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Abstract: For many KDD applicationsfinding the outliers, i.e. the rare events, is
moreinteresting and useful than finding the common cases, e.g. detecting criminal
activitiesin E-commerce. Being an outlier, however, isnot just abinary property.

Instead, it isaproperty that appliesto a certain degree to each object in adata set,
depending on how ‘isolated’ this object is, with respect to the surrounding clus-
tering structure. In this paper, we formally introduce a new notion of outliers
which bases outlier detection on the same theoretical foundation as density-based
cluster analysis. Our notion of an outlier is ‘local’ in the sense that the outlier-de-
gree of an object is determined by taking into account the clustering structure in
a bounded neighborhood of the object. We demonstrate that this notion of an out-
lier is more appropriate for detecting different types of outliers than previous ap-
proaches, and we also present an algorithm for finding them. Furthermore, we
show that by combining the outlier detection with a density-based method to an-
alyze the clustering structure, we can get the outliers almost for free if we already
want to perform a cluster analysis on a data set.

1 Introduction

Larger and larger amounts of data are collected and stored in databases, increasing the
need for efficient and effective anaysis methods to make use of the information con-
tained implicitly in the data. Knowledge discovery in databases (KDD) has been de-
fined as the non-trivial process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data [9]. Corresponding to the kind of patterns to be
discovered, severa KDD tasks can be distinguished.

Most research in KDD and data mining is concerned with identifying patterns that
apply to alarge percentage of objectsin a data set. For example, the goa of clustering
istoidentify aset of categoriesor clustersthat describesthe structure of the whole data
set. The goal of classification is to find a function that maps each data object into one
of several given classes. On the other hand, there is another important KDD task apply-
ing only to very few objects deviating from the mgjority of the objects in a data set.
Finding exceptions and outliers has not yet received much attention in the KDD area
(cf. section 2). However, for applications such as detecting criminal activities of various
kinds (e.g. in electronic commerce), finding rare events, deviations from the mgjority,
or exceptional cases may be more interesting and useful than the common cases.
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Outliers and clusters in a data set are closely related: outliers are objects deviating
from the major distribution of the data set; in other words. being an outlier means not
being in or close to a cluster. However, being an outlier is not just a binary property.

Instead, it isaproperty that applies to acertain degree to each object, depending on how
‘isolated’ the object is. Formalizing this intuition leads to a new notion of outliers which

is ‘local’ in the sense that the outlier-degree of an object takes into account the cluster-
ing structure in a bounded neighborhood of the object. Thus, our notion of outliers is
strongly connected to the notion of the density-based clustering structure of a data set.
We show that both the cluster-analysis method OPTIC®JEring Points To Identify
theClusteringStructure”), which has been proposed recently [1], as well as our new ap-
proach to outlier detection, called OPTICS-OF (“OPTICS J@tlilier Factors”), are

based on a common theoretical foundation.

The paper is organized as follows. In section 2, we will review related work. In
section 3, we show that global definitions of outliers are inadequate for finding all
points that we wish to consider as outliers. This observation leads to a formal and novel
definition of outliers in section 4. In section 5, we give an extensive example illustrating
the notion of local outliers. We propose an algorithm to mine these outliers in section 6
including a comprehensive discussion of performance issues. Conclusions and future
work are given in section 7.

2 Related Work

Most of the previous studies on outlier detection were conducted in the field of statis-
tics. These studies can be broadly classified into two categories. The first category is
distribution-based, where a standard distribution (e.g. Normal, Poisson, etc.) is used to
fit the data best. Outliers are defined based on the distribution. Over one hundred tests
of this category, called discordancy tests, have been developed for different scenarios
(see [4]). A key drawback of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. multivariate normal out-
liers). But for many KDD applications, the underlying distribution is unknown. Fitting
the data with standard distributions is costly, and may not produce satisfactory results.

The second category of outlier studies in statisticepth-based. Each data object
is represented as a point itk-al space, and is assigned a depth. With respect to outlier
detection, outliers are more likely to be data objects with smaller depths. There are
many definitions of depth that have been proposed (e.g. [13], [15]). In theory, depth-
based approaches could work for large values of k. However, in practice, while there
exist efficient algorithms fok = 2 or 3 ([13], [11]), depth-based approaches become in-
efficient for large data sets fkr= 4. This is because depth-based approaches rely on the
computation ok-d convex hulls which has a lower bound complexitﬁ(]ﬁklz).

Recently, Knorr and Ng proposed the notiorligtance-based outliers [12]. Their
notion generalizes many notions from the distribution-based approaches, and enjoys
better computational complexity than the depth-based approaches for larger values of
k. Later in section 3, we will discuss in detail how their notion is different from the no-
tion of local outliers proposed in this paper.

Given the importance of the area, fraud detection has received more attention than
the general area of outlier detection. Depending on the specifics of the application do-



mains, el aborate fraud models and fraud detection a gorithms have been developed (e.g.
[8], [6]). In contrast to fraud detection, the kinds of outlier detection work discussed so
far are more exploratory in nature. Outlier detection may indeed |lead to the construction
of fraud models.

3 Problems of Current (non-local) Approaches

Aswe have seen in section 2, most of the existing work in outlier detection lies in the
field of statistics. Intuitively, outliers can be defined as given by Hawkins[10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other observations as to
arouse suspicion that it was generated by a different mechanism.

This notion is formalized by Knorr and Ng [12] in the following definition of outliers.
Definition 2: (DB(p,d)-Outlier)
Anobject oinadataset D isa DB(p,d)-outlier if at least fraction p of the objectsin
D lies greater than distance d from o.

o] =+ % Below, we will show that definition 2 captures
.| only certain kinds of outliers. Its shortcoming is

C1. 7. .| that it takes aglobal view of the data set. The fact

s that many interesting real-world data sets exhibit a

more complex structure, in which objects are only
outliers relative to their local, surrounding object
distribution, is ignored. We give an examples of a

03 .| dataset containing objectsthat are outliers accord-
P 2 ing to Hawkins’ definition for which no values for
5 Co p andd exist such that they afB(p,d)-outliers.

Fig. 1. 2-d dataset DS1

Figure 1 shows a 8-dataset containing 43 objects.
It consists of 2 clusters;Gind G, each consisting

of 20 objects, and there are 3 additional objegtspand @. Intuitively, and according
to definition 1, q, 0, and g are outliers, and the points belonging to the clusteesnd
C, are not. For an objectand a set of object letd(0,S) = min{ d(o,s) | s S}.
Let us consider the notion of outliers according to definition 2:
+ 04: For everyd < d(0,,C;) andp < 42/43, q is aDB(p,d) outlier. For smaller values

of p, d can be even larger.

* 0y For everyd < d(o,, C;) andp < 42/43, g is aDB(p,d) outlier. Again, for smaller
values ofp, d can be even larger.

* 03: Assume that for every pointin C,, the distance from to its nearest neighbor
is larger tham(os, Cy). In this case, no combination paindd exists such thatas
anDB(p,d) outlier and the points in Care not:

- For everyd < d(o3, C,), p=42/43 percent of all points are further away froyithan
d. However, this condition also holds for every pajft C;. Thus, gand allg O C;

areDB(p,d)-outliers.

- For everyd > d(o3, C)), the fraction of points further away frorgis always small-
er than for any O C4, so either gand allg O C, will be considered outliers or (even
worse) @ isnot an outlier and alfj O C; are outliers.



From this example, we infer that definition 2 is only adequate under certain, limited
conditions, but not for the general case that clusters of different densities exist. In these
cases definition 2 will fail to find the local outliers, i.e. outliersthat are outliersrelative
to their local surrounding data space.

4 Formal Definition of Local Outliers

In this section, we develop aformal definition of outliersthat moretruly correspondsto

the intuitive notion of definition 1, avoiding the shortcomings presented in section 3.

Our definition will correctly identify local outliers, such as o5 in figure 1. To achieve

this, we do not explicitly label the objects as “outlier” or “not outlier”; instead we com-
pute the level of outlier-ness for every object by assigningutirer factor.

Definition 3: (s-neighborhood ank-distance of an objeg)

Letp be an object from a databd3glete be a distance value, lebe a natural num-

ber and letl be a distance metric @ Then:
+ thee-neighborhoodN,(p) are the objectswith d(p,x)<e: N¢(p) = { xOD |d(p,x)<¢e},
« the k-distance ofp, k-distance(p), is the distancel(p,0) betweenp and an object

0 [OD such that at least farobjectso’ D it holds thatd(p,0’) < d(p,0), and for at

most k-1 objects d’D it holds thatd(p,0’) < d(p,0). Note that k-distance(p) is

unique, although the object o which is called ‘thek-nearest neighbor gf may not

be unique. When it is clear from the context, we wh{€p) as a shorthand for

Nicdistance(p)(P): -€-Ni(p) = { X 0 D | d(p,x) < k-distance(p)}

The objects in the s, (p) are called theK-nearest-neighbors @ (although there
may be more thak objects inNy(p) if the k-nearest neighbor gf is not unique).

Before we can formally introduce our notion of outliers, we have to introduce some
basic notions related to the density-based cluster structure of the data set. In [7] a formal
notion of clusters based on point density is introduced. The point density is measured
by the number of objects within a given area. The basic idea of the clustering algorithm
DBSCAN is that for each object of a cluster the neighborhood of a given raphes(
to contain at least a minimum number of objeM&Pts). An objectp whosee-neigh-
borhood contains at leadlinPts objects is said to becare object. Clusters are formal-
ly defined as maximal sets of density-connected objects. An gdgdensity-connect-
ed to an objeqy if there exists an objectsuch that botlp andq are density-reachable
from o (directly or transitively). An objeqtis said to be directly density-reachable from
o if p lies in the neighborhood ofando is a core object [7].

A ‘flat’ partitioning of a data set into a set of clusters is useful for many applications.
However, an important property of many real-world data sets is that their intrinsic clus-
ter structure cannot be characterizedjtopal density parameters. Very different local
densities may be needed to reveal and describe clusters in different regions of the data
space. Therefore, in [1] the density-based clustering approach is extended and general-
ized to compute not a single flat density-based clustering of a data set, but to create an
augmentedrdering of the database representing its density-based clustering structure.
This cluster-ordering contains information which is equivalent to the density-based
clusterings corresponding to a broad range of parameter settings. This cluster-ordering
of a data set is based on the notionsooé-distance andreachability-distance.



Definition 4. (core-distance of an object p)
Let p be an object from a database D, let € be a distance value and let MinPts be a
natural number. Then, the core-distance of p is defined as

0
[ UNDEFINED, if [N(p)| < MinPts

core-distance; minpts(P) = O
B MinPts-distance(p), otherwise

The core-distance of object p isthe smallest distance €’ < € such thap is a core ob-
ject with respect t@’ and MinPts if such ange’ exists, i.e. if there are at leadlinPts
objects within the-neighborhood op. Otherwise, the core-distance is UNDEFINED.

Definition 5: (reachability-distance of an objgetv.r.t. objecto)
Let p ando be objects from a databaSep O N¢(0), lete be a distance value and let

MinPts be a natural number. Then, thechability-distance of p with respect tm
is defined aseachability-distance; yinpis(P; 0) =

. UNDEFINED, if [N.(0)] < MinPts
O i .
B max(coredlstancesy Minpts(0), d(o, p)) otherwise

The reachability-distance of an objgatvith respect to objed is the smallest distance
such thap is directly density-reachable fromif o is a core object withip’s e-neigh-
borhood. To capture this idea, the reachability-distangewdth respect t@ cannot be
smaller than the core-distanceadince for smaller distances no object is directly den-
sity-reachable frono. Otherwise, ifo is not a core object, the reachability-distance is
UNDEFINED. Figure 2 illustrates the core-distance and the reachability-distance.
The core-distance and reachability-distance were ~ 7 T~
originally introduced for the OPTICS-algorithm [1]. /-
The OPTICS-algorithm computes a “walk” through / ﬁpﬁ ~
the data set, and calculates for each oln¢loe core- / \

distance and the smallest reachability-distance with | o s |
respect to an object considefesgfore o in the walk. | \e 8 o/
Such a walk through the data satisfies the followingy ~ P /
condition: Whenever a set of obje€ss a density- N r(p, /
based cluster with respect kinPts and a value’ ~& 7

smaller than the value used in the OPTICS algo-  Fig. 2. Core-distancey),

rithm, then a permutation & (possibly without a reachability-distancespy{,0),

few border objects) is a subsequence in the walk. r(p,,0) for MinPts=4

Therefore, theeachability-plot (i.e. the reachability

values of all objects plotted in the OPTICS ordering) yields an easy to understand visu-
alization of the clustering structure of the data set. Roughly speaking, a low reachabil-
ity-distance indicates an object within a cluster, and a high reachability-distance indi-
cates a noise object or a jump from one cluster to another cluster. The reachability-plot
for our dataset DS1 is depicted in figure 3 (top). The global structure revealed shows
that there are the two clusters, one of which is more dense than the other, and a few ob-
jects outside the clusters. Another example of a reachability-plot for the more complex
data set DS2 (figure 4) containing hierarchical clusters is depicted in figure 5.



Definition 6: (local reachability density of an object p)
Let p be an object from a database D and let MinPts be a natural number. Then, the
local reachability density of pisdefined as

reachability-distance,, pi-pra(P: O)
0 0 Nyinpts(P)

Ird,,: =1/
MInPtS(p) ‘NMinPts(p)‘
Thelocal reachability density of an object p is the inverse of the average reachability-
distance from the MinPts-nearest-neighbors of p. The reachability-distances occurring
in this definition are al defined, because e=c. The lrd is o if al reachability-distances
are 0. Thismay occur for an object p if there are at least MinPts objects, different from
p, but sharing the same spatial coordinates, i.e. if there are at least MinPts duplicates of
p in the data set. For simplicity, we will not handle this case explicitly but simply as-
sume that there are no duplicates. (To deal with duplicates, we can base our notion of
neighborhood on a k-distinct-distance, defined analogously to k-distancein definition 3
with the additional requirement that there be at least k different objects.)
0 The reason for using the reachability-distance
0 instead of simply the distance between p and its
C neighbors o is that it will significantly weaken
statistical fluctuations of the inter-object dis-
03 tances: Irds for objects which are close to each
other in the data space (whether in clusters or
noise) will in general be equaled by using the
reachability-distance because it is at least as
large as the core-distance of the respective
object 0. The strength of the effect can be con-
objectt | trolled by the parameter MinPts. The higher the
Fig. 3. reachability-plot and value for MinPts the more similar the reachabil -
outlier factors for DS1 ity-distances for objects within the same area of
the space. Note that there is a similar ‘smooth-
ing’ effect for the reachability-plot produced by the OPTICS algorithm, but in this case
of clustering we also weaken the so-called ‘single-link effect’ [14].

Definition 7: (outlier factor of an objed)
Let p be an object from a databd3eand letMinPts be a natural number. Then, the

IrdMi nPts(O)

Irdy: ore(P)
00N pp) TINPLS
‘NMinPts(p)‘

The outlier factor of the objegtcaptures the degree to which we @adin outlier. It is

the average of the ratios of thiels of theMinPts-nearest-neighbors amd If these are
identical, which we expect for objects in clusters of uniform density, the outlier factor
is 1. If thelrd of p is only half of thdrds of p's MinPts-nearest-neighbors, the outlier
factor ofp is 2. Thus, the lowgr's Ird is and the higher tHeds of p's MinPts-nearest-
neighbors are, the higherps outlier factor.

A

reachability,
S

outlier Tactor,

outlier factor of p is defined as OF viinpt<(P) =



Figure 3, (top) shows the reachability-plot for DS1 generated by OPTICS [1]. Two
clusters are visible: first the dense cluster C,, then points o5 and o, (larger reachability
values) and - after the large reachability indicating ajump - dl of cluster C; and finally
0,. Depicted below the reachability-plot are the corresponding outlier factors (the ob-
jects are in the same order as in the reachability-plot). Object 0, has the largest outlier
factor (3.6), followed by 0, (2.0) and o5 (1.4). All other objects are assigned outlier fac-
tors between 0.993 and 1.003. Thus, our technique successfully highlights not only the
global outliers 0, and o, (which are also DB(p,d)-outliers), but also the local outlier o3
(which is not areasonable DB(p,d)-outlier).

5  An Extensive Example

03 — Inthissection, we demonstrate the effectiveness of the
4 Jerere, given definition using a complex 2-d exampl e data set
-< ‘ ;'.';_ (DS2, figure 4, 473 points), containing most charac-
2 teristics of real-world data sets, i.e. hierarchical/over-
Q ;| lapping clusters and clusters of widely differing densi-
* | tiesand arbitrary shapes. We give asmall 2-d example

¥ o ;.{, to make it easier to understand the concepts. Our ap-
- proach, however, works equally well in higher dimen-

sional spaces. DS2 consists of 3 clusters of uniform
(but different) densities and one hierarchical cluster of
alow density containing 2 small and 1 bigger subclus-
Fig. 4. Example dataset DS2  ter. The data set also contains 12 outliers.

Figure5 (top) shows the reachability-plot
generated by OPTICS. We see 3 clusters with
different, but uniform densitiesin areas 1, 2 and
3, alarge, hierarchical cluster in area 4 and its
subclustersin areas 4.1, 4.2 and 4.3. The noise I I | 41 42 43
points (outliers) haveto be located in areas N1,

N2, N3 and N4. objects

Figure 5 (bottom) shows the outlier factors | 4 0
for MinPts=10 (objects in the same order).
Most objects are assigned outlier factors of
around 1. In areas N3 and N4 there is one point
each (o, and 0,) with outlier factors of 3.0 and
2.7 respectively, characterizing outlierswith lo- S
cal reachability densities about half to one third Fig. 5. Reachability-plot (=50,
of the surrounding space. The most interesting MinPts=10) and
areais N1. The outlier factors are between 1.7 outlier factors OF 1o for DS2
and 6.3. The first two points with high outlier
factors 5.4 and 6.3 are 03 and 04. Both only have one close neighbor (the other one) and
all other neighbors are far away in the cluster in area 3, which has a high density (recall
that for MinPts=10 we are looking at the 10-nearest-neighbors). Thus, o3 and o4 are as-
signed large outlier factors. The other pointsin N1, however, are assigned much smaller

N1
N2

N3 N4 4

reachability .
-
N
w

03

Os
% o,

— outlier factor




(but still significantly larger than 1) outlier factors between 1.7 and 2.4. These are the
points surrounding o5 which can either be considered asmall, low density cluster or out-
liers, depending on ones viewpoint. Object o5 as the center point of this low density
cluster is assigned the lowest outlier factor of 1.7, because it is surrounded by points of
equal local reachability density.

We also see that, from the reachability-plot, we can only infer that all pointsin N1
are in an area of low density, because the reachability values are high. However, no
evaluation concerning their outliernessis possible.

6 Mining Local Outliers - Performance Considerations

To compute the outlier-factors OFy;inpts(P) for all objects p in a database, we have to
perform three passes over the data. In the first pass, we compute Nyipi<(P) and core-
distance,, pinpts(P)- I the second pass, we cal culate reachability-distance,, yinpts(P,0)
of p with respect to its neighboring objects o0Nyinpts(P) and Irdyinpt<(P) Of p. In the
third pass, we can compute the outlier factors OF(p). The runtime of the whole proce-
dure is heavily dominated by the first pass over the data since we have to perform
k-nearest-neighbor queriesin a multidimensional database, i.e. the runtime of the algo-
rithm isO(n * runtime of a MinPts-nearest-neighborhood query).

Obviously, the total runtime depends on the runtime of k-nearest-neighbor query.
Without any index support, to answer a k-nearest-neighbor query, a scan through the
whole database has to be performed. In this case, the runtime of our outlier detection
algorithm would be O(n2). If atree-based spatial index can effectively be used, the run-
timeisreduced to O (n log n) since k-nearest-neighbor queries are supported efficiently
by spatial access methods such asthe R*-tree[3] or the X-tree [2] for datafrom avector
space or the M-tree [5] for data from a metric space. The height of such a tree-based
index isO(log n) for adatabase of n objectsin theworst case and, at least in low-dimen-
sional spaces, a query with areasonable value for k has to traverse only alimited num-
ber of paths.

If dso the algorithm OPTICS is applied to the data set, i.e. if we aso want to per-
form some kind of cluster analysis, we can drastically reduce the cost for the outlier de-
tection. The algorithm OPTICS retrieves the e-neighborhood N¢(p) for each object p in
the database, where € is an input parameter. These e-neighborhoods can be utilized in
thefirst pass over the datafor our outlier detection algorithm: only if this neighborhood
N¢(p) of p does not already contain MinPts objects, we have to perform a MinPts-near-
est-neighbor query for p to determine Nyinpis(P)- In the other case, we can retrieve
Nwminpts(P) from Ng(p) since then it holds that Nyinps(P) O Ng(p). Our experimentsin-
dicate that in real applications, for areasonable vaue of € and MinPts, this second case
is much more frequent than the first case.

7 Conclusions

Finding outliers is an important task for many KDD applications. All proposals so far
considered ‘being an outlier’ a binary property. We argue instead, that it is a property
that applies to a certadegree to each object in a data set, depending on how ‘isolated’
this object is, with respect to the surrounding clustering structure. We formally defined



the notion of an outlier factor, which captures exactly this relative degree of isolation.
The outlier factor is local by taking into account the clustering structure in a bounded
neighborhood of the object. We demonstrated that this notion is more appropriate for
detecting different types of outliersthan previous approaches. Our definitions are based
on the same theoretica foundation as density-based cluster analysis and we show how
to analyze the cluster structure and the outlier factors efficiently at the same time.

In ongoing work, we are investigating the properties of our approach in amore for-
mal framework, especialy with regard to the influence of the MinPts value. Future
work will include the devel opment of amore efficient and an incremental version of the
algorithm based on the results of thisanalysis.
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