
Fast Hierarchical Clustering Based on
Compressed Data and OPTICS

Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 Munich, Germany

{breunig | kriegel | sander}@dbs.informatik.uni-muenchen.de
phone: +49-89-2178-2225

fax: +49-89-2178-2192

Abstract: One way to scale up clustering algorithms is to squash the data by some
intelligent compression technique and cluster only the compressed data records.
Such compressed data records can e.g. be produced by the BIRCH algorithm. Typ-
ically they consist of the sufficient statistics of the form (N, X, X2) where N is the
number of points, X is the (vector-)sum, and X2 is the square sum of the points.
They can be used directly to speed up k-means type of clustering algorithms, but
it is not obvious how to use them in a hierarchical clustering algorithm. Applying
a hierarchical clustering algorithm e.g. to the centers of compressed subclusters
produces a very weak result. The reason is that hierarchical clustering algorithms
are based on the distances between data points and that the interpretaion of the
result relies heavily on a correct graphical representation of these distances. In this
paper, we introduce a method by which the sufficient statistics (N, X, X2) of sub-
clusters can be utilized in the hierarchical clustering method OPTICS. We show
how to generate appropriate distance information about compressed data points,
and how to adapt the graphical representation of the clustering result. A perfor-
mance evaluation using OPTICS in combination with BIRCH demonstrates that
our approach is extremely efficient (speed-up factors up to 1700) and produces
high quality results.

1 Introduction
Knowledge discovery in databases (KDD) is known as the non-trivial process of identi-
fying valid, novel, potentially useful, and understandable patterns in large amounts of
data. One of the primary data analysis tasks which should be applicable in this process
is cluster analysis. Therefore, improving clustering algorithms with respect to efficien-
cy and the quality of the results has received a lot of attention in the last few years in the
research community..

The goal of a clustering algorithm is to group objects into meaningful subclasses.
Applications of clustering are, e.g., the creation of thematic maps in geographic infor-
mation systems, the detection of clusters of objects in geographic information systems
and to explain them by other objects in their neighborhood, or the clustering of a Web-
log database to discover groups of similar access patterns corresponding to different
user profiles.

There are different types of clustering algorithms suitable for different types of ap-
plications. The most commonly known distinction is between partitioning and hierar-

Proc. 4th European Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD 2000), Lyon, France.

chical clustering algorithms (see e.g. [8]). Partitioning algorithms construct a partition
of a database D of n objects into a set of k clusters. Typical examples are the k-means [9]
and the k-medoids [8] algorithms. Most hierarchical clustering algorithms such as the
single link method [10] and OPTICS [1] do not construct a clustering of the database
explicitly. Instead, these methods compute a representation of the data set (single link:
dendrogram, OPTICS: reachability plot) which reflects its clustering structure. It de-
pends on the application context whether or not the data set is decomposed into definite
clusters. Heuristics to find a decomposition of a hierarchical representation of the clus-
tering structure exist, but typically the results are analyzed interactively by a user.

Clustering algorithms, in general, do not scale well with the size and/or dimension
of the data set. One way to overcome this problem is to use random sampling in combi-
nation with a clustering algorithm (see e.g. [6]). The idea is to apply a clustering algo-
rithm only to a randomly chosen subset of the whole database. The clustering for the
whole database is then “inferred” from the clustering of the subset. This usually leads to
a significant inaccuracy of the clustering, introduced by sampling variance.

Another approach is to use more intelligent data compression techniques to squash
the data into a manageable amount, and cluster only the compressed data records. This
approach has been pioneered in the BIRCH algorithm [11]. More general compression
techniques to support clustering algorithms are e.g. presented in [2], [4]. Compressed
data items can be produced by any of the above compression methods in linear time.
They are, however, tailored to k-means type of clustering algorithms. On the other hand,
it is not obvious how to use compressed data items in a hierarchical clustering algorithm
without unacceptably deteriorating the quality of the result.

In this paper, we show how compressed data items of the above form can be used in
the hierarchical clustering method OPTICS. For this purpose, we adapt the OPTICS al-
gorithm so that it can profit maximally from the information generated in the compres-
sion step. A detailed qualitative and performance analysis for real and synthetic data
sets is conducted using the BIRCH method for the compression step.

The rest of the paper is organized as follows. In section 2, we give the problem state-
ment in more detail. Section 3 elaborates on how OPTICS is extended to make optimal
use of the information generated by a common data compression step. In section 4, we
present basic experimental results and discuss the tradeoff between quality of the results
and improvement of the runtime for OPTICS when using compressed data. Finally,
section 7 concludes the paper.

2 Problem Statement
Specialized data compression methods have been developed to scale up clustering algo-
rithms. The sufficient statistics intended to support clustering algorithms are basically
the same for all these compression methods. As an example, we give a short description
of the method BIRCH and only discuss the major differences and the common features
for the other methods in this section. Then, we will show why a hierarchical clustering
algorithm cannot directly benefit from the compressed data while k-means type of clus-
tering algorithms are well supported.

The clustering method BIRCH [11] uses a highly specialized tree-structure for the
purpose of clustering very large sets of d-dimensional vectors. It incrementally com-
putes compact descriptions of subclusters, called Clustering Features.

Definition 1: (Clustering Feature, CF)
Given a set of n d-dimensional data points {Xi}, 1 ≤ i ≤ n. The Clustering Feature

(CF) for the set {Xi} is defined as the triple CF = (n, LS, ss), where

 is the linear sum and the square sum of the points.

The CF-values are sufficient to
compute information about
subclusters like centroid, radius
and diameter. They satisfy an
important additivity condition,
i.e. if CF1 = (n1, LS1, ss1) and
CF2 = (n2, LS2, ss2) are the
clustering features for sets of
points S1 and S2 respectively,
then CF1 + CF2 = (n1 + n2, LS1
+ LS2, ss1 + ss2) is the clustering feature for the set S1 ∪ S2.

The CFs are organized in a balanced tree with branching factor B and a threshold T
(see figure 1). A non-leaf node represents a subcluster consisting of all the subclusters
represented by its entries. A leaf node has to contain at most L entries and the diameter
of each entry in a leaf node has to be less than T.

BIRCH performs a sequential scan over all data points and builds a CF-tree similar
to the construction of B+-trees. A point is inserted by inserting the corresponding CF-
value into the closest leaf. If an entry in the leaf can absorb the new point without violat-
ing the threshold condition, its CF is updated. Otherwise, a new entry is created in the
leaf node, and, if the leaf node then contains more than L entries, it and maybe its ances-
tors are split. A clustering algorithm can then be applied to the entries in the leaf nodes
of the CF-tree.

Bradley et al. [2] propose another compression technique for scaling up clustering
algorithms. Their method produces basically the same type of compressed data items as
BIRCH, i.e. triples of the form (n, LS, ss) as defined above. The method is, however,
more specialized to k-means type of clustering algorithms than BIRCH in the sense that
the authors distinguish different sets of data items. A very general framework for com-
pressing data has been introduced recently by DuMouchel et al. [4]. Their technique is
intended to scale up a large collection of data mining methods.

The application of k-means type clustering algorithms to compressed data items is
rather straightforward. The k-means clustering algorithm represents clusters by the
mean of the points contained in that cluster. It starts with an assignment of data points to
k initial cluster centers, resulting in k clusters. It then iteratively performs the following
steps while the cluster centers change: 1) Compute the mean for each cluster. 2) Re-as-
sign each data point to the closest of the new cluster centers. When using CFs, the algo-
rithm just has to be extended so that it treats the triplets (n, LS, ss) as data points LS/n
with a weight of n when computing cluster means.

When we want to apply a hierarchical clustering algorithm to compressed data
items, however, it is not clear whether we can follow a similar approach, i.e. treat clus-
tering features as data points LS/n. Since hierarchical clustering algorithms do not com-
pute any cluster centers but use only distances between points and between clusters, the

LS Xi

i 1…n=
∑= ss Xi

2

i 1…n=
∑=

CF6=CF1+CF2+CF3 CF7=CF4+CF5

CF1 CF2 CF3 CF4 CF5

Fig. 1. CF-tree structure

CF8=CF6+CF7
. . .

. . .

. . .
. . .

main problem with this approach is that we need a new concept of how to utilize the
weight n of a clustering feature in a hierarchical clustering algorithm. Applying hierar-
chical clustering only to the set of centers LS/n of compressed data items (n, LS, ss) will
in general produce only very inferior results.

Figure 2 (a) shows the 2-dimensional example used throughout the paper. The data
set consists of 100,000 points grouped into several nested clusters of different densities
and distributions (uniform and gaussian). Figure 2 (b) is the “reachability plot” for this
data set produced by OPTICS. The “dents” in the plot represent the clusters, clearly
showing the hierarchical structure. For a detailed explanation of reachability plots and
their interpretation see [1]. Figure 2 (c) shows the distribution of the 1,484 clustering
feature centers produced by BIRCH and (d) the corresponding reachability plot.

The failure observed in the example results from the following two problems when
applying a hierarchical clustering algorithm to compressed data items:

• Hierarchical clustering algorithms need a notion of distance between data points
which is obviously not represented well by only the distance between cluster feature
centers. If we cannot infer some information about the distances between the points
compressed into a single clustering feature, a hierarchical clustering algorithm can-
not determine the correct clustering structure of the data set.

• Utilization of the output of a hierarchical clustering algorithm relies heavily on the
graphical representation of the result. If we cannot integrate an appropriate repre-
sentation of the number of points compressed into a single clustering feature, we
loose much of the information about the clustering structure of a data set.

3 Extending OPTICS to Process Compressed Input Data
In this section we review the hierarchical clustering method OPTICS [1], and define the
concept of Data Bubbles which contain information about compressed input data. We
then extend OPTICS to work on Data Bubbles instead of data points.

Fig. 2. 2-d example data set and its reachability plot

(a) data set (b) OPTICS on data set

(c) Data Bubble centers (d) OPTICS on Data Bubble centers

3.1 Review of OPTICS

First, we define the basic concepts of neighborhood and nearest neighbors.

Definition 2: (ε-neighborhood and k-distance of an object P)
Let P be an object from a database D, let ε be a distance value, let k be a natural num-
ber and let d be a distance metric on D. Then:

• the ε-neighborhood Nε(P) is a set of objects X in D with d(P,X) ≤ ε:
Nε(P) = { X ∈ D | d(P,X) ≤ ε },

• the k-distance of P, k-dist(P), is the distance d(P, O) between P and an object O ∈ D
such that at least for k objects O’ ∈ D it holds that d(P, O’) ≤ d(P, O), and for at most
k-1 objects O’ ∈ D it holds that d(P, O’) < d(P, O). Note that k-dist(P) is unique, al-
though the object O which is called ‘the’ k-nearest neighbor of P may not be unique.
When clear from the context, we write Nk(P) as a shorthand for Nk-dist(P)(P), i.e.
Nk(P) = { X ∈ D | d(P, X) ≤ k-dist(P)}.

The objects in the set Nk(P) are called the “k-nearest-neighbors of P” (although there
may be more than k objects contained in the set if the k-nearest neighbor of P is not
unique).

In [5] a density-based notion of clusters is introduced. The basic idea is that for each
object of a cluster, the ε-neighborhood has to contain at least a minimum number of ob-
jects. Such an object is a core object. Clusters are defined as maximal sets of density-
connected objects. An object P is density-connected to Q if there exists an object O such
that both P and Q are density-reachable from O (directly or transitively). P is directly
density-reachable from O if P ∈ Nε(O) and O is a core object. Thus, a flat partitioning
of a data set into a set of clusters is defined, using global density parameters. Very dif-
ferent local densities may be needed to reveal and describe clusters in different regions
of the data space. In [1] the density-based clustering approach is extended to create an
augmented ordering of the database representing its density-based clustering structure.
This cluster-ordering contains information which is equivalent to the density-based
clusterings corresponding to a broad range of parameter settings. This cluster-ordering
of a data set is based on the following notions of “core-distance” and “(density-)reach-
ability-distance”.

Definition 3: (core-distance of an object P)
Let P be an object from a database D, let ε be a distance value and let MinPts be a
natural number. Then, the core-distance of P is defined as

core-distε,MinPts(P) = .

The core-distance of an object P is the smallest distance ε’ ≤ ε such that P is a core ob-
ject with respect to ε’ and MinPts - if such a distance exists, i.e. if there are at least
MinPts objects within the ε-neighborhood of P. Otherwise, the core-distance is UNDE-
FINED.

UNDEFINED if |Nε P()| MinPts<,

MinPts-dist P() otherwise,

Definition 4: (reachability-distance of an object P w.r.t. object O)
Let P and O be objects, P ∈ Nε(O), let ε be a distance value and let MinPts be a natural

number. Then, the reachability-distance of P with respect to O is defined as

reach-distε,MinPts(P, O) = .

Intuitively, reach-dist(P,O) is the smallest distance such
that P is directly density-reachable from O if O is a core
object. Therefore reach-dist(P,O) cannot be smaller than
core-dist(O) because for smaller distances no object is
directly density-reachable from O. Otherwise, if O is not
a core object, reach-dist(P,O) is UNDEFINED. Figure 3
illustrates these notions.

Using the core- and reachability-distances, OPTICS
computes a “walk” through the data set, and assigns to
each object O its core-distance and the smallest reacha-
bility-distance with respect to an object considered be-
fore O in the walk (see [1] for details). This walk satis-
fies the following condition: Whenever a set of objects C
is a density-based cluster with respect to MinPts and a
value ε’ smaller than the value ε used in the OPTICS algorithm, then a permutation of C
(possibly without a few border objects) is a subsequence in the walk. Therefore, the
reachability-plot, which consists of the reachability values of all objects, plotted in the
OPTICS ordering, yields an easy to understand visualization of the clustering structure
of the data set. Roughly speaking, a low reachability-distance indicates an object within
a cluster, and a high reachability-distance indicates a noise object or a jump from one
cluster to another cluster.

3.2 From Sufficient Statistics to Data Bubbles

In section 2, we have seen different methods to compute subsets of the input data and
sufficient statistics for these sets containing the number of points, the linear sum and the
square sum. Based on these statistical information we define Data Bubbles as a conve-
nient abstraction on which density-based hierarchical clustering can be done.

Definition 5: (Data Bubble)
Let X={Xi}, 1 ≤ i ≤ n be a set of n d-dimensional data points.
Then, a Data Bubble B is defined as a triple B = (n, M, e), where

 is the center of X, and

is called the extent of X (i.e. the average pairwise distance between the points in X).

Data Bubbles are a compressed representation of the sets of points they describe. If the
points are approximately uniformly distributed around the center, a sphere of radius ex-
tent around the center will contain most of the points described by the Data Bubble. The
following lemma shows how to compute Data Bubbles from sufficient statistics.

UNDEFINED if |Nε O() | MinPts<,

max core-distε MinPts, O() d O P,(),(),otherwise

ε

o

p1

p2

co
re

(o
)

r(p2)

r(p1)

Fig. 3. core-dist(O),
reach-dists r(P1,O), r(P2,O)

MinPts=4

M Xi

i 1…n=
∑

n⁄= e

Xi Xj–()

j 1..n=
∑

i 1..n=
∑

2

n n 1–()⋅
---=

Corollary 1:
Let X={Xi}, 1 ≤ i ≤ n be a set of n d-dimensional data points. Let LS be the linear sum

and ss the square sum of the points in X as defined in definition 1. Then, the Data

Bubble B describing X is equal to .

3.3 Basing OPTICS on Data Bubbles by Modifying the core-dist and reach-dist

In any state, the OPTICS algorithm needs to
know which data object is closest to the ones
considered so far. To extend OPTICS to work
on Data Bubbles, we therefore need a suitable
measure for the distance between Data Bubbles.
Given a distance between Data Bubbles, it is
possible to extend the OPTICS algorithm by de-
fining a suitable core- and reachability-distance
for Data Bubbles.

If we assume that a Data Bubble B is a good
description of its points, i.e. that all (or almost
all) points it describes are inside a sphere of the
extent of B around the center of B, we can com-
pute the expected k-nearest neighbor distance of
the points in B in the following way:

Lemma 1: (expected k-nearest neighbor distance inside a Data Bubble B)
Let B = (n, M, e) be a Data Bubble of dimension d. If the n points described by B are
uniformly distributed inside a sphere with center M and radius e, then the expected k-

nearest neighbor distance of B is then equal to .

Proof: The volume of a d-dimensional sphere of radius e is

(where Γ is the Gamma-Function). If the n points are uniformly distributed in such
a sphere, we expect exactly one point in the volume VS(e) / n and k points in the

volume k VS(e) / n, which is exactly the volume of a sphere of radius nndist(k, B).■

Using the radius and the expected k-nearest neighbor distance, we can now define a dis-
tance measure between two Data Bubbles that is suitable for OPTICS.

Definition 6: (distance between two Data Bubbles)
Let B=(n1, M1, e1) and C=(n2, M2, e2) be two Data Bubbles and k a natural number.
Then, the k-distance between B and C is defined as

 .

B n
LS
n

------ 2 n ss 2 LS
2⋅–⋅ ⋅

n n 1–()⋅
---, ,

=

dist(B.M,C.M)

B.M C.M

distk(B,C)

(a) non-overlapping Data Bubbles

B.M

(b) overlapping Data Bubbles

Fig. 4. distance of Data Bubbles

C.M

nndist k B,() k
n

 1 d⁄
e⋅=

VS e() πd

Γ d
2
--- 1+

---------------------- e

d⋅=

distk B C,()
dist M1 M2,() e1 e2+()– nndist k B,() nndist k C,()+ +

if dist M1 M2,() e1 e2+()– 0≥
max nndist k B,() nndist k C,(),() otherwise

=

We have to distinguish two cases (c.f. figure 4). The distance between two non overlap-
ping Data Bubbles is the distance of their centers, minus their radii plus their expected
k-nearest neighbor distances. If the Data Bubbles overlap, their distance is the maxi-
mum of their expected k-nearest neighbor distances. Intuitively, this distance definition
is intended to approximate the distance of the two closest points in the Data Bubbles.
Using this distance, we can define the notion of a core-distance and a reachability-dis-
tance.

Definition 7: (core-distance of a Data Bubble B)
Let B be a Data Bubble, let ε be a distance value and let MinPts be a natural number.
Then, the core-distance of B is defined as

core-distε,MinPts(B) = ,

where C is the Data Bubble in Nε(B) with minimal dist(B, C) such that

 holds.

Note that core-distε,MinPts(B=(n,M,e))=0 if n ≥ MinPts.
This definition is based on a similar notion as the core-distance for data points. For

points, the core-distance is undefined if the number of points in the ε-neighborhood is
smaller than MinPts. Analogously, the core-distance for Data Bubbles is undefined if
the sum of the numbers of points represented by the Data Bubbles in the ε-neighbor-
hood is smaller than MinPts. For points, the core-distance (if defined) is the distance to
the MinPts-neighbor. For Data Bubbles, it is the distance to the Data Bubble containing
the MinPts-neighbor.

Given the core-distance, the reachability-distance for Data Bubbles is defined in the
same way as the reachability-distances on data points.

Definition 8: (reachability-distance of a Data Bubble B w.r.t. Data Bubble C)
Let B and C be Data Bubbles, B ∈ Nε(C), let ε be a distance value and let MinPts be
a natural number. Then, the reachability-distance of B with respect to C is defined as

reach-distε,MinPts(B, C)= .

UNDEFINED if n

X n M e, ,() Nε B()∈=
∑

MinPts<

dist B C,() otherwise

n

X n M e, ,() Nε B() dist B X,() dist B C,()<∧∈=
∑

MinPts≥

UNDEFINED if n

X n M e, ,() Nε B()∈=
∑

MinPts<,

max core-distε MinPts, C() dist C B,(),() otherwise

3.4 Modifying the Output

In order to handle the output correctly, we need to define a virtual reachability for the
data points described by a Data Bubble B=(n, M, e). If we assume that the points de-
scribed by B are uniformly distributed in a sphere of radius e around the center M, and B
describes at least MinPts points, we expect the reachability of most of these points to be
close to the MinPts-nearest neighbor distance. If, on the other hand, B contains less than
MinPts points, we expect the core-distance of any of these points to be close to the core-
distance of B itself. We use this heuristics to define the virtual reachability as an approx-
imation of the true, but unknown, reachability of the points described by B.

Definition 9: (virtual reachability of a Data Bubble B w.r.t Data Bubble C)
Let B=(n, M, e) and C be Data Bubbles and MinPts a natural number. The virtual
reachability of the N points described by B w.r.t. C is then defined as

virtual-reachability(B, C) = .

As Data Bubbles can contain strongly varying numbers of data points, we need to weigh
each Data Bubble by the number its data points, if we want to maintain the proportional
sizes of the clusters in the reachability plot. The output of the original OPTICS algo-
rithm is generated by appending the reachability of the next chosen data point to the out-
put file. When outputting a Data Bubble B, we first append the reachability of B to the
output file (marking the jump to B) followed by n-times the virtual reachability of B
(marking the n points that B describes).

4 Experimental Evaluation

4.1 Efficiency

In figure 5 the speed-up factors
of OPTICS on Data Bubbles
over “pure” OPTICS for differ-
ent dimensional data are shown
for a constant compression to
approx. 1000 Data Bubbles.
The size of the input data sets
ranges from 50,000 points to
400,000 points. All data sets
contain 30% noise and 10 clus-
ters of random locations and
sizes. The speed-up ranges from
a factor of about 50 for small
data sets to more than 1,700 for large, high-dimensional data. This is the wall-clock
speed-up, i.e. it includes both CPU and I/O-time.

For “pure” OPTICS, an index structure [3] supported the range-queries (the index
build time is not included; if it were, the speed-up would be even higher!), while OP-
TICS on the Data Bubbles used the sequential scan. We expect the scale-up to be ap-
prox. constant.

nndist MinPts B,() if n MinPts≥
reach-dist B C,() otherwise

0

400

800

1200

1600

2000

0 100 200 300 400 500
n [*1000]

sp
ee

d
u

p
 f

ac
to

r

2d
5d
10d

Fig. 5. Speed-up Factors

4.2 Understanding the Trade-off between Quality and Efficiency

We have seen so far that we gain large performance improvements by trading in rela-
tively small amounts of quality. To get a better understanding of the trade-off involved
see figure 6, which shows different compressed representations. For each of these, the
runtime is depicted in the graph on the left side, followed by the number of Data Bub-
bles (DB) and the percentage of Data Bubbles relative to the number of original data
points. Furthermore, each compression is visualized as a 2-dimensional plot, where the
Data Bubbles B=(n, M, e) are shown as circles with center M and radius e. Finally, on
the far right side we see the reachability plots generated from these Data Bubbles. Note
that sometimes the order of the clusters in the reachability switches; this is a positive
effect of the non-deterministic choices in the walk that OPTICS allows for.

The compression rate increases from top to bottom, i.e. the Data Bubbles get larger
and the reachability plots become coarser. The top-most experiment, in which the data
is compressed by 86.4%, shows no visible deterioration of quality at all. Compression
rates of 94.6% and 98.5% show almost none. With a compression rate of 99.5%, the
general clustering structure is still visible, with the one exception that the star-formed
cluster consisting of 7 small, gaussian subclusters, starts to loose its internal structure.
And even for the most extreme case on the bottom, in which the 100,000 data points are
compressed into just 228 Data Bubbles, the general clustering structure is still preserved
rather well.

0

20

40

60

80

100

120

140

0.85 0.88 0.9 0.93 0.95 0.98 1

compression factor

ru
n

ti
m

e
[s

ec
]

13.6 %

5.4 %

1.5 %

0.2%

original data:

127 sec

34 sec

12 sec

6.7 sec

13611 DB

5351 DB

1484 DB

228 DB

100,000 points
runtime=383 sec

Fig. 6. Trade-off Quality vs. Performance

5 Conclusions
In this paper, we adapt the hierarchical clustering algorithm OPTICS to work on

compressed data. First, we generate Data Bubbles consisting of essential information
about compressed data points. Second, we adapt OPTICS to take Data Bubbles as input
and make maximal use of the contained information. Third, we modify the graphical
representation of the OPTICS result accordingly. Combining OPTICS with the com-
pression technique BIRCH yields performance speed-up-factors between 50 and more
than 1,700 for large, high-dimensional data sets, while at the same time maintaining the
high quality of the clustering results.

Currently, we are evaluating the quality of our approach on high-dimensional data.
In the future, we plan to compare data compression with sampling and to utilize other
data compression methods to further improve the quality of the results, e.g. by using
higher-order moments. We are also investigating how to extend the method to categori-
cal data sets.

Acknowledgments
We thank the authors of BIRCH for making their code available to us and Ekkehard
Krämer for his help with the implementation.

References
1. Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.: “OPTICS: Ordering Points To Identify the

Clustering Structure”, Proc. ACM SIGMOD’99 Int. Conf. on Management of Data,
Philadelphia, 1999, pp. 49-60.

2. Bradley P. S., Fayyad U., Reina C.: “Scaling Clustering Algorithms to Large Databases”, Proc.
4th Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, AAAI Press, 1998,
pp. 9-15.

3. Berchthold S., Keim D., Kriegel H.-P.: “The X-Tree: An Index Structure for High-Dimensional
Data”, 22nd Conf. on Very Large Data Bases, Bombay,India,1996, pp. 28-39.

4. DuMouchel W., Volinsky C., Johnson T., Cortez C., Pregibon D.: “Sqashing Flat Files Flatter“,
Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining, San Diego, CA, AAAI Press,
1999, pp. 6-15.

5. Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise”, Proc. 2nd Int. Conf. on Knowledge Discovery and
Data Mining, Portland, OR, AAAI Press, 1996, pp. 226-231.

6. Ester M., Kriegel H.-P., Xu X.: “Knowledge Discovery in Large Spatial Databases: Focusing
Techniques for Efficient Class Identification”, Proc. 4th Int. Symp. on Large Spatial Databases
(SSD'95), Portland, ME, 1995, LNCS 591, Springer, 1995, pp. 67-82.

7. Fayyad U., Piatetsky-Shapiro G., Smyth P.: “Knowledge Discovery and Data Mining: Towards
a Unifying Framework”. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining,
Portland, OR, 1996, pp. 82-88.

8. Kaufman L., Rousseeuw P. J.: “Finding Groups in Data: An Introduction to Cluster Analysis”,
John Wiley & Sons, 1990.

9. MacQueen, J.: “Some Methods for Classification and Analysis of Multivariate Observations”,
Proc. 5th Berkeley Symp. on Math. Statist. and Prob., Vol. 1, 1965, pp. 281-297.

10. Sibson R.: “SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method”, The
Computer Journal, Vol. 16, No. 1, 1973, pp. 30-34.

11. Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient Data Clustering Method for Very
Large Databases”, Proc. ACM SIGMOD Int. Conf. on Management of Data, ACM Press, New
York, 1996, pp. 103-114.

