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Abstract. In many data mining applications the data objects are mod-
eled as sets of feature vectors or multi-instance objects. In this paper,
we present an expectation maximization approach for clustering multi-
instance objects. We therefore present a statistical process that models
multi-instance objects. Furthermore, we present M-steps and E-steps for
EM clustering and a method for finding a good initial model. In our
experimental evaluation, we demonstrate that the new EM algorithm
is capable to increase the cluster quality for three real world data sets
compared to a k-medoid clustering.

1 Introduction

In modern data mining applications, the complexity of analyzed data objects is
increasing rapidly. Molecules are analyzed more precisely and with respect to all
of their possible spatial conformations [1]. Earth observation satellites are able
to take images with higher resolutions and in a variety of spectra which was not
possible some years before. Data mining started to analyze complete websites
instead of single documents [2]. All of these application domains are examples for
which the complexity demands a richer object representation than single feature
vectors. Thus, for these application domains, an object is often described as a set
of feature vectors or a multi-instance (MI) object. For example, a molecule can
be represented by a set of feature vectors where each vector describes one spatial
conformation or a website can be analyzed as a set of word vectors corresponding
to its HTML documents.

As a result the research community started to develop techniques for multi-
instance learning that where capable to analyze multi-instance objects. One of
the first publications in this area [1, 3] was focussed to a special task called
multi-instance learning. In this task the appearance of one positive instance
within a multi-instance object is sufficient to indicate that the object belongs to
the positive class. Besides classical multi-instance learning, some approaches like
[4, 5] aim at more general problems. However, all of the mentioned approaches
are based on a setting having a set of labeled bags to train a learning algorithms.

In this paper, we focus on clustering unlabeled sets of feature vectors. To
cluster those objects, the common approach so far is to select some distance
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measures for point sets like [6, 7] and then apply a distance-based clustering al-
gorithm e.g. k-medoid methods like CLARANS [8] or a density-based algorithm
like DBSCAN[9]. However, this approach does not yield expressive cluster mod-
els. Depending on the used algorithm, we might have some representative for
some cluster, but we do not have a good model for describing the mechanism
behind this clustering. To overcome this problem, we will refer to the model of
multi-instance objects that was introduced in [5] stating that a multi-instance
object of a particular class (or in our problem each cluster) needs to provide
instances belonging to a certain concept or several concepts. We will adapt this
view of multi-instance objects to clustering. Therefore, we propose a statistical
model that is based on 2 steps. In the first step, we use a standard EM Cluster-
ing algorithm on the union set of all multi-instance objects. Thus, we determine
a mixture model describing the instances of all multi-instance objects. Assum-
ing that each of the found clusters within each mixture model corresponds to
some valid concept, we now can derive distributions for the clustering of multi-
instance objects. For this second step, we assume that a multi-instance object
containing k instances can be modeled as k draws from the mixture model over
the instances. Thus, each cluster of multi-instance objects is described by a
distribution over the instance clusters derived in the first step and some prior
probability. For example, for the classical multi-instance learning task, it can
be expected that there is at least one instance cluster that is very unlikely to
appear in the multi-instance clusters corresponding to the negative bags.

The rest of the paper is organized as following: In section 2, we will sur-
vey previous work in data mining with multi-instance objects and give a brief
introduction to EM clustering. Section 3 will describe our statistical model for
multi-instance data. In section 4, this model is employed for EM clustering. To
demonstrate the usefulness of our approach, section 5 contains the results on
several real world data sets. Section 6 concludes the paper with a summary and
directions for future work.

2 Related Work

Data Mining in multi-instance objects has so far been predominantly examined
in the classification section. In [1] Dietterich et al. defined the problem of multi-
instance learning for drug prediction and provided a specialized algorithm to
solve this particular task by learning axis parallel rectangles. In the following
years, new algorithms increasing the performance for this special task were in-
troduces [3]. In [5] a more general method for handling multi-instance objects
was introduced that is applicable for a wider variety of multi-instance problems.
This model considers several concepts for each class and requires certain cardi-
nalities for the instances belonging to the concepts in order to specify a class
of MI objects. Additionally, to this model [10] proposes more general kernel
functions for MI comparing MI objects.

For clustering multi-instance objects, it is possible to use distance functions
for sets of objects like [6, 7]. Having such a distance measure, it is possible to
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cluster multi-instance objects with k-medoid methods like PAM and CLARANS
[11] or employ density-based clustering approaches like DBSCAN [9]. Though
this method yields the possibility to partition multi-instance objects into clus-
ters, the clustering model consists of representative objects in the best case.
Another problem of this approach is that the selection of a meaningful dis-
tance measure has an important impact of the resulting clustering. For example,
netflow-distance [7] demands that all instances within two compared objects are
somehow similar, whereas for the minimal Hausdorff [12] distance the indication
of similarity is only dependent on the closest pair.

In this paper, we introduce an algorithm for clustering multi-instance objects
that optimizes probability distributions to describe the data set. Part of this
work is based on expectation maximization (EM) clustering for ordinary feature
vectors using Gaussians. Details about this algorithm can be found in [13]. In
[14], a method for producing a good initial mixture is presented which is based
on multiple sampling. It is empirically shown that using this method, the EM
algorithm achieves accurate clustering results.

3 A Statistical Model for Multi-Instance Objects

In this section, we will introduce our model for multi-instance clustering. There-
fore, we will first of all define the terms instance and multi-instance (MI) object.

Definition 1 (instance and MI object). Let F be a feature space. Then,
i ∈ F is called an instance in F . A multi-instance (MI) object o in F is given by
an arbitrary sized set of instances o = i1, .., ik with ij ∈ F . To denote the unique
MI object an instance i belongs to, we will write MiObj(i).

To cluster multi-instance objects using an EM approach, we first of all need
a statistical process that models sets of multi-instance objects. Since multi-
instance objects consist of single instances in some feature space, we begin with
modeling the data distribution in the feature space of instances. Therefore, we
first of all define the instance set of a set of multi-instance objects:

Definition 2 (Instance Set). Given a database DB of multi-instance Objects
o = i1, . . . , ik, the corresponding instance set IDB =

⋃
DB o is the union of all

multi-instance objects.

To model the data distribution in the instance space, we assume a mixture
model of k independent statistical processes. For example, an instance set con-
sisting of feature vectors could be described by a mixture of Gaussians.

Definition 3 (Instance Model). Let DB be a data set consisting of multi-
instance objects o and let IDB be its instance set. Then, an instance model IM
for DB is given by a mixture model of k statistical processes that can be described
by a prior probability Pr[kj ] for each component kj and the necessary parameters
for the process corresponding to kj, e.g. a mean vector µj and co-variance matrix
Mj for Gaussian processes.
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After describing the instance set, we can now turn to the description of
multi-instance objects. Our solution is based on the idea of modeling a cluster of
multi-instance objects as a multinomial distribution over the components of the
mixture model of instances. For each instance and each concept, the probability
that the instance belongs to this concept is considered as result of one draw. If the
number n of instances within an object o is considered to be important as well,
we can integrate this into our model as well by considering some distribution over
the number of draws, e.g. a binomial distribution. To conclude, a mixture model
of multi-instance clusters can be described by a set of multinomial distributions
over the components of a mixture model of instances. A multi-instance object is
thus derived in the following way:

1. Select a multi-instance cluster ci w.r.t. some prior distribution over the set
of all clusters C.

2. Derive the number of instances n within the multi-instance object w.r.t some
distribution depending on the chosen cluster ci.

3. Repeat n-times:
(a) Select some model component kj within the mixture model of instances

w.r.t. the multi-instance cluster specific distribution.
(b) Generate an instance, w.r.t. to the distribution corresponding to com-

ponent kj .

Formally, the underlying model for multi-instance data sets can be defined
as follows:

Definition 4 (Multi-Instance Model). A multi-instance model M over the
instance model IM is defined by a set C of l processes over IDB. Each of these
processes ci is described by a prior probability Pr[ci], a distribution over the
number of instances in the bag Pr[Card(o) |ci] and an conditional probability
describing the likelihood that a multi-instance object o belonging to process ci

contains an instance belonging to the component kl ∈ IM . The probability of an
object o in the model M is calculated as following:

Pr[o] =
∑
ci∈C

Pr[ci] · Pr[Card(o)|ci] ·
∏
i∈o

∏
k∈MI

Pr[k|ci]Pr[k|i]

The conditional probability of process ci under the condition of a given multi-
instance object o can be calculated by:

Pr[ci|o] =
1

Pr[o]
· Pr[ci] · Pr[Card(o)|ci] ·

∏
i∈o

∏
k∈MI

Pr[k|ci]Pr[k|i]

Let us note that the occurrence of an instance within the data object is only
dependent on the cluster of instances it is derived from. Thus, we do not assume
any dependencies between the instances of the same objects. Another important
characteristic of the model is that we assume the same set of instance clusters
for all multi-instance clusters. Figure 3 displays an example of a two dimensional
multi-instance data set corresponding to this model. This assumption leads to
the following 3 step approach for multi-instance EM clustering.
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4 EM-Clustering for Multi-Instance Objects

After introducing a general statistical process for multi-instance objects, we will
now introduce an EM algorithm that fits the distribution parameters to a given
set of multi-instance objects. Our method works in 3 steps:

1. Derive a Mixture Model for the Instance Set.
2. Calculate a start partitioning.
3. Use the new EM algorithm to optimize the start partitioning.

4.1 Generating a Mixture Model for the Instance Set

To find a mixture of the instance space, we can employ a standard EM approach
as proposed in section 2. For general feature vectors, we can describe the instance
set as a mixture of Gaussians. If the feature space is sparse using a mixture of
multinomial processes usually provides better results. If the number of clusters
in the instance is already known, we can simply employ EM clustering. However,
if we do not know how many clusters are hidden within the instance set, we need
to employ a method for determining a suitable number of processes like [15].

4.2 Finding a Start Partitioning of Multi-Instance Objects

After deriving a description of the instance space, we now determine a good
start partitioning for the final clustering step. A good start partitioning is very
important for finding a good cluster model. Since EM algorithms usually do
not achieve a global maximum likelihood, a suitable start partitioning has an
important impact on both, the likelihood of the cluster and the runtime of the
algorithm. The versions for EM in ordinary feature spaces often use k-means
clustering for finding a suitable start partitioning. However, since we cluster sets
of instances instead of single instances, we cannot use this approach directly.

To overcome this problem, we proceed as follows. For each multi-instance
object we determine a so-called confidence summary vector in the following way.

Definition 5 (Confidence Summary Vector). Let IM be an instance model
over database DB containing k processes and let o be a multi-instance object.
Then the confidence summary vector −→csv(o) of o is a k dimensional vector that
is calculated as follows:

csvj(o) =
∑
i∈o

Pr[kj ] · Pr[i|kj ]

After building the confidence summary vector for each object, we can now
employ k-means to cluster the multi-instance objects. Though the resulting clus-
tering might not be optimal, the objects within one cluster should yield similar
distributions over the components of the underlying instance model.
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4.3 EM for Clustering Multi-Instance Objects

In this final step, the start partitioning for the data set is optimized using the
EM algorithm. We therefore describe a suitable expectation and maximization
step and then employ an iterative method. The likelihood of the complete model
M can be calculated by adding up the log-likelihoods of the occurrence of each
data object in each clusters. Thus, our model is (locally) optimal if we obtain a
maximum for the the following log-likelihood term.

Definition 6 (Log-Likelihood for M).

E(M) =
∑

o∈DB

log
∑

ci∈M

Pr[ci|o]

To determine Pr[ci|o], we proceed as mentioned in definition 4. Thus, we
can easily calculate E(M) in the expectation step for a given set of distribution
parameters and an instance model. To improve the distribution parameters, we
employ the following updates to the distribution parameters in the maximization
step:

Wci
= Pr[ci] =

1
Card(DB)

∑
o∈DB

Pr[ci|o]

where Wci
denotes the prior probability of a cluster of multi-instance objects.

To estimate the number of instances contained in an MI object belonging to
cluster ci, we can employ a binomial distribution determined by the parameter
lci . The parameters are updated as follows:

lci
=

∑
o∈DB Pr[ci|o] · Card(o)

Card(DB)
· 1
MAXLENGTH

where MAXLENGTH is the maximum number of instances for any MI object
in the database.

Finally, to estimate the relative number of instances drawn from concept kj

for MI objects belonging to cluster ci, we derive the parameter updates in the
following way:

Pkj ,ci = Pr[kj |ci] =
∑

o∈DB (Pr[ci|o] ·
∑

u∈o Pr[u|kj ])∑
o∈DB Pr[ci|o]

Using these update steps, the algorithm is terminated after the improvement
of E(M) is less than a given value σ. Since the last step of our algorithm is
a modification of EM clustering based on multinomial processes, our algorithm
always converges against a local maximum value for E(M).

5 Evaluation

All algorithms are implemented in Java 1.5. The experiments described below
are carried out on a work station that is equipped with two 1.8 GHz Opteron
processors and 8 GB main memory.
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Data Set 1 (DS1) Data Set 2 (DS2) Data Set 3 (DS3)

Name Brenda MUSK 1 MUSK 2

Number of MI-Objects 6082 92 102

Average Number of In-
stances per MI-Object

1.977 5.2 64.7

Number of MI-Object
classes

6 2 2

Table 1. Details of the test environments
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Fig. 1. Effectiveness evaluation on DS2 and DS3 where no. of clusters is 2.

Our experiments were performed on 3 different real world data sets. The prop-
erties of each test bed are illustrated in Table 1. The Brenda data set contains
of enzymes taken from the protein data bank (PDB) 1. Each enzyme comprises
several chains given by amino acid sequences. In order to derive feature vectors
from the amino acid sequences, we employed the approach described in [16].
The basic idea is to use local (20 amino acids) and global (6 exchange groups)
characterization of amino acid sequences. In order to construct a meaningful fea-
ture space, we formed all possible 1-grams for each kind of characteristic. This
approach provided us with 26 dimensional histograms for each chain. To obtain
the class labels for each enzyme we used a mapping from PDB to the enzyme
class numbers from the comprehensive enzyme information system BRENDA 2.

MUSK 1 and MUSK 2 data sets come from UCI repository [17] and describe a
set of molecules. The MI-objects in MUSK 1 and MUSK 2 data sets are judged
by human experts to be in musks or non-musks class. The feature vectors of
MUSK data sets have 166 numerical attributes that describe these molecules
depending on the exact shape or conformation of the molecule.

To measure the effectiveness, we considered the agreement of the calculated
clusterings to the given class systems. To do so, we calculated three quality
measures namely precision, F-measure and average entropy. In order to calculate
the precision and F-Measure, we proceeded as follows. For each cluster ci found
by a clustering algorithm, its class assignment Class(ci) is determined by the
class label of objects belonging to ci that are in the majority. Then, we calculated

1 http://www.rcsb.org/pdb/
2 http://www.brenda.uni-koeln.de/
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the Precision within all clusters w.r.t. the determined class assignments by using
the following formulas.

Precision =

∑
ci∈C Card({o|(ci = arg maxcj∈C Pr [cj |o]) ∧ Class(o) = Class(ci)})

Card(DB)

Avg.Entropy =
∑
ci∈C

(Card(ci) ∗ (−
∑

Classj

pj,ilog(pj,i)))/Card(DB)

In addition, we measured the average entropy over all clusters. This quality
measure is based on the impurity of a cluster ci w.r.t. the class labels of objects
belonging to ci. Let pj,i be the relative frequency of the class label Classj in the
cluster ci. We calculate average entropy as following.

In order to demonstrate that the proposed clustering approach for multi-
instance objects outperforms standard clustering algorithms working on a suit-
able distance functions, we compared precision, F-Measure and average entropy
of the MI-EM with that of k-medoid clustering algorithm (PAM). To enable clus-
ter analysis of multi-instance objects by PAM, we used the Hausdorff distance
(HD)[6], the minimum Hausdorff distance (mHD)[12] and the Sum of Minimum
Distances (SMD)[6]. Due to the fact that the data set DS1 has 6 classes and
the data sets DS2 and DS3 have 2 classes, we investigated the effectiveness of
the cluster analysis where the number of clusters is equal to or slightly than the
number of the desired classes. Thus, we set in our experiments the number of
clusters equal to 6 and 8 for DS1, and equal to 2, 6 and 8 for the data sets DS2
and DS3. The results of our comparison are illustrated in Figures 1,3 and 2.

In all our experiments, PAM working on distance functions suitable for multi-
instance objects achieved a significantly lower precision than MI-EM. For exam-
ple, the MI-EM algorithm reached a precision of 0.833 on DS1 and the number
of clusters equal to 8 (cf. Figure 2(a)). In contrast to the result of MI-EM, the
precision calculated for clusterings found by all competitors lies between 0.478
and 0.48. Furthermore, MI-EM obtained in all experiments higher or compara-
ble values of F-Measures. This fact indicates that the cluster structure found by
applying of the proposed EM-based approach is more exact w.r.t. precision and
recall than that found by PAM with 3 different MI distance functions. For ex-
ample, the F-Measure calculated for MI-EM clustering of DS2 with 8 clusters is
0.63 whereas PAM clustering with different MI distance functions shows values
between 0.341 and 0.41 (cf. Figure 2(b)). Finally, the values of average entropy
observed by the MI-EM results are considerably lower than those of PAM on
HD, mHD and SMD. The lower values of average entropy imply a lower level of
impurity in the cluster structures detected by applying MI-EM.

To summarize, the values of the different quality measures observed on real
world data sets when varying the number of clusters show that the proposed EM-
based approach for cluster analysis of MI-objects outperforms the considered
competitors w.r.t. effectiveness.
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Fig. 2. Effectiveness evaluation on DS1, DS2 and DS3 where no. of clusters is 8.
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Fig. 3. Effectiveness evaluation on DS1, DS2 and DS3 where no. of clusters is 6.

6 Conclusions

In this paper, we described an approach for statistical clustering of MI objects.
Our approach models instances as members of concepts in some underlying fea-
ture space. Each concept is modeled by a statistical process in this feature space,
e.g. a Gaussian. A multi-instance object can now be considered as the result of
selecting several times a concept and generating an instance with the corre-
sponding process. Clusters of multi-instance objects can now be described as
multinomial distributions over the concepts. In other words, different clusters
are described by having different probabilities for the underlying concepts. An
additional aspect is the length of the MI object. To derive MI clusters corre-
sponding to this model, we introduce a three step approach. In the first step we
derive a mixture model describing concepts in the instance space. The second
step finds a good initialization for the target distribution by subsuming each MI
object by a so-called confidence summary vector (csv) and afterwards cluster-
ing these csvs using the k-means method. In the final, step we employ a final
EM clustering step optimizing the distribution for each cluster of MI objects.
To evaluate our method, we compared our clustering approach to clustering MI
objects with the k-medoid clustering algorithm PAM for 3 different similarity
measures. The results demonstrate that the found clustering model offers better
cluster qualities w.r.t. to the provided reference clusterings.
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