∏
x∈t

P (x ∈ t) ∗
∏
x/∈t

(1− P (x ∈ t)))

In cases where this assumption does not hold and conditional probabilities
are available they may be used in our methods.

Example 1. In the database of Figure 1, the probability of the world existing in
which t1 contains only items A and C and t2 contains only item D is P (A ∈
t1)∗(1−P (B ∈ t1))∗P (C ∈ t1)∗(1−P (A ∈ t2)∗P (D ∈ t2) = 1.0·0.8·0.5·0.9·1.0 =
0.36. For simplicity we omit the consideration of other customers in this example.

1.2 Problem De�nition

An itemset is a frequent itemset if it occurs in at least minSup transactions,
where minSup is a user speci�ed parameter. In uncertain transaction databases
however, the support of an itemset is uncertain; it is de�ned by a discrete prob-
ability distribution function (p.d.f). Therefore, each itemset has a frequentness
probability2 � the probability that it is frequent. In this paper, we focus on the
two distinct problems of e�ciently calculating this p.d.f. and e�ciently extract-
ing all probabilistic frequent itemsets;

De�nition 3 A Probabilistic Frequent Itemset (PFI) is an itemset with a fre-
quentness probability of at least τ .

The parameter τ is the user speci�ed minimum con�dence in the frequentness
of an itemset.

We are now able to specify the Probabilistic Frequent Itemset Mining (PFIM)
problem as follows; Given an uncertain transaction database T , a minimum sup-
port scalar minSup and a frequentness probability threshold τ , �nd all proba-
bilistic frequent itemsets.

1.3 Contributions

We make the following contributions:

� We introduce the probabilistic Frequent Pattern Tree, or ProFP-Tree, which
is the �rst FP-Tree type approach for handling uncertain or probabilistic
data. This tree e�ciently stores a probabilistic database and enables e�cient
extraction of itemset occurrence probabilities and database projections.

2 Frequentness is the rarely used word describing the property of being frequent.

� We propose ProFPGrowth, an algorithm based on the ProFPTree which
mines all itemsets that are frequent with a probability of at least τ without
using expensive candidate generation.

� We present an intuitive and e�cient method based on generating functions
for computing the probability that an itemset is frequent, as well as the
entire probability distribution function of the support of an itemset, inO(|T |)
time3. Using our approach, our algorithm has the same time complexity as
the approach based on the Poisson Binomial Recurrence (denoted as dynamic
programming technique) in [6], but it is much more intuitive and thus o�ers
various advantages, as we will show.

The remainder of this paper is organized as follows; Section 2 surveys related
work. In Section 3 we present the ProFP-Tree, explain how it is constructed and
brie�y introduce the concept of conditional ProFPTrees. Section 4 describes how
probability information is extracted from a (conditional) ProFP-Tree. Section
5 introduces our generating function approach for computing the frequentness
probability and the support probability distribution in linear time. Section 6
describes how conditional ProFPT-rees are built. Finally, Section 7 describes
the ProFP-Growth algorithm by drawing together the previous sections. We
present our experiments in Section 8 and conclude in Section 9.

2 Related Work

There is a large body of research on Frequent Itemset Mining (FIM) but very lit-
tle work addresses FIM in uncertain databases [7, 8, 13]. The approach proposed
by Chui et. al [8] computes the expected support of itemsets by summing all
itemset probabilities in their U-Apriori algorithm. Later, in [7], they addition-
ally proposed a probabilistic �lter in order to prune candidates early. In [13], the
UF-growth algorithm is proposed. Like U-Apriori, UF-growth computes frequent
itemsets by means of the expected support, but it uses the FP-tree [11] approach
in order to avoid expensive candidate generation. In contrast to our probabilis-
tic approach, itemsets are considered frequent if the expected support exceeds
minSup. The main drawback of this estimator is that information about the un-
certainty of the expected support is lost; [7, 8, 13] ignore the number of possible
worlds in which an itemset is frequent. [21] proposes exact and sampling-based
algorithms to �nd likely frequent items in streaming probabilistic data. However,
they do not consider itemsets with more than one item. The current state-of-
the-art (and only) approach for probabilistic frequent itemset mining (PFIM)
in uncertain databases was proposed in [6]. Their approach uses an Apriori-like
algorithm to mine all probabilistic frequent itemsets and the poisson binomial
recurrence to compute the support probability distribution function (SPDF).
We provide a faster solution by proposing the �rst probabilistic frequent pattern
growth approach (ProFP-Growth), thus avoiding expensive candidate genera-
tion and allowing us to perform PFIM in large databases. Furthermore, we use
a more intuitive generating function method to compute the SPDF.

3 Assuming minSup is a constant.

Existing approaches in the �eld of uncertain data management and mining
can be categorized into a number of research directions. Most related to our work
are the two categories �probabilistic databases� [5, 16, 17, 4] and �probabilistic
query processing� [9, 12, 20, 18].

The uncertainty model used in our approach is very close to the model used
for probabilistic databases. A probabilistic database denotes a database com-
posed of relations with uncertain tuples [9], where each tuple is associated with
a probability denoting the likelihood that it exists in the relation. This model,
called �tuple uncertainty�, adopts the possible worlds semantics [4]. A probabilis-
tic database represents a set of possible �certain� database instances (worlds),
where a database instance corresponds to a subset of uncertain tuples. Each
instance (world) is associated with the probability that the world is �true�. The
probabilities re�ect the probability distribution of all possible database instances.
In the general model description [17], the possible worlds are constrained by rules
that are de�ned on the tuples in order to incorporate object (tuple) correlations.
The ULDB model proposed in [5], which is used in Trio[2], supports uncertain
tuples with alternative instances which are called x-tuples. Relations in ULDB
are called x-relations containing a set of x-tuples. Each x-tuple corresponds to a
set of tuple instances which are assumed to be mutually exclusive, i.e. no more
than one instance of an x-tuple can appear in a possible world instance at the
same time. Probabilistic top-k query approaches [18, 20, 16] are usually associ-
ated with uncertain databases using the tuple uncertainty model. The approach
proposed in [20] was the �rst approach able to solve probabilistic queries e�-
ciently under tuple independency by means of dynamic programming techniques.
Recently, a novel approach was proposed in [15] to solve a wide class of queries in
the same time complexity, but in a more elegant and also more powerful way us-
ing generating functions. In our paper, we adopt the generating function method
for the e�cient computation of frequent itemsets in a probabilistic way.

3 Probabilistic Frequent-Pattern Tree (ProFP-tree)

In this Section we introduce a novel pre�x-tree structure that enables fast detec-
tion of probabilistic frequent itemsets without the costly candidate generation
or multiple database scans that plague Apriori style algorithms. The proposed
structure is based on the frequent-pattern tree (FP-tree [11]). In contrast to the
FP-tree, the ProFP-tree has the ability to compress uncertain and probabilis-
tic transactions. If a dataset contains no uncertainty it reduces to the (certain)
FP-Tree.

De�nition 4 (ProFP-tree) A probabilistic frequent pattern tree is composed
of the following three components:

1. Uncertain item pre�x tree: A root labelled �null� pointing to a set of
pre�x trees each associated with uncertain item sequences. Each node n in
a pre�x tree is associated with an (uncertain) item ai and consists of �ve
�elds:

� n.item denotes the item label of the node. Let path(n) be the set of items
on the path from root to n.

� n.count is the number of certain occurrences of path(n) in the database.
� n.uft, denoting �uncertain-from-this�, is the set of transaction ids (tids).

A transaction t is contained in uft if and only if n.item is uncertain in
t (i.e. 0 < P (n.item ∈ t) < 1) and P (path(n) ⊆ t) > 0.

� n.ufp, denoting �uncertain-from-pre�x�, is a set of transaction ids. A
transaction t is contained in ufp if and only if n.item is certain in t
(P (n.item ∈ t) = 1) and 0 < P (path(n) ⊆ t) < 1.

� n.node− link links to the next node in the tree with the same item label
if there exists one.

2. Item header table: This table maps all items to the �rst node in the Un-
certain item pre�x tree

3. Uncertain-item lookup table: This table maps item, tid pairs to the prob-
ability that item appears in ttid for each transaction ttid contained in a uft
of a node n with n.item = item.

The two sets, uft and ufp, are specialized �elds required in order to handle
the existential uncertainty of itemsets in transactions associated with path(n).
We need two sets in order to distinguish where the uncertainty of an itemset
(path) comes from. Generally speaking, the entries in n.uft are used to keep
track of existential uncertainties where the uncertainty is caused by n.item,
while the entries in ufp keep track of uncertainties of itemsets caused by items
in path(n)− n.item but where n.item is certain.

Figure 2 illustrates the ProFP-tree of our example database of Figure 1. Each
node of the uncertain item pre�x tree is labelled by the �eld item. The labels
next to the nodes refer to the node �elds count: uft ufp. The dotted lines denote
the node-links.

The ProFP-tree has the same advantages as a FP-tree, in particular: It avoids
repeatedly scanning the database since the uncertain item information is e�-
ciently stored in a compact structure. Secondly, multiple transactions sharing
identical pre�xes can be merged into one with the number of certain occurrences
registered by count and the uncertain occurrences re�ected in the transaction
sets uft and ufp.

3.1 ProFP-Tree Construction

For further illustration, we refer to our example database of Figure 1 and the
corresponding ProFP-tree in Figure 2. We assume that the (uncertain) items in
the transactions are lexicographically ordered, which is required for pre�x tree
construction.

We �rst create the root of the uncertain item pre�x tree labelled �null �.
Then we read the uncertain transactions one at a time. While scanning the
�rst transaction t1, the �rst branch of the tree can be generated leading to the
�rst path composing entries of the form (item,count,uft,ufp,node-link). In our
example, the �rst branch of the tree is built by the following path:

(a) Uncertain item pre�x tree with item header table.

(1, B)→ 0.2 (1, C)→ 0.5 (2, A)→ 0.1
(3, D)→ 0.4 (4, D)→ 0.5 (5, B)→ 0.1
(6, C)→ 0.1 (6, D)→ 0.5 (8, A)→ 0.5

(b) Uncertain-item lookup table.

Fig. 2. ProFPTree generated from the uncertain transaction database given in Figure 1.

<root,(A,1,[],[],null),(B,0,[1],[],null),(C,0,[1],[],null)>.
Note that the entry "1" in the �eld uft of the nodes associated with B and

C indicate that item B and C are uncertain in t1.
Next, we scan the second transaction t2 and update the tree structure ac-

cordingly. The itemset of transaction t2 shares its pre�x with the previous one,
therefore we follow the existing path in the tree starting at the root. Since the
�rst item in t2 is existentially uncertain, i.e. it exists in t2 with a probability of
0.1, count of the �rst node in the path is not incremented. Instead, the current
transaction t2 is added to uft of this node. The next item in t2 does not match
with the next node on the path and, thus, we have to build a new branch leading
to the leaf node N with the entry (D,0,[],[2],null). Although item D is existen-
tially certain in t2 count of N is initialized with zero, because the itemset A,D
associated with the path from the root to node N is existentially uncertain in t2
due to the existential uncertainty of item A. Hence, we add transaction t2 to the
uncertain-from-pre�x (ufp) �eld of n. The resulting tree is illustrated in Figure
3(a).

The next transaction to be scanned is transaction t3. Again, due to match-
ing pre�xes we follow the already existing path <A,B,C>4 while scanning the

4 To simplify matters, we use the item �elds to address the nodes in a path, just for
illustration.

(a) After inserting t1 and t2 (b) After inserting t1, t2 and t3

Fig. 3. Uncertain item pre�x tree after insertion of the �rst transactions.

(uncertain) items in t3. The resulting tree is illustrated in Figure 3(b). Since the
�rst item A is existentially certain, count of the �rst node in the pre�x path is
incremented by one. The next items, item B and C, are registered in the tree
in the same way by incrementing the count �elds. The rational for these count
increments is that the corresponding itemsets are existentially certain in t3. The
�nal item D is processed by adding a new branch below the node C leading to
a new leaf node with the �elds: (D,0,[3],[],ptr), where the link ptr points to the
next node in the tree labelled with item label D. Since item D is existentially
uncertain in t3 the count �eld is initialized with 0 and t3 is registered in the
uft set. The uncertain item pre�x tree is completed by scanning all remaining
transactions in a similar fashion.

The ProFP-tree construction algorithm is shown in Algorithm 1.

3.2 Construction Analysis

The construction of the ProFP-tree requires a single scan of the uncertain trans-
action database T . For each processed transaction we must follow and update
or construct a single path of the tree, of length equal to the number of items in
the corresponding transaction. Therefore the ProFP-tree is constructed in linear
time w.r.t. to size of the database.

Since the ProFP-tree is based on the original FP-tree, it inherits its com-
pactness properties. In particular, the size of a ProFP-tree is bounded by the
overall occurrences of the (un)certain items in the database and its height is
bounded by the maximal number of (un)certain items in a transaction. For any
transaction ti in T , there exists exactly one path in the uncertain item pre�x
tree starting below the root node. Each item in the transaction database can
create no more than one node in the tree and the height of the tree is bounded

Algorithm 1 ProFP-Tree ConstructionCreation.

input: An uncertain transaction Database T with lexicographically ordered items,
and a minimum support threshold minSup.
Output: A probabilistic frequent pattern tree (ProFP-Tree).

Method:

Create the (null) root of an uncertain item pre�x tree T ;
Initialize an empty item header table (iht);
Initialize an empty uncertain-item lookup table (ult);
for each uncertain transaction ti ∈ T
Build a string <it1, · · · , itn> of tuples itj=(item,prob),
where the �eld item identi�es a(n) (un)certain item of ti
and the �eld prob denotes the probability P (itj .item ∈ ti).
Call insert-transaction(<it1, · · · , itn>,i,T .root,0)

insert-transaction(transaction,i,node,u_�ag)
while it:= transaction.get_next_item() not null do
if node has a child N with N .item = it.item, then
call update-node-entries(it,i,N ,u_�ag); //follow exist. path

else //create new branch:
create new child N of T ;
call update-node-entries(it,i,N ,u_�ag);
if it.item not in iht then
insert (it.item,ptr(N)) into iht ;

else
insert node N into the link list associated with it.item;

//update uncertain-item lookup table
if it.prob<1.0 then
insert (i,it.item,it.prob) into ult ;

node:= N;

update-node-entries(it,i,N ,u_�ag)
if it.prob=1.0, then
if u_�ag=0 then
increment N .count by 1;

else //u_�ag=1
insert i into N .ufp;

else
insert i into N .uft ;
set u_�ag :=1;

by the number of items in a transaction (path). Note that as with the FP-Tree,
the compression is obtained by sharing common pre�xes.

We now show that the values stored at the nodes do not a�ect the bound
on the size of the tree. In particular, in the following Lemma we bound the
uncertain-from-this (uft) and uncertain-from-pre�x (ufp) sets.

Lemma 5 Let T be the uncertain item pre�x tree generated from an uncertain
transaction database T . The total space required by all the transaction-id sets
(uft and ufp) in all nodes in T is bounded by the the total number of uncertain
occurrences5 in T .

The rational for the above lemma is that each occurrence of an uncertain
item (with existence probability in (0, 1)) in the database yields at most one
transaction-id entry in one of the transaction-id sets assigned to a node in the
tree. In general there are three update possibilities for a node N : If the current
item and all pre�x items in the current transaction ti are certain, there is no
new entry in uft or ufp as count is incremented. ti is registered in N.uft if and
only if N.item is existentially uncertain in ti while ti is registered in N.ufp if
and only if N.item is existentially certain in in ti but at least one of the pre�x
items in ti is existentially uncertain. Therefore each occurrence of an item in T
leads to either a count increment or a new entry in uft or ufp.

Finally, it should be clear that the size of the uncertain item lookup table
is bounded by the number of uncertain (non zero and non 1) entries in the
database.

In this section we showed that the ProFP-Tree inherits the compactness of the
original FP-Tree. In the following Section we show that the information stored
in the ProFP-tree su�ces to retrieve all probabilistic information required for
PFIM, thus proving completeness.

4 Extracting Certain and Uncertain Support
Probabilities

Unlike the (certain) FP-Growth approach where extracting the support of an
itemset X is easily achieved by summing the support counts along the node-
links for X in a suitable conditional ProFPTree, we are interested in the support
distribution of X in the probabilistic case. Before we can compute this however,
we �rst require both the number of certain occurrences as well as the probabilities
0 < P (X ∈ ti) < 1. Both can be e�ciently obtained using the ProFP-Tree as
follows:

To obtain the certain support of an item x, follow the node-links from the
header table and accumulate both the counts and the number of transactions in
which x is uncertain-from-pre�x. The latter is counted since we are interested
in the support of x and by construction, transactions in ufp are known to be
certain for x. To �nd the set of transaction ids in which x is uncertain, follow the
node-links and accumulate all transactions that are in the uncertain-from-this
(uft) list.

Example 2. By traversing the node-list, we can calculate the certain support for
item C in the ProFP -Tree in Figure 2 as follows: 2 + |∅| + |{t5}| + |∅| = 3.
Note there is one transaction in which C is uncertain-from-pre�x (t5). Similarly,

5 Entries in transactions with an existential probability in (0, 1).

Algorithm 2 Extract Probabilities for an itemset.

//calcuate the certain support and the uncertain transaction ids of an item
//derived from a PFP-Tree
extract(item,ProFP − Tree tree)
certSup = 0; uncertainSupT ids = ∅;
for each ProFPNode in tree reachable
from header table[item]
certSupp+ = n.certSupp;
certSupp+ = |n.ufp|;
uncertainSupT ids = uncertainSupT ids ∪ n.uft;

return certSupp,uncertainSupT ids;

//calculate the existential probabilities of an itemset
calculateProbabilities(itemset, uncertainSupTids)
probabilityV ector = ∅;
for (t ∈ uncertainSupT ids)
p = Πi in itemsetuncertainItemLookupTable[i, t];
probabilityV ector.add(p);

return probabilityV ector;

we �nd that the only transactions in which C is uncertain are t1 and t6. The
exact appearance probabilities in these transactions can be obtained from the
uncertain-item lookup table. By comparing this to Figure 1 we see that the tree
allows us to obtain the correct certain support and the transaction ids where C
is uncertain.

To compute the support of an itemset X = {a, ..., k}, we use the conditional
tree for items b, ..., k and extract the certain support and uncertain transaction
ids for a. Since it is somewhat involved, we defer the construction of conditional
ProFP-Trees to Section 6. By using the conditional tree, the above method
provides the certain support of X and the exact set of transaction ids in which
X is uncertain (utids). To compute the probabilities P (X ∈ ti) : ti ∈ utids we
use the independence assumption and multiply, for each x ∈ X the probability
that x appears in ti. Recall that the probability that X appears in ti is an O(1)
lookup in the uncertain-item lookup table. Recall that if additional information
is given on the dependencies between items, this can be incorporated here.

We have now described how the certain support and all probabilities P (X ∈
t) : X uncertain in t can be e�ciently computed from the ProFPTree (Algo-
rithm 2). Section 5 shows how we use this information to calculate the support
distribution of X.

5 E�cient Computation of Probabilistic Frequent
Itemsets

This section presents our linear-time technique for computing the probabilistic
support of an itemset using generating functions. The problem is as follows:

De�nition 6 Given a set of N mutually independent but not necessarily iden-
tical Bernoulli (0/1) random variables P (X ∈ ti), 1 ≤ i ≤ N , compute the

probability distribution of the random variable Sup =
∑i=1
N Xi

A naive solution would be to count for each 0 ≤ k ≤ N all possible worlds in
which exactly k items contain X and accumulate the respective probabilities.
This approach however, shows a complexity of O(2N). In [6] an approach has
been proposed that achieves an O(N) complexity using Poisson Binomial Recur-
rence. Note that O(N) time is asymptotically optimal in general, since the com-
putation involves at least O(N) computations, namely P (X ∈ ti)∀1 ≤ i ≤ N .
In the following, we propose a di�erent approach that, albeit having the same
linear asymptotical complexity, has other advantages.

5.1 E�cient Computation of Probabilistic Support

We apply the concept of generating functions as proposed in the context of
probabilistic ranking in [15]. Consider the function: F(x) =

∏n
i=1(ai + bix).

The coe�cient of xk in F(x) is given by:
∑
|β|=k

∏
i:βi=0 ai

∏
i:βi=1 bi, where

β = 〈β1, ..., βN 〉 is a Boolean vector, and |β| denotes the number of 1`s in β.
Now consider the following generating function:

F i =
∏

t∈{t1,...ti}

(1− P (X ∈ t) + P (X ∈ t) · x) =
∑

j∈{0,...,i}

cjx
j

The coe�cient cj of x
j in the expansion of F i is exactly the probability that

X occurs in exactly j if the �rst i transactions; that is, the probability that the
support of X is j in the �rst i transactions. Since F i contains at most i + 1
nonzero terms and by observing that

F i = F i−1 · (1− P (X ∈ ti) + P (X ∈ ti)x)

we note that F i can be computed in O(i) time given F i−1. Since F0 = 1x0 = 1,
we conclude that FN can be computed in O(N2) time. To reduce the complexity
to O(N) we exploit that we only need to consider the coe�cients cj in the
generating function F i where j < minSup, since:

� The frequentness probability ofX is de�ned as P (X is frequent) = P (Sup(X)

≥ minSup)) = 1− P (Sup(X) < minSup) = 1−
∑minSup−1
j=0 cj

� A coe�cient cj in F i is independent of any ck in F i−1 where k > j. That
means in particular that the coe�cients ck, k ≥ minSup are not required to
compute the ci, i < minSup.

Thus, keeping only the coe�cients cj where j < minSup, F i contains at most
minSup coe�cients, leading to a total complexity of O(minSup ·N) to compute
the frequentness probability of an itemset.

Example 3. As an example, consider itemset {A,D} in the running example
database in Figure 1. Using the ProFP-Tree (c.f. Figure 2(a)), we can e�ciently
extract, for each transaction ti, the probability P ({A,D} ∈ ti), where 0 <
P ({A,D} ∈ ti) < 1 and also the number of certain occurrences of {A,D}.
Itemset {A,D} certainly occurs in no transaction and occurs in t2,t3 and t4
with a probability of 0.1, 0.4 and 0.5 respectively. Let minSup be 2:

F1 = F0 · (0.9 + 0.1x) = 0.1x1 + 0.9x0

F2 = F1 · (0.6 + 0.4x) = 0.04x2 + 0.42x1 + 0.54x0
∗
= 0.42x1 + 0.54x0

F3 = F2 · (0.5 + 0.5x) = 0.21x2 + 0.48x1 + 0.27x0

∗
= 0.48x1 + 0.27x0

Thus, P (sup({A,D}) = 0) = 0.27 and P (sup({A,D}) = 1) = 0.48. We get that
P (sup({A,D}) ≥ 2) = 0.25. Thus, {A,D} is not returned as a frequent itemset
if τ is greater than 0.25. Equations marked by a * exploit that we only need to
compute the cj where j < minSup.

Note that at each iteration of computing F i, we can check whether 1 −∑
i<minSup ci ≥ τ and if that is the case, we can stop the computation and

conclude that the respective itemset (for which F is the generating function)
is frequent. Intuitively, the reason is that if an itemset X is already frequent
considering the �rst i transactions only, X will still be frequent if more transac-
tions are considered. This intuitive pruning criterion corresponds to the pruning
criterion proposed in [6] for the Poisson Binomial Recurrence approach.

We remark that the generating function technique can be seen as a variant of
the Poisson Binomial Recurrence. However, using generating functions instead of
the complicated recursion formula gives us a much cleaner view on the problem.
In addition, using generating functions, the support probability density func-
tion (sPDF) can be updated easily if a transaction ti changes its probability of
containing an itemset X. That is, if the probability p = P (X ∈ ti) changes to
p′, then we can simply obtain the expanded polynomial from the old sPDF and
divide it by px + (1 − p) (using polynomial division) to remove the e�ect of ti
and multiply p′x+(1−p′) to incorporate the new probability of ti containing X.
That is, F i′(x) = F i(x) : (px+1−p)× (p′x+1−p′), where F i′ is the generating
function of the sPDF of X in the changed database containing t′i.

6 Extracting Conditional ProFP-Trees

This section describes how conditional ProFP-Trees are constructed from other
(potentially conditional) ProFP-Trees. The method for doing this is more in-
volved than the analogous operation for the certain FPGrowth algorithm, since
we must ensure that the information capturing the source of the uncertainty

remains correct. That is, whether the uncertainty at that node comes from the
pre�x or from the present node. Recall from Section 4 that this is required in
order to extract the correct probabilities from the tree. A conditional ProFP-
Tree for itemset X (treeX) is equivalent to a ProFP-Tree built on only those
transactions in which X occurs with a non-zero probability. In order to generate
a conditional ProFP-Tree for itemset X∪i (treeX∪i) where i occurs lexicograph-
ically prior to any item in X, we �rst begin with the conditional ProFP-Tree
for X. When X = ∅, treeX is simply the complete ProFP-Tree. We construct
treeX∪i by propagating the values at the nodes with item = i upwards and
accumulating these at the nodes closer to the root as listed in Algorithm 3. Let
Ni be the set of nodes with item = i (These are obtained by following the links
from the header table). The values for every node n in the resulting conditional
tree treeX∪i are calculated as follows:

� n.count =
∑
ni∈Ni

ni.count since these represent certain transactions.
� n.uft = ∪ni.uft|ni ∈ Ni since we are conditioning on an item that is uncer-
tain in these transactions and hence any node in the �nal conditional tree
will also be uncertain for these transactions.

� When collecting transactions for n that are uncertain from the pre�x (i.e. t ∈
ufp), we must determine whether the item n.item caused this uncertainty.
If the corresponding node in treeX contained transaction t in ufp, then t
is also in n.ufp (n.item was not uncertain in t). If n.item was uncertain in
t, then the corresponding node in treeX would have t listed in uft and this
must also remain the case for the conditional tree. If t ∈ n.ufp is neither in
the corresponding ufp nor uft in treeX , then it must be certain for n.item
and n.count is incremented. Using this approach, we can avoid storing the
set of transactions for which an item is certain. This is a key idea in our
ProFP-Tree.

7 ProFP-Growth Algorithm

We have now described the three fundamental operations of the ProFP-Growth
Algorithm; building the ProFPTree (Section 3); e�ciently extracting the certain
support and uncertain transaction probabilities from it (Section 4); calculating
the frequentness probability and determining whether an item(set) is a proba-
bilistic frequent itemset (Section 5); and construction of the conditional ProF-
PTrees (Section 6). Together with the fact that probabilistic frequent itemsets
possess an antimonotonicity property (Lemma 17 in [6]), we can use a similar
approach to the certain FPGrowth algorithm to mine all probabilistic frequent
itemsets. Since, in principle, this is not substantially di�erent from substituting
the corresponding steps in FP-Growth, we omit further details.

8 Experimental Evaluation

In this section, we present performance experiments using our proposed ProFP-
Growth algorithm and compare the results to the Apriori-based solution (denoted

Algorithm 3 Construction of a conditional ProFP-Tree treeX∪i by `extracting'
item i from the conditional ProFP-Tree for itemset X.
//Accumulates transactions for nodes when propagating up the values
//from a node being extracted.
class Accumulator
count = 0; uft = ∅; ufp = ∅;
orig_ufp = the original ufp list
add(ProFPNoden)
count+ = n.count;
uft = uft ∪ n.uft;
for (t ∈ n.ufp)
if (orig_ufp.contains(t)) ufp = ufp ∪ t;
else if (orig_uft.contains(t)) uft = uft ∪ t;
else count++;

buildConditionalProFPTree(ProFPTree treeX , item i) returns treeX∪i
treeX∪i =clone of the subtree of treeX reachable from header table for i;
associate an Accumulator with each node in treeX∪i and set orig_ufp;
propagate(treeX∪i,i);
set the certSup, uft, ufp values of nodes in treeX∪i to those in the
corresponding Accumulators;

propagate(ProFPTreetree, itemi)
for(ProFPNoden accessible from header table for i)
ProFPNode cn = n;
while(cn.parent 6= null)
call add(n) on Accumulator for cn;
cn = cn.parent;

as ProApriori) presented in [6]. We also analyze how various database charac-
teristics and parameter settings a�ect the performance of ProFP −Growth.

All experiments were performed on an Intel Xeon with 32 GB of RAM and
a 3.0 GHz processor. For the �rst set of experiments, we used arti�cial datasets
with a variable number of transactions and items. Each item x has a probability
P1(x) of appearing for certain in a transaction, and a probability P0(x) of not
appearing at all in a transaction. With a probability 1 − P0(x) − P1(x) item x
is therefore uncertain in a transaction. In this case, the probability that x exists
in a transaction is picked randomly from a uniform (0, 1) distribution.

For our scalability experiments, we scaled the number of items and transac-
tions and chose P0(x) = 0.5 and P1(x) = 0.2 for each item. We measured the run
time required to mine all probabilistic frequent itemsets that have a minimum
support of 10% of the database size with a probability of a least τ = 0.9.

8.1 Number of Transactions

We scaled the number of transactions and used 20 items. The results can be seen
in Figure 4(a). In this setting, our approach signi�cantly outperforms ProApriori

(a) Total Runtime (b) Tree Generation

(c) Tree size (Synthetic) (d) Tree size (ACC)

Fig. 4. Scalability w.r.t. the number of transactions.

[6]. The time required to build the ProFP-Tree w.r.t. the number of transactions
is depicted in Figure 4(b). The observed linear run time indicates a constant
time required to insert transactions into the tree. This is expected since the
maximum height of the ProFP-Tree is equal to the number of items. Finally,
we evaluated the size of the ProFP-Tree for this experiment, shown in Figure
4(c). The number of nodes in the ProFP-Tree increases and then plateus as the
number of transactions increases. This is because new nodes have to be created
for those transaction where a su�x of the transaction is not yet contained in the
tree. As the number of transactions increases, the overlap between transaction
pre�xes increases, requiring fewer new nodes to be created. It is expected that
this overlap increases faster if the items are correlated. Therefore, we evaluate the
size of the ProFP-Tree on subsets of the real-world dataset accidents6, denoted
by ACC. It consists of 340, 184 transactions and a reduced number of 20 items
whose occurrences in transactions were randomized; with a probability of 0.5,
each item appearing for certain in a transaction was assigned a value drawn from
a uniform distribution in (0, 1]. We varied the number of transactions from ACC

6 The accidents dataset [10] was derived from the Frequent Itemset Mining Dataset
Repository (http://�mi.cs.helsinki.�/data/)

(a) Runtime (b) Tree size

Fig. 5. Scalability with respect to the number of items.

up to the �rst 300, 000. As can be seen in Figure 4(d), there is more overlap
between transactions since the growth in the number of nodes used is slower
(compared to Figure 4(c)).

8.2 Number of Items

Next, we scaled the number of items using 1, 000 transactions. The run times for
5 to 100 items can be seen in Figure 5(a), which shows the expected exponential
runtime inherent in FIM problems. It can be clearly seen that the ProFP-Growth
approach vastly outperforms ProApriori.

Figure 5(b) shows the number of nodes used in the ProFP-Tree. Except for
very few items, the number of nodes in the tree grows linearly.

(a) Varying the probability of certain oc-
currences while keeping uncertain occur-
rences �xed.

(b) Varying the probability of uncertain
occurrences while keeping certain occur-
rences �xed.

Fig. 6. E�ect of certainty and uncertainty on the ProFP-Tree size and uncertain item
lookup table.

8.3 E�ect of Uncertainty and Certainty

In this experiment, we set the number of transactions to 1, 000 and the number
of items to 20 and varied the parameters P0(x) and P1(x).

For the experiment shown in Figure 6(a), we �xed the probability that items
are uncertain (1−P0(x)−P1(x)) at 0.3 and successively increased P1(x) from 0
(which means that no items exist for certain) to 0.7. It can be observed that the
number of nodes initially increases. This is what we would expect, since more
items existing in the database increases the nodes required. However, as the
number of certain items increases, an opposite e�ect reduces the number of nodes
in the tree. This e�ect is caused by the increasing overlap of the transactions �
in particular, the increased number and length of shared pre�xes. When P1(x)
reaches 0.7 (and thus P0(x) = 0), each item is contained in each transaction
with a probability greater than zero, and thus all transactions contain the same
items with non-zero probability. In this case, the ProFP-Tree degenerates to a
linear list containing exactly one node for each item. Note that the size of the
uncertain item lookup table is constant, since the expected number of uncertain
items is constant at 0.3 · |T | · |I| = 0.3 · 1, 000 · 20 = 6, 000.

In Figure 6(b) we �xed P1(x) at 0.2 and successively decreased P0(x) from
0.8 to 0, thus increasing the probability that items are uncertain from 0 to 0.8.
We see a similar pattern as in Figure 6(a) for the number of nodes, for similar
reasons. As expected here, the size of the lookup table increases as the number
of uncertain items increases.

Fig. 7. E�ect of minSup

8.4 E�ect of minSup

Here, we varied the minimum support threshold minSup using an arti�cial
database of 10, 000 transactions and 20 items. Figure 7 shows the results. For

low values of minSup, both algorithms have a high run time due to the large
number of probabilistic frequent itemsets. It can be observed that ProFP-Growth
signi�cantly outperforms ProApriori for all settings of minSup.

9 Conclusion

The Probabilistic Frequent Itemset Mining (PFIM) problem is to �nd itemsets
in an uncertain transaction database that are (highly) likely to be frequent.
This problem has two components; e�ciently computing the support probability
distribution and frequentness probability, and e�ciently mining all probabilistic
frequent itemsets. To solve the �rst problem in linear time, we proposed a novel
method based on generating functions. To solve the second problem, we proposed
the �rst probabilistic frequent pattern tree and pattern growth algorithm. We
demonstrated that this signi�cantly outperforms the current state of the art
approach to PFIM.

References

1. C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with
uncertain data. In Proc. of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009.

2. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara,
and J. Widom. "Trio: A system for data, uncertainty, and lineage". In Proc. Int.
Conf. on Very Large Databases, 2006.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, Minneapolis, MN, 1994.

4. L. Antova, T. Jansen, C. Koch, and D. Olteanu. "Fast and Simple Relational
Processing of Uncertain Data". In Proc. 24th Int. Conf. on Data Engineering,
Cancún, México, 2008.

5. O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. "ULDBs: Databases with
Uncertainty and Lineage". In Proc. Int. Conf. on Very Large Databases, 2006.

6. T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zü�e. Probabilistic
frequent itemset mining in uncertain databases. In In Proc. 15th ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining, Paris, France, 2009.

7. C. K. Chui and B. Kao. A decremental approach for mining frequent itemsets from
uncertain data. In The 12th Paci�c-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), pages 64�75, 2008.

8. C. K. Chui, B. Kao, and E. Hung. Mining frequent itemsets from uncertain data.
In 11th Paci�c-Asia Conference on Advances in Knowledge Discovery and Data
Mining, PAKDD 2007, Nanjing, China, pages 47�58, 2007.

9. N. Dalvi and D. Suciu. "E�cient query evaluation on probabilistic databases".
The VLDB Journal, 16(4):523�544, 2007.

10. K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Pro�ling high frequency accident
locations using association rules. In 82nd Annual Transportation Research Board,
Washington DC. (USA), 2003.

11. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In SIGMOD Conference, 2000.

12. H.-P. Kriegel, P. Kunath, M. Pfei�e, and M. Renz. "Probabilistic Similarity Join
on Uncertain Data". In Proc. 11th Int. Conf. on Database Systems for Advanced
Applications, Singapore, pp. 295-309, 2006.

13. C. K.-S. Leung, C. L. Carmichael, and B. Hao. E�cient mining of frequent patterns
from uncertain data. In ICDMW '07: Proceedings of the Seventh IEEE Interna-
tional Conference on Data Mining Workshops, pages 489�494, 2007.

14. K. Leung, M. Mateo, and D. Brajczuk. A tree-based approach for frequent pattern
mining from uncertain data. Advances in Knowledge Discovery and Data Mining,
2008.

15. J. Li, B. Saha, and A. Deshpande. A uni�ed approach to ranking in probabilistic
databases. PVLDB, 2009.

16. C. Re, N. Dalvi, and D. Suciu. "E�cient top-k query evaluation on probalistic
databases". In Proc. 23rd Int. Conf. on Data Engineering, Istanbul, Turkey, 2007.

17. P. Sen and A. Deshpande. "Representing and querying correlated tuples in proba-
bilistic databases". In Proc. 23rd Int. Conf. on Data Engineering, Istanbul, Turkey,
2007.

18. M. Soliman, I. Ilyas, and K. Chen-Chuan Chang. "Top-k Query Processing in
Uncertain Databases". In Proc. 23rd Int. Conf. on Data Engineering, Istanbul,
Turkey, pages 896�905, 2007.

19. Y. Xia, Y. Yang, and Y. Chi. Mining association rules with non-uniform privacy
concerns. In Proceedings of the 9th ACM SIGMOD workshop on Research issues
in data mining and knowledge discovery, 2004.

20. K. Yi, F. Li, G. Kollios, and D. Srivastava. "E�cient Processing of Top-k Queries
in Uncertain Databases". In Proc. 24th Int. Conf. on Data Engineering (ICDE'08),
Cancún, México, 2008.

21. Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In J. T.-L.
Wang, editor, SIGMOD Conference, pages 819�832. ACM, 2008.

