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Abstract: For many KDD applications finding the outliers, i.e. the rare events, is
more interesting and useful than finding the common cases, e.g. detecting criminal
activities in E-commerce. Being an outlier, however, is not just a binary property.
Instead, it is a property that applies to a certain degree to each object in a data set,
depending on how ‘isolated’ this object is, with respect to the surrounding clus-
tering structure. In this paper, we formally introduce a new notion of outliers
which bases outlier detection on the same theoretical foundation as density-based
cluster analysis. Our notion of an outlier is ‘local’ in the sense that the outlier-de-
gree of an object is determined by taking into account the clustering structure in
a bounded neighborhood of the object. We demonstrate that this notion of an out-
lier is more appropriate for detecting different types of outliers than previous ap-
proaches, and we also present an algorithm for finding them. Furthermore, we
show that by combining the outlier detection with a density-based method to an-
alyze the clustering structure, we can get the outliers almost for free if we already
want to perform a cluster analysis on a data set.

1 Introduction

Larger and larger amounts of data are collected and stored in databases, increasing the
need for efficient and effective analysis methods to make use of the information con-
tained implicitly in the data. Knowledge discovery in databases (KDD) has been de-
fined as the non-trivial process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data [9]. Corresponding to the kind of patterns to be
discovered, several KDD tasks can be distinguished.

Most research in KDD and data mining is concerned with identifying patterns that
apply to a large percentage of objects in a data set. For example, the goal of clustering
is to identify a set of categories or clusters that describes the structure of the whole data
set. The goal of classification is to find a function that maps each data object into one
of several given classes. On the other hand, there is another important KDD task apply-
ing only to very few objects deviating from the majority of the objects in a data set.
Finding exceptions and outliers has not yet received much attention in the KDD area
(cf. section 2). However, for applications such as detecting criminal activities of various
kinds (e.g. in electronic commerce), finding rare events, deviations from the majority,
or exceptional cases may be more interesting and useful than the common cases. 
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Outliers and clusters in a data set are closely related: outliers are objects deviating
from the major distribution of the data set; in other words: being an outlier means not
being in or close to a cluster. However, being an outlier is not just a binary property.
Instead, it is a property that applies to a certain degree to each object, depending on how
‘isolated’ the object is. Formalizing this intuition leads to a new notion of outliers which
is ‘local’ in the sense that the outlier-degree of an object takes into account the cluster-
ing structure in a bounded neighborhood of the object. Thus, our notion of outliers is
strongly connected to the notion of the density-based clustering structure of a data set.
We show that both the cluster-analysis method OPTICS (“Ordering Points To Identify
the Clustering Structure”), which has been proposed recently [1], as well as our new ap-
proach to outlier detection, called OPTICS-OF (“OPTICS with Outlier Factors”), are
based on a common theoretical foundation.

The paper is organized as follows. In section 2, we will review related work. In
section 3, we show that global definitions of outliers are inadequate for finding all
points that we wish to consider as outliers. This observation leads to a formal and novel
definition of outliers in section 4. In section 5, we give an extensive example illustrating
the notion of local outliers. We propose an algorithm to mine these outliers in section 6
including a comprehensive discussion of performance issues. Conclusions and future
work are given in section 7.

2 Related Work

Most of the previous studies on outlier detection were conducted in the field of statis-
tics. These studies can be broadly classified into two categories. The first category is
distribution-based, where a standard distribution (e.g. Normal, Poisson, etc.) is used to
fit the data best. Outliers are defined based on the distribution. Over one hundred tests
of this category, called discordancy tests, have been developed for different scenarios
(see [4]). A key drawback of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. multivariate normal out-
liers). But for many KDD applications, the underlying distribution is unknown. Fitting
the data with standard distributions is costly, and may not produce satisfactory results.

The second category of outlier studies in statistics is depth-based. Each data object
is represented as a point in a k-d space, and is assigned a depth. With respect to outlier
detection, outliers are more likely to be data objects with smaller depths. There are
many definitions of depth that have been proposed (e.g. [13], [15]). In theory, depth-
based approaches could work for large values of k. However, in practice, while there
exist efficient algorithms for k = 2 or 3 ([13], [11]), depth-based approaches become in-
efficient for large data sets for k ≥ 4. This is because depth-based approaches rely on the
computation of k-d convex hulls which has a lower bound complexity of Ω(nk/2).  

Recently, Knorr and Ng proposed the notion of distance-based outliers [12].  Their
notion generalizes many notions from the distribution-based approaches, and enjoys
better computational complexity than the depth-based approaches for larger values of
k. Later in section 3, we will discuss in detail how their notion is different from the no-
tion of local outliers proposed in this paper.  

Given the importance of the area, fraud detection has received more attention than
the general area of outlier detection. Depending on the specifics of the application do-



mains, elaborate fraud models and fraud detection algorithms have been developed (e.g.
[8], [6]). In contrast to fraud detection, the kinds of outlier detection work discussed so
far are more exploratory in nature. Outlier detection may indeed lead to the construction
of fraud models. 

3 Problems of Current (non-local) Approaches

As we have seen in section 2, most of the existing work in outlier detection lies in the
field of statistics. Intuitively, outliers can be defined as given by Hawkins [10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other observations as to
arouse suspicion that it was generated by a different mechanism.

This notion is formalized by Knorr and Ng [12] in the following definition of outliers.

Definition 2: (DB(p,d)-Outlier)
An object o in a data set D is a DB(p,d)-outlier if at least fraction p of the objects in
D lies greater than distance d from o.

Below, we will show that definition 2 captures
only certain kinds of outliers. Its shortcoming is
that it takes a global view of the data set. The fact
that many interesting real-world data sets exhibit a
more complex structure, in which objects are only
outliers relative to their local, surrounding object
distribution, is ignored. We give an examples of a
data set containing objects that are outliers accord-
ing to Hawkins’ definition for which no values for
p and d exist such that they are DB(p,d)-outliers.
Figure 1 shows a 2-d dataset containing 43 objects.
It consists of 2 clusters C1 and C2, each consisting

of 20 objects, and there are 3 additional objects o1, o2 and o3. Intuitively, and according
to definition 1, o1, o2 and o3 are outliers, and the points belonging to the clusters C1 and
C2 are not. For an object o and a set of objects S, let d(o,S) = min{ d(o,s) | s ∈ S }.

Let us consider the notion of outliers according to definition 2:
• o1: For every d ≤ d(o1,C1) and p ≤ 42/43, o1 is a DB(p,d) outlier. For smaller values

of p, d can be even larger.
• o2: For every d ≤ d(o2, C1) and p ≤ 42/43, o2 is a DB(p,d) outlier. Again, for smaller

values of p, d can be even larger.
• o3: Assume that for every point q in C1, the distance from q to its nearest neighbor

is larger than d(o3, C2). In this case, no combination of p and d exists such that o3 is
an DB(p,d) outlier and the points in C1 are not: 
- For every d ≤ d(o3, C2), p=42/43 percent of all points are further away from o3 than
d. However, this condition also holds for every point q ∈ C1. Thus, o3 and all q ∈ C1
are DB(p,d)-outliers. 
- For every d > d(o3, C2), the fraction of points further away from o3 is always small-
er than for any q ∈ C1, so either o3 and all q ∈ C1 will be considered outliers or (even
worse) o3 is not an outlier and all q ∈ C1 are outliers.

C2

C1

o2

o1

o3

Fig. 1. 2-d dataset DS1



From this example, we infer that definition 2 is only adequate under certain, limited
conditions, but not for the general case that clusters of different densities exist. In these
cases definition 2 will fail to find the local outliers, i.e. outliers that are outliers relative
to their local surrounding data space.

4 Formal Definition of Local Outliers

In this section, we develop a formal definition of outliers that more truly corresponds to
the intuitive notion of definition 1, avoiding the shortcomings presented in section 3.
Our definition will correctly identify local outliers, such as o3 in figure 1. To achieve
this, we do not explicitly label the objects as “outlier” or “not outlier”; instead we com-
pute the level of outlier-ness for every object by assigning an outlier factor.

Definition 3: (ε-neighborhood and k-distance of an object p)
Let p be an object from a database D, let ε be a distance value, let k be a natural num-
ber and let d be a distance metric on D. Then:

• the ε-neighborhood Nε(p) are the objects x with d(p,x)≤ε: Nε(p) = {  x∈D | d(p,x)≤ε},
• the k-distance of p, k-distance(p), is the distance d(p,o) between p and an object

o ∈D such that at least for k objects o’∈D it holds that d(p,o’) ≤ d(p,o), and for at
most k-1 objects o’∈D it holds that d(p,o’) < d(p,o). Note that k-distance(p) is
unique, although the object o which is called ‘the’ k-nearest neighbor of p may not
be unique. When it is clear from the context, we write Nk(p) as a shorthand for
Nk-distance(p)(p), i.e. Nk(p) = { x ∈ D | d(p,x) ≤ k-distance(p)}.

The objects in the set Nk(p) are called the “k-nearest-neighbors of p” (although there
may be more than k objects in Nk(p) if the k-nearest neighbor of p is not unique). 

Before we can formally introduce our notion of outliers, we have to introduce some
basic notions related to the density-based cluster structure of the data set. In [7] a formal
notion of clusters based on point density is introduced. The point density is measured
by the number of objects within a given area. The basic idea of the clustering algorithm
DBSCAN is that for each object of a cluster the neighborhood of a given radius (ε) has
to contain at least a minimum number of objects (MinPts). An object p whose ε-neigh-
borhood contains at least MinPts objects is said to be a core object. Clusters are formal-
ly defined as maximal sets of density-connected objects. An object p is density-connect-
ed to an object q if there exists an object o such that both p and q are density-reachable
from o (directly or transitively). An object p is said to be directly density-reachable from
o if p lies in the neighborhood of o and o is a core object [7]. 

A ‘flat’ partitioning of a data set into a set of clusters is useful for many applications.
However, an important property of many real-world data sets is that their intrinsic clus-
ter structure cannot be characterized by global density parameters. Very different local
densities may be needed to reveal and describe clusters in different regions of the data
space. Therefore, in [1] the density-based clustering approach is extended and general-
ized to compute not a single flat density-based clustering of a data set, but to create an
augmented ordering of the database representing its density-based clustering structure.
This cluster-ordering contains information which is equivalent to the density-based
clusterings corresponding to a broad range of parameter settings. This cluster-ordering
of a data set is based on the notions of core-distance and reachability-distance.



Definition 4: (core-distance of an object p)
Let p be an object from a database D, let ε be a distance value and let MinPts be a
natural number. Then, the core-distance of p is defined as 

core-distanceε,MinPts(p) = 

The core-distance of object p is the smallest distance ε’ ≤ ε such that p is a core ob-
ject with respect to ε’ and MinPts if such an ε’ exists, i.e. if there are at least MinPts
objects within the ε-neighborhood of p. Otherwise, the core-distance is UNDEFINED.

Definition 5: (reachability-distance of an object p w.r.t. object o)
Let p and o be objects from a database D, p ∈ Nε(o), let ε be a distance value and let
MinPts be a natural number. Then, the reachability-distance of p with respect to o
is defined as reachability-distanceε,MinPts(p, o) =

The reachability-distance of an object p with respect to object o is the smallest distance
such that p is directly density-reachable from o if o is a core object within p’s ε-neigh-
borhood. To capture this idea, the reachability-distance of p with respect to o cannot be
smaller than the core-distance of o since for smaller distances no object is directly den-
sity-reachable from o. Otherwise, if o is not a core object, the reachability-distance is
UNDEFINED. Figure 2 illustrates the core-distance and the reachability-distance. 

The core-distance and reachability-distance were
originally introduced for the OPTICS-algorithm [1].
The OPTICS-algorithm computes a “walk” through
the data set, and calculates for each object o the core-
distance and the smallest reachability-distance with
respect to an object considered before o in the walk.
Such a walk through the data satisfies the following
condition: Whenever a set of objects C is a density-
based cluster with respect to MinPts and a value ε’
smaller than the value ε used in the OPTICS algo-
rithm, then a permutation of C (possibly without a
few border objects) is a subsequence in the walk.
Therefore, the reachability-plot (i.e. the reachability
values of all objects plotted in the OPTICS ordering) yields an easy to understand visu-
alization of the clustering structure of the data set. Roughly speaking, a low reachabil-
ity-distance indicates an object within a cluster, and a high reachability-distance indi-
cates a noise object or a jump from one cluster to another cluster. The reachability-plot
for our dataset DS1 is depicted in figure 3 (top). The global structure revealed shows
that there are the two clusters, one of which is more dense than the other, and a few ob-
jects outside the clusters. Another example of a reachability-plot for the more complex
data set DS2 (figure 4) containing hierarchical clusters is depicted in figure 5.
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Definition 6: (local reachability density of an object p)
Let p be an object from a database D and let MinPts be a natural number. Then, the
local reachability density of p is defined as

The local reachability density of an object p is the inverse of the average reachability-
distance from the MinPts-nearest-neighbors of p. The reachability-distances occurring
in this definition are all defined, because ε=∞. The lrd is ∞ if all reachability-distances
are 0. This may occur for an object p if there are at least MinPts objects, different from
p, but sharing the same spatial coordinates, i.e. if there are at least MinPts duplicates of
p in the data set. For simplicity, we will not handle this case explicitly but simply as-
sume that there are no duplicates. (To deal with duplicates, we can base our notion of
neighborhood on a k-distinct-distance, defined analogously to k-distance in definition 3
with the additional requirement that there be at least k different objects.)

The reason for using the reachability-distance
instead of simply the distance between p and its
neighbors o is that it will significantly weaken
statistical fluctuations of the inter-object dis-
tances: lrds for objects which are close to each
other in the data space (whether in clusters or
noise) will in general be equaled by using the
reachability-distance because it is at least as
large as the core-distance of the respective
object o. The strength of the effect can be con-
trolled by the parameter MinPts. The higher the
value for MinPts the more similar the reachabil-
ity-distances for objects within the same area of
the space. Note that there is a similar ‘smooth-

ing’ effect for the reachability-plot produced by the OPTICS algorithm, but in this case
of clustering we also weaken the so-called ‘single-link effect’ [14]. 

Definition 7: (outlier factor of an object p)
Let p be an object from a database D and let MinPts be a natural number. Then, the

outlier factor of p is defined as  

The outlier factor of the object p captures the degree to which we call p an outlier. It is
the average of the ratios of the lrds of the MinPts-nearest-neighbors and p. If these are
identical, which we expect for objects in clusters of uniform density, the outlier factor
is 1. If the lrd of p is only half of the lrds of p’s MinPts-nearest-neighbors, the outlier
factor of p is 2. Thus, the lower p’s lrd is and the higher the lrds of p’s MinPts-nearest-
neighbors are, the higher is p’s outlier factor. 

lrdMinPts p( ) 1   
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Fig. 3. reachability-plot and 
outlier factors for DS1
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Figure 3, (top) shows the reachability-plot for DS1 generated by OPTICS [1]. Two
clusters are visible: first the dense cluster C2, then points o3 and o1 (larger reachability
values) and - after the large reachability indicating a jump - all of cluster C1 and finally
o2. Depicted below the reachability-plot are the corresponding outlier factors (the ob-
jects are in the same order as in the reachability-plot). Object o1 has the largest outlier
factor (3.6), followed by o2 (2.0) and o3 (1.4). All other objects are assigned outlier fac-
tors between 0.993 and 1.003. Thus, our technique successfully highlights not only the
global outliers o1 and o2 (which are also DB(p,d)-outliers), but also the local outlier o3
(which is not a reasonable DB(p,d)-outlier).

5 An Extensive Example

In this section, we demonstrate the effectiveness of the
given definition using a complex 2-d example data set
(DS2, figure 4, 473 points), containing most charac-
teristics of real-world data sets, i.e. hierarchical/over-
lapping clusters and clusters of widely differing densi-
ties and arbitrary shapes. We give a small 2-d example
to make it easier to understand the concepts. Our ap-
proach, however, works equally well in higher dimen-
sional spaces. DS2 consists of 3 clusters of uniform
(but different) densities and one hierarchical cluster of
a low density containing 2 small and 1 bigger subclus-
ter. The data set also contains 12 outliers. 

Figure 5 (top) shows the reachability-plot
generated by OPTICS. We see 3 clusters with
different, but uniform densities in areas 1, 2 and
3, a large, hierarchical cluster in area 4 and its
subclusters in areas 4.1, 4.2 and 4.3. The noise
points (outliers) have to be located in areas N1,
N2, N3 and N4.

Figure 5 (bottom) shows the outlier factors
for MinPts=10 (objects in the same order).
Most objects are assigned outlier factors of
around 1. In areas N3 and N4 there is one point
each (o1 and o2) with outlier factors of 3.0 and
2.7 respectively, characterizing outliers with lo-
cal reachability densities about half to one third
of the surrounding space. The most interesting
area is N1. The outlier factors are between 1.7
and 6.3. The first two points with high outlier
factors 5.4 and 6.3 are o3 and o4. Both only have one close neighbor (the other one) and
all other neighbors are far away in the cluster in area 3, which has a high density (recall
that for MinPts=10 we are looking at the 10-nearest-neighbors). Thus, o3 and o4 are as-
signed large outlier factors. The other points in N1, however, are assigned much smaller

Fig. 4. Example dataset DS2
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(but still significantly larger than 1) outlier factors between 1.7 and 2.4. These are the
points surrounding o5 which can either be considered a small, low density cluster or out-
liers, depending on ones viewpoint. Object o5 as the center point of this low density
cluster is assigned the lowest outlier factor of 1.7, because it is surrounded by points of
equal local reachability density. 

We also see that, from the reachability-plot, we can only infer that all points in N1
are in an area of low density, because the reachability values are high. However, no
evaluation concerning their outlierness is possible. 

6 Mining Local Outliers - Performance Considerations

To compute the outlier-factors OFMinPts(p) for all objects p in a database, we have to
perform three passes over the data. In the first pass, we compute NMinPts(p) and core-
distance∞,MinPts(p). In the second pass, we calculate reachability-distance∞,MinPts(p,o)
of p with respect to its neighboring objects o∈NMinPts(p) and lrdMinPts(p) of p. In the
third pass, we can compute the outlier factors OF(p). The runtime of the whole proce-
dure is heavily dominated by the first pass over the data since we have to perform
k-nearest-neighbor queries in a multidimensional database, i.e. the runtime of the algo-
rithm is O(n * runtime of a MinPts-nearest-neighborhood query). 

Obviously, the total runtime depends on the runtime of k-nearest-neighbor query.
Without any index support, to answer a k-nearest-neighbor query, a scan through the
whole database has to be performed. In this case, the runtime of our outlier detection
algorithm would be O(n2). If a tree-based spatial index can effectively be used, the run-
time is reduced to O (n log n) since k-nearest-neighbor queries are supported efficiently
by spatial access methods such as the R*-tree [3] or the X-tree [2] for data from a vector
space or the M-tree [5] for data from a metric space. The height of such a tree-based
index is O(log n) for a database of n objects in the worst case and, at least in low-dimen-
sional spaces, a query with a reasonable value for k has to traverse only a limited num-
ber of paths.

If also the algorithm OPTICS is applied to the data set, i.e. if we also want to per-
form some kind of cluster analysis, we can drastically reduce the cost for the outlier de-
tection. The algorithm OPTICS retrieves the ε-neighborhood Nε(p) for each object p in
the database, where ε is an input parameter. These ε-neighborhoods can be utilized in
the first pass over the data for our outlier detection algorithm: only if this neighborhood
Nε(p) of p does not already contain MinPts objects, we have to perform a MinPts-near-
est-neighbor query for p to determine NMinPts(p). In the other case, we can retrieve
NMinPts(p) from Nε(p) since then it holds that NMinPts(p) ⊆ Nε(p). Our experiments in-
dicate that in real applications, for a reasonable value of ε and MinPts, this second case
is much more frequent than the first case.

7 Conclusions

Finding outliers is an important task for many KDD applications. All proposals so far
considered ‘being an outlier’ a binary property. We argue instead, that it is a property
that applies to a certain degree to each object in a data set, depending on how ‘isolated’
this object is, with respect to the surrounding clustering structure. We formally defined



the notion of an outlier factor, which captures exactly this relative degree of isolation.
The outlier factor is local by taking into account the clustering structure in a bounded
neighborhood of the object. We demonstrated that this notion is more appropriate for
detecting different types of outliers than previous approaches. Our definitions are based
on the same theoretical foundation as density-based cluster analysis and we show how
to analyze the cluster structure and the outlier factors efficiently at the same time. 

In ongoing work, we are investigating the properties of our approach in a more for-
mal framework, especially with regard to the influence of the MinPts value. Future
work will include the development of a more efficient and an incremental version of the
algorithm based on the results of this analysis.
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