
Ranking Interesting Subspaces for Clustering
High Dimensional Data?

Karin Kailing, Hans-Peter Kriegel, Peer Kröger, and Stefanie Wanka

Institute for Computer Science
University of Munich

Oettingenstr. 67, 80538 Munich, Germany
{kailing | kriegel | kroegerp | wanka}@dbs.informatik.uni-muenchen.de

Abstract. Application domains such as life sciences, e.g. molecular bi-
ology produce a tremendous amount of data which can no longer be man-
aged without the help of efficient and effective data mining methods. One
of the primary data mining tasks is clustering. However, traditional clus-
tering algorithms often fail to detect meaningful clusters because of the
high dimensional, inherently sparse feature space of most real-world data
sets. Nevertheless, the data sets often contain clusters hidden in various
subspaces of the original feature space. We present a pre-processing step
for traditional clustering algorithms, which detects all interesting sub-
spaces of high-dimensional data containing clusters. For this purpose, we
define a quality criterion for the interestingness of a subspace and pro-
pose an efficient algorithm called RIS (Ranking I nteresting Subspaces)
to examine all such subspaces. A broad evaluation based on synthetic
and real-world data sets empirically shows that RIS is suitable to find
all relevant subspaces in large, high dimensional, sparse data and to rank
them accordingly.

1 Introduction

The tremendous amount of data produced nowadays in various application do-
mains such as molecular biology can only be fully exploited by efficient and
effective data mining tools. One of the primary data mining tasks is clustering
which is the task of partitioning objects of a data set into distinct groups (clus-
ters) such that two objects from one cluster are similar to each other, whereas
two objects from distinct clusters are not.

Considerable work has been done in the area of clustering. Nevertheless, clus-
tering real-world data sets often raises problems, since the data space is usually
a high dimensional feature space. A prominent example is the application of
cluster analysis to gene expression data. Depending on the goal of the applica-
tion, the dimensionality of the feature space can be up to 102 when clustering
? The work is supported in part by the German Ministery for Education, Science,

Research and Technology (BMBF) under grant no. 031U112F within the BFAM
(Bioinformatics for the Functional Analysis of Mammalian Genomes) project which
is part of the German Genome Analysis Network (NGFN).

dbs dbs
in Proc. Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD), Dubrovnic, Croatia, 2003.

dbs dbs
Lecture Notes in Artificial Intelligence (LNAI), Vol. 2838, pp. 241-252, © Springer-Verlag, 2003.

the genes and can be in the range of 103 to more than 104 when clustering the
samples. In general, most of the common clustering algorithms fail to generate
meaningful results because of the inherent sparsity of the data space. In such
high dimensional feature spaces data does not cluster anymore. But usually,
there are clusters in lower dimensional subspaces. In addition, objects can often
be clustered differently in varying subspaces, i.e. objects may be grouped with
different objects when subspaces vary. Again, gene expression data is a promi-
nent example. When clustering the genes to detect co-regulated genes, one has
to cope with the problem, that usually the co-regulation of the genes can only be
detected in subsets of the samples (attributes). In other words, different subsets
of the samples are responsible for different co-regulations of the genes. When
clustering the samples this situation is even worse. As different phenotypes are
hidden in varying subsets of the genes, the samples could usually be clustered
differently according to various phenotypes, i.e. in varying subspaces.

1.1 Related Work

A common approach to cope with the curse of dimensionality for data mining
tasks are dimensionality reduction or methods. In general, these methods map
the whole feature space onto a lower-dimensional subspace of relevant attributes,
using e.g. principal component analysis (PCA) and singular value decomposition
(SVD). However, the transformed attributes often have no intuitive meaning
any more and thus the resulting clusters are hard to interpret. In some cases,
dimensionality reduction even does not yield the desired results (e.g. [1] presents
an example where PCA does not reduce the dimensionality). In addition, using
dimensionality reduction techniques, the data is clustered only in a particular
subspace. The information of objects clustered differently in varying subspaces
is lost. This is also the case for most common feature selection methods.

A second approach for coping with clustering high-dimensional data is pro-
jected clustering, which aims at computing k pairs (Ci, Si)(0≤i≤k) where Ci is
a set of objects representing the i-th cluster, Si is a set of attributes spanning
the subspace in which Ci exists (i.e. optimizes a given clustering criterion), and
k is a user defined integer. Representative algorithms include the k-means re-
lated PROCLUS [2], ORCLUS [3] and the density-based approach OptiGrid

[4]. While the projected clustering approach is more flexible than dimensionality
reduction, it also suffers from the fact that the information of objects which
are clustered differently in varying subspaces is lost. Figure 1(a) illustrates this
problem using a feature space of four attributes A,B,C, and D. In the subspace
AB the objects 1 and 2 cluster together with objects 3 and 4, whereas in the
subspace CD they cluster with objects 5 and 6. Either the information of the
cluster in subspace AB or in subspace CD will be lost.

The most informative approach for clustering high-dimensional data is sub-
space clustering which is the task of automatically identifying (in general several)
subspaces of a high dimensional data space that allow better clustering of the
data objects than the original space [1]. One of the first approaches to subspace
clustering is CLIQUE [1], a grid-based algorithm using an Apriori -like method

Fig. 1. Drawbacks of existing approaches (see text for explanation).

to recursively navigate through the set of possible subspaces in a bottom-up
way. The dataspace is first partitioned by an axis-parallel grid into equi-sized
blocks of width ξ called units. Only units whose densities exceed a threshold
τ are retained. Both ξ and τ are the input parameters of CLIQUE. A cluster
is defined as a maximal set of connected dense units. Successive modifications
of CLIQUE include ENCLUS [5] and MAFIA [6]. But the information gain of
these approaches is also sub-optimal. As they only provide clusters and not com-
plete partitionings of some subspaces, we do not get the information in which
subspaces the whole dataset clusters best. Another drawback of these methods
is caused by the use of grids. In general, grid-based approaches heavily depend
on the positioning of the grids. Clusters may be missed if they are inadequately
oriented or shaped. Figure 1(b) illustrates this problem for CLIQUE: Each grid
by itself is not dense, if τ > 4, and thus, the cluster C is not found. On the other
hand if τ = 4, the cell with four objects in the lower right corner just above the
x-axis is reported as a cluster.

Another recent approach called DOC [7] proposes a mathematical formu-
lation for the notion of an optimal projected cluster, regarding the density of
points in subspaces. DOC is not grid-based but as the density of subspaces is
measured using hypercubes of fixed width w, it has similar problems drafted
in Figure 1(c). If a cluster is bigger than the hypercube, some objects may be
missed. Furthermore, the distribution inside the hypercube is not considered,
and thus it need not necessarily contain only objects of one cluster.

1.2 Contributions

In this paper, we propose a new approach which eliminates the problems men-
tioned above and enables the user to gain all the clustering information contained
in high-dimensional data. We present a preprocessing step, which selects all in-
teresting subspaces using a density-connected clustering notion. Thus we are
able to detect all subspaces containing clusters of arbitrary size and shape. We

first define the “interestingness” of subspaces in Section 2 and provide a quality
criterion to rank the subspaces according to their interestingness. Afterwards
any traditional clustering algorithm (e.g. the one the user is accustomed to) can
be applied to these subspaces. In Section 3, we present an efficient density-based
algorithm called RIS (Ranking I nteresting Subspaces) for computing all those
subspaces. A broad experimental evaluation of RIS based on artificial as well as
on gene expression data is presented in Section 4. Section 5 draws conclusions.

2 Ranking Interesting Subspaces

2.1 Preliminary Definitions

Let DB be a data set of n objects with dimensionality d. We assume, that DB
is a database of feature vectors (DB ⊆ IRd). All feature vectors have normalized
values, i.e. all values fall into [0, attrRange] for a fixed attrRange ∈ IR+. Let
A = {a1, . . . , ad} be the set of all attributes ai of DB. Any subset S ⊆ A,
is called a subspace. The projection of an object o into a subspace S ⊆ A is
denoted by πS(o). The distance function is denoted by dist. We assume that
dist is one of the Lp-norms. The ε-neighborhood of an object o is defined by
Nε(o) = {x ∈ DB | dist(o, x) ≤ ε}. The ε-neighborhood of an object in a
subspace S ⊆ A is denoted by N S

ε (o) := {x ∈ DB | dist(πS(o), πS(x)) ≤ ε}.

2.2 Interestingness of a Subspace

Our approach to rate the interestingness of subspaces is based on a density-
based notion of clusters. This notion is a common approach for clustering used by
various clustering algorithms such as DBSCAN [8], DENCLUE [9], and OPTICS
[10]. All these methods search for regions of high density in a feature space that
are separated by regions of lower density. We adopt the notion of [8] to define
“dense regions” by means of core-objects:

Definition 1. (Core-Object)
Let ε ∈ IR and MinPts ∈ IN . An object o is called core object if | Nε(o) | ≥
MinPts.

The core-object property is the key concept of the formal density-connected
clustering notion in [8]. This property can also be used for deciding about the
interestingness of a subspace. Obviously, if a subspace contains no core-object, it
contains no dense region (cluster) and therefore contains no relevant information.

Observation 1. The number of core-objects of a dataset DB (wrt. ε and MinPts)
is proportional to the number of different clusters in DB and/or the size of the
clusters in DB and/or the density of clusters in DB.

This observation can be used to rate the interestingness of subspaces. How-
ever, simply counting all the core objects for each subspace delivers not enough
information. Even if two subspaces contain the same number of core-objects the

quality may differ a lot. Dense regions contain objects which are no core-objects
but lie within the ε-neighborhood of a core-object and are thus a vital part of
the dense region. Therefore, it is not only interesting how many core-objects a
subspace contains but also how many objects lie within the ε-neighborhood of
these core-objects. In the following the variable count[S] denotes the sum of all
points lying in the ε-neighborhood of all core-objects in the subspace S. The
number of core-objects of S is denoted by core[S]. If we measure the interest-
ingness of a subspace according to its count[S] value and rank all subspaces
according to this quality value, two problems are not adressed. Since naturally
with each dimension the number of expected objects in the ε-neighborhood of
an object decreases, this naive quality value favors lower dimensional subspaces
over higher dimensional ones. To overcome this problem we introduce a scaling
coefficient that takes the dimensionality of the subspace into account. We take
the ratio between the count[S] value and the count[S] value we would get if all
data objects were uniformly distributed in S. For that purpose, we compute the
volume of a d-dimensional ε-neighborhood denoted by Voldε and the number of
objects lying in Voldε assuming uniform distribution.

Definition 2. The quality of a subspace S, measuring the interestingness of S
is defined by:

Quality(S) =
count[S]

n · Voldim[S]
ε ·n

attrRangedim[S]

If dist is the L∞-norm, Voldε is a hypercube and can be computed by Voldε =
(2ε)d, or if dist is the Euclidian distance (L2-norm) Voldε is a hypersphere and
can be computed as given below:

Voldε =

√
πd

Γ (d/2 + 1)
· εd

where Γ (x+ 1) = x · Γ (x), Γ (1) = 1 and Γ (1
2) =

√
π.

The second problem is the phenomenon that in high-dimensional spaces
more and more points are located on the boundary of the data space. The ε-
neighborhoods of these objects are smaller because they exceed the borders of
the data space. In [11] the authors show that the average volume of the inter-
section of the data space and a hypersphere with radius ε can be expressed as
the integral of a piecewise defined function integrated over all possible positions
of the ε-neighborhood, i.e the core-objects. For our implementation we choose a
less complex heuristics to eliminate this effect based on periodical extensions of
the data space (cf. Section 3.2 for details).

For two arbitrary subspaces U, V ∈ IRd this quality criterion has two com-
plementary effects which are summerized in the following observation:

Observation 2. Let U ⊃ V . Then the following inequalities hold:

1. core[U] ≤ core[V] and count [U] ≤ count [V].
2. If core[U] = core[V] and count [U] = count [V] then Quality(U) > Quality(V).

Fig. 2. Visualisation of Lemma 1 for MinPts = 5 (2D feature space).

The first observation states that, while navigating through the subspaces
bottom-up, at a certain point the core-objects loose their core-object property
due to the addition of irrelevant features and thus the quality decreases. On the
other hand, as long as this is not the case, the features are relevant for the cluster
and the quality increases.

2.3 General Idea of Finding Interesting Subspaces

A straightforward approach would be to examine all possible subspaces (e.g.
bottom-up). The problem is, that the number of subspaces is 2d. Basically all
subspaces that do not contain any core-object can be dropped since they cannot
contain any clusters. Furthermore, the core-object condition is decreasing strictly
monotonic:

Lemma 1. (Monotonicity of Core-Object Condition)
Let o ∈ DB and S ⊆ A be an attribute subset. If o is a core-object in S, then it
is also a core-object in any subspace T ⊆ S wrt. ε and MinPts, formally:

∀T ⊆ S : |N S
ε (o)| ≥ MinPts ⇒ |N T

ε (o)| ≥ MinPts.

Proof. ∀x ∈ N S
ε (o) the following holds:

dist(πS(o), πS(x)) ≤ ε⇒ p

√ ∑
ai∈S

(πai(o)− πai(x))p ≤ ε T⊆S⇒

p

√ ∑
ai∈T

(πai(o)− πai(x))p ≤ ε⇒ dist(πT (o), πT (x)) ≤ ε⇒ x ∈ N T
ε (o)

It follows that |N T
ε (o)| ≥ |N S

ε (o)| ≥ MinPts ut
The Lemma is visualized in Figure 2(a). The reverse conclusion of Lemma 1

is illustrated in Figure 2(b) and states: If an object o is not a core-object in T ,
then o is also not a core-object in any super-space S ⊃ T .

The next sections will present in detail, how this property helps to eliminate
a lot of subspaces in the process of generating all relevant subspaces in a bottom-
up process.

RIS(SetOfObjects, Eps, MinPts)

Subspaces := emptySet;

FOR i FROM 1 TO SetOfObjects.size() DO

Object := SampleObjects.get(i);

RelevantSubspaces := GenerateSubspaces(Object,SetOfObjects);

Subspaces.add(RelevantSubspaces);

END FOR

Subspaces.prune();

Subspaces.sort();

END //RIS

Fig. 3. The RIS algorithm.

3 Implementation of RIS

3.1 Algorithm

Given a set of objects DB and density parameters ε and MinPts, RIS finds
all interesting subspaces and presents them to the user ordered by relevance.
For each object, RIS computes a set of relevant subspaces. All these sets are
then merged. A pruning and sorting procedure is applied to the resulting set of
subspaces. The pseudocode of the algorithm RIS is given in Figure 3. For each
object o ∈ DB, all subspaces in which the core-object condition holds for o, are
computed. This step will be described in detail in Section 3.2. Let us note that the
algorithm can also be applied to a sample of DB, e.g. for performance reasons
(cf. Section 4.3). For each detected subspace, statistical data is accumulated.
The detected subspaces are pruned according to certain criteria. In Section 3.3,
these criteria will be discussed. Finally, the subspaces are sorted for a more
comprehensible user presentation. The clustering in these subspaces can then be
done by any clustering algorithm.

3.2 Efficient Generation of Subspaces

For a given object o ∈ DB, the method GenerateSubspaces finds all subspaces
S in which the core-object condition holds wrt. ε and MinPts. Formally, it com-
putes the following set: Ko := {T ⊆ A | |N T

ε (o)| ≥ MinPts}.
The problem of finding the set Ko is equivalent to the problem of determining

all frequent itemsets in the context of mining association rules [12] when using
the L∞-norm as distance function and thus can be computed rather efficiently1:

For each x ∈ DB a transaction Tx ⊆ A is defined, such that,

ai ∈ Tx ⇔ |πai(x)− πai(o) | ≤ ε for all i ∈ {1, . . . , d}.
1 Let us note that the use of L∞-norm is no serious constraint. The only difference is

that by using the L∞ norm we may find additional core-objects and thus additional
subspaces. However, these additional subspaces get low quality values anyway.

Lemma 2.

Ko = {T ⊆ A | SuppDB(T) ≥ MinPts

|DB|
} where SuppDB(T) =

|{x ∈ DB |T ⊆ Tx}|
|DB|

Proof. T ⊆ A ∧ |NT
ε (o)| ≥ MinPts

⇔ T ⊆ A ∧ |{x ∈ DB | distL∞(πT (o), πT (x)) ≤ ε}| ≥ MinPts
⇔ T ⊆ A ∧
|{x ∈ DB | ∀i ∈ {1, . . . , d} : ai ∈ T ⇒ |πai(o)− πai(x)| ≤ ε}| ≥ MinPts

⇔ T ⊆ A ∧ |{x ∈ DB |T ⊆ Tx}| ≥ MinPts ⇔ T ⊆ A ∧ SuppDB(T) ≥ MinPts
|DB|

ut
The method GenerateSubspaces extends the familar Apriori [12] algorithm

in accumulating the statistical information for measuring the subspace quality
using the monotonicity of the core-object condition (cf. Lemma 1). As men-
tioned before, we are extending the data space periodically to ensure that all
ε-neighborhoods have the same size. This can be done very easily by changing the
way the transactions are defined. Instead of only checking if |πai(x)−πai(o)| ≤ ε
we have to check if |πai(x)− πai(o)| ≤ ε or |πai(x)− πai(o)| ≥ attrRange − ε.

3.3 Pruning of Subspaces

As we are only interested in the subspaces which provide the most information,
we can perform the following downward pruning step to eliminate redundant
subspaces: If there exists a (k + 1)-dimensional subspace S, with higher quality
than the k-dimensional subspace T (S ⊃ T), we delete T .

For the second pruning, we assume, that for a given data set the k-dimensional
subspace S reflects the clustering in that special data set in a best possible
way. Thus, its quality value and the quality values of all its (k − 1)-dimensional
subspaces T1, . . . , Tm is high. On the other hand, if we combine one of these
(k − 1)-dimensional subspaces T1, . . . , Tm with another 1-dimensional subspace
with lower quality, the quality of the resulting k-dimensional subspace can still
be good. But as we know that it does not reflect the clustering in a best pos-
sible way, we are not interested in this k-dimensional subspace. The following
heuristic upward pruning eliminates such subspaces. Let S be a k-dimensional
attribute space and Sk−1 := {T |T ⊂ S∧dim[T] = k−1} be the set of all (k−1)-
dimensional subspaces of S. Let count be the mean count value of all T ∈ Sk−1

and s be the standard deviation. Let maxdiff := max
T∈Sk−1

(| count[T]− count|) be

the maximum deviation of the count-values of all T ∈ Sk−1 from the mean count-
value. Then, the so-called bias-value can be computed as follows: bias = s

maxdiff .
If this bias-value falls below a certain threshhold, we prune the k-dimensional
subspace S. Experimental evaluations indicate that 0.56 is a good value for this
bias-criterion.

3.4 Determination of Density Parameters

A heuristic method, which is experimentally shown to be sufficient, suggests
MinPts ≈ ln(n) where n is the size of the database. Then, ε must be picked

depending on the value of MinPts. In [8] a simple heuristics is presented to
determine the ε of the ”thinnest” cluster in the database (for a given MinPts).
But as we do not know beforehand in which subspaces clusters will be found, we
cannot determine ε to find a single subspace with one particular clustering. Quite
the contrary, we want to choose the parameters such that RIS detects subspaces
which might have clusters of different density and different dimensionality.

However, we can determine an upper bound for ε for a given value of MinPts.
If we take uniform distribution as worst case, the ε-neighborhood of an object
should not contain more than MinPts− 1 objects in the full-dimensional space.
Otherwise all objects are core-objects. In case of the L∞-norm an upper bound
for ε can be computed as follows:

n · Voldε
attrRangedim

< MinPts
L∞=⇒ ε <

attrRange

2
· dim
√

MinPts
n

where dim = d. If we have any knowledge about the dimensionality of the
subspaces we want to find, we can further decrease the upper bound by setting
dim to the highest dimension of such a subspace.

This upper bound is very rough. Nevertheless, it provides a good indication
for the choice of ε. Indeed, it empirically turned out, that upperbound/4 is a
reasonable choice for ε. Experiments on synthetic data sets show, that our sug-
gested criteria for the choice of the density parameters are sufficient to detect
the relevant subspaces containing clusters.

4 Performance Evaluation

We tested RIS using several synthetic as well as a real-world data set. The
experiments were run on a workstation with a 1.7 GHz CPU and 2 GB RAM.

The synthetic data sets were generated by a self-implemented data generator.
It permits to control the size and structure of the generated data sets through
parameters such as number and dimensionality of subspace clusters, dimension-
ality of the feature space and density parameters for the whole data set as well
as for each cluster. In a subspace that contains a cluster the average density of
data points in that cluster is much larger than the density of points not belong-
ing to the cluster in this subspace. In addition, it is ensured, that none of the
synthetically generated data sets can be clustered in full dimensional space.

The real world data set is the well-studied gene expression data set of Spell-
man et al. [13] analyzing the yeast mitotic cell cycle. We only chose the data
of the cdc15 mutant and eliminated all genes having missing attribute values.
The resulting test data set consists of approximately 4400 genes expressed at 24
different time spots.

A subsequent clustering of the data sets in the detected subspaces was per-
formed for each experiment using the above mentioned algorithm OPTICS to
validate the interestingness of the subspaces computed by RIS.

4.1 Effectiveness Evaluation

Synthetic Data Sets. We evaluated the effectiveness of RIS using several
synthetic data sets of varying dimensionality. The data sets contained between
two and five overlapping clusters in varying subspaces. In all experiments, RIS
detected the correct subspaces in which clusters exist and assigned the highest
quality values to them. All higher dimensional subspaces which were generated,
were removed by the upward pruning procedure.
Gene Expression Data. We also applied RIS to the above described gene
expression data set. A clustering using OPTICS in the two top-ranked subspaces
provided several clusters. The first subspace spanned by the time spots 90, 110,
130, and 190 contains three biologically relevant clusters with several genes play-
ing a central role during mitosis2. For example, cluster 1 consists of the genes
CDC25 (starting point for mitosis), MYO3 and NUD1 (known for an active
role during mitosis) and various other transcription factors (e.g. CHA4, ELP3)
necessary during the cell cycle. Cluster 2 contains the gene STE12, identified
by [13] as an important transcription factor for the regulation of the cell cy-
cle. In addition, the genes CDC27 and EMP47 which have possible STE12-sites
and are most likely co-regulated with STE12 are in that cluster. The cluster
is completed by several transcription factors (e.g. XBP1, SSL1). Cluster 3 also
consists of several genes which are known to play a role during the cell cycle
such as DOM34, CKA1, CPA1, and MIP6. The second subspace is spanned by
the time spots 190, 270 and 290 and consists of three clusters that have sim-
ilar characteristics to those of the first subspace. In addition, a fourth cluster
contains several mitochondrion related genes which have similar functions and
are therefore most likely co-regulated, indeed. For example, the genes MRPL17,
MRPL31, MRPL32, and MRPL33 are four mitochondrial large ribosomal sub-
units, the genes UBC1 and UBC4 are subunits of a certain protease, the genes
SNF7 and VPS4 are direct interaction partners, and several other genes that
code for mitochondrial proteins (e.g. MEF1, PHB1, CYC1, MGE1, ATP12).
This indicates a higher mitochindrial activity at these time spots, which could
be explained by a higher demand of biological energy during the cell cycle (the
energy metabolism is located in mitochondrions). In summary, RIS detects two
subspaces containing several biologically relevant co-regulations.

4.2 Efficiency Evaluation

The results of the efficiency evaluation are depicted in Figure 4. This evaluation
is based on several synthetic data sets. The experiments were run with MinPts =
ln(n) and ε choosen as suggested in Section 3.4. All run times are in seconds.

RIS scales well to the dimensionality of the relevant subspaces. With increas-
ing dimensionality of the relevant subspaces, the runtime of RIS grows with a
linear factor. On the other hand, the scalability of RIS to the size n and the

2 The analysis of the clusters is partly based on the Saccharomyces Genome Database
(SGD), available at: http://genome-www.stanford.edu/Saccharomyces/

Fig. 4. Efficiency evaluation.

dimensionality d of the input data set is not linear. With increasing n and d,
the runtime of RIS grows with an at least quadratic factor for rather large n
and d, respectively. The reason for this scalability vs. the size n is that RIS
performs multiple range-queries without any index support, due to the fact that
the ε-neighborhoods of all points in arbitrary subspaces have to be computed.
However, there is no index structure to efficiently support range queries in arbi-
trary subspaces. The observed scalability with respect to d can be explained by
the Apriori -like navigation through the search space of all subspaces.

4.3 Speed-up for Large Data Sets

Since the runtime of RIS is rather high especially for large data sets, we applied
random sampling to accelerate our algorithm. Figure 4 shows that for a large
data set of n = 750, 000 data objects, sampling yields a rather good speed-up.
The data set contained two overlapping four-dimensional subspace clusters, con-
taining approximately 400,000 and 350,000 points. Even using only 100 sample
points, RIS had no problem to detect the subspaces of these two clusters. For
all sample sizes, these subspaces had by far the highest quality values. Further
experiments empirically show, that random sampling can be successfully applied
to RIS in order to speed-up the runtime of this algorithm paying a minimum
loss of quality.

5 Conclusions

In this paper, we introduced a preprocessing step for clustering high-dimensional
data. Based on a quality criterion for the interestingness of a subspace, we pre-
sented an efficient algorithm called RIS to compute all interesting subspaces

containing dense regions of arbitrary shape and size. Furthermore, the well-
established technique of random sampling can be applied to RIS in order to
speed-up the runtime of the algorithm significantly with a minimum loss of
quality. The effectiveness evaluation shows that RIS can be succesfully applied
to high-dimensional real-world data, e.g. on gene expression data in order to find
co-regulated genes.

References

1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: ”Automatic Subspace
Clustering of High Dimensional Data for Data Mining Applications”. In: Proc.
ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA. (1998)

2. Aggarwal, C.C., Procopiuc, C.: ”Fast Algorithms for Projected Clustering”. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data, Philadelphia, PA. (1999)

3. Aggarwal, C., Yu, P.: ”Finding Generalized Projected Clusters in High Dimensional
Space”. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, Dallas, TX.
(2000)

4. Hinneburg, A., Keim, D.: ”Optimal Grid-Clustering: Towards Breaking the Curse
of Dimensionality in High-Dimensional Clustering”. In: Proc. 25th Int. Conf. on
Very Large Databases, Edinburgh, Scotland. (1999)

5. Cheng, C.H., Fu, A.C., Zhang, Y.: ”Entropy-Based Subspace Clustering for Mining
Numerical Data”. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery in
Databases, San Diego, FL. (1999)

6. Goil, S., Nagesh, H., Choudhary, A.: ”MAFIA: Efficiant and Scalable Subspace
Clustering for Very Large Data Sets”. Tech. Report No. CPDC-TR-9906-010,
Center for Parallel and Distributed Computing, Dept. of Electrical and Computer
Engineering, Northwestern University (1999)

7. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: ”A Monte Carlo Al-
gorithm for Fast Projective Clustering”. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data, Madison, WI. (2002) 418–427

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: ”A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining, Portland, OR. (1996) 291–316

9. Hinneburg, A., Keim, D.A.: ”An Efficient Approach to Clustering in Large Mul-
timedia Databases with Noise”. In: Proc. 4th Int. Conf. on Knowledge Discovery
and Data Mining, New York City, NY. (1998) 224–228

10. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: ”OPTICS: Ordering Points
to Identify the Clustering Structure”. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data, Philadelphia, PA. (1999) 49–60

11. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: ”A Cost Model For Nearest
Neighbor Search in High-Dimensional Data Space”. In: Proc. ACM PODS Symp.
on Principles of Database Systems, Tucson, AZ. (1997) 78–86

12. Agrawal, R., Srikant, R.: ”Fast Algorithms for Mining Association Rules”. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data, Minneapolis, MN. (1994)
94–105

13. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P.,
Botstein, D., Futcher, B.: ”Comprehensive Identification of Cell Cycle-Regulated
Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.”.
Molecular Biolology of the Cell 9 (1998) 3273–3297

