
Clustering Multi-Represented Objects Using
Combination Trees

Elke Achtert, Hans-Peter Kriegel, Alexey Pryakhin, Matthias Schubert

Institute for Computer Science
University of Munich, Germany

{achtert,kriegel,pryakhin,schubert}@dbs.ifi.lmu.de

Abstract. When clustering complex objects, there often exist various
feature transformations and thus multiple object representations. To
cluster multi-represented objects, dedicated data mining algorithms have
been shown to achieve improved results. In this paper, we will introduce
combination trees for describing arbitrary semantic relationships which
can be used to extend the hierarchical clustering algorithm OPTICS to
handle multi-represented data objects. To back up the usability of our
proposed method, we present encouraging results on real world data sets.

1 Introduction

In modern data mining applications, there often exists no universal feature repre-
sentation that can be used to express similarity between all possible objects in a
meaningful way. Thus, recent data mining approaches employ multiple represen-
tations to achieve more general results that are based on a variety of aspects. In
this paper, we distinguish two types of representations and show how to combine
sets of representations containing both types using so-called combination trees.
The combination trees are build with respect to domain knowledge and describe
multiple semantics. To employ combination trees for clustering, we introduce a
multi-represented version of the hierarchical density-based clustering algorithm
OPTICS. OPTICS derives so-called cluster orderings and is quite insensitive to
the parameter selection. The introduced version of OPTICS is capable to derive
meaningful cluster hierarchies with respect to an arbitrary combination tree.
The rest of this paper is organized as follows. Section 2 surveys related work. In
Section 3, we define combination trees. Section 4 describes a multi-represented
version of OPTICS which is based on combination trees. In Section 5, we provide
encouraging experimental results.

2 Related Work

In [1] an algorithm for spectral clustering of multi-represented objects is pro-
posed. [2] introduces Expectation Maximization (EM) clustering and agglomer-
ative clustering for multi-represented data. Finally, [3] introduces the framework
of reinforcement clustering, which is applicable to multi-represented objects.
However, these three approaches do not consider any semantic aspects of the un-
derlying data spaces. In [4], DBSCAN [5] has been adapted to multi-represented
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objects distinguishing two possible semantics. However, DBSCAN has several
drawbacks leading to the development of OPTICS[6] which is the algorithm the
method proposed in this paper is based on.

3 Handling Semantics

In [4], there were two general methods to combine multiple representation for
density based clustering, called union and intersection method. The union method
states that an object is an union core-object if there are at least k data objects
in the union of the local ε-neighborhoods. The intersection method was defined
analogously. However, it is not clear which method is better suited to compare
an arbitrary set of representations. In [7], the suitability of representations for
one or the other combination method is discussed. As a result, two aspects of a
data space can be distinguished, the precision space and recall space property.
An examples for a good precision space are word vectors because documents con-
taining the same set of words usually describe the same content. An example for
a recall space are color histograms because two images having a similar content
usually have similar color distributions. Furthermore, we can state that precision
spaces should be combined using the union method and recall spaces should be
combined using the intersection method. The result of combining recall spaces
improves the precision and the result of combining precision spaces improves
the recall. Thus, we can successively group representation of both types and
construct a so-called combination tree according to the following formalization:

Definition 1 (Combination Tree). Let R = {R1, . . . , Rm}. A combination
tree CT for R is a tree of arbitrary degree fulfilling the following conditions:

– CT.root denotes the root of the combination tree CT.
– Let n be a node of CT, then n.label denotes the label of n and n.children

denotes the children of n.
– The leaves are labeled with representations, i.e. for each leaf n ∈ CT :

n.label ∈ {R1, . . . , Rm}.
– The inner nodes are labeled with either the union or the intersection operator,

i.e. for each inner node n ∈ CT : n.label ∈ {∪,∩}.

4 Hierarchical Clustering of Multi-Represented Objects

In order to obtain the comparability of distances, we normalize the distance in
representation Ri with respect to the mean value µorig

i of the original distance
dorig

i . The algorithm OPTICS [6] works like an extended DBSCAN algorithm,
computing the density-connected clusters w.r.t. all parameters εi that are smaller
than a generic value of ε. OPTICS does not assign cluster memberships, but
stores the order in which the objects have been processed and the information
can be used to assign cluster memberships. This information consists of two
values for each object, its core distance and its reachability distance. To compute
these information during a run of OPTICS on multi-represented objects, we
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must adapt the core distance and reachability distance predicates of OPTICS
to our multi-represented approach. In the following, we will show how we can
use a combination tree CT for a given set of representations R to cluster multi-
represented objects. The (global) distance between two objects o, p ∈ D w.r.t. a
combination tree CT is defined as the combination of the distances of the nodes
of CT.

Definition 2 (distance w.r.t. CT).
Let o, p ∈ D, R = {R1, . . . , Rm}, di be the distance function of Ri, CT be a com-
bination tree for R, and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The distance between o and p w.r.t. node n ∈ CT, denoted by dn(o, p), is
recursively defined by

dn(o, p) =


min

c∈n.children
{dc(o, p)} if n.label = ∪

max
c∈n.children

{dc(o, p)} if n.label = ∩

di(o, p) if n.label = Ri

The distance between o and p w.r.t. CT, denoted by dCT(o, p), is defined by

dCT(o, p) = dCT.root(o, p)

The (global) ε-neighborhood of an object o ∈ D w.r.t. a combination tree
CT is defined as the combination of the ε-neighborhoods of the nodes of CT.

Definition 3 (ε-neighborhood w.r.t. CT).
Let o ∈ D, ε ∈ IR+, R = {R1, . . . , Rm}, CT be a combination tree for R, and let
n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The ε-neighborhood of o w.r.t. node n ∈ CT, denoted by Nn
ε (o), is recursively

defined by

Nn
ε (o) =


⋃

c∈n.children
N c

ε (o) if n.label = ∪⋂
c∈n.children

N c
ε (o) if n.label = ∩

NRi
ε (o) if n.label = Ri

The ε-neighborhood of o w.r.t. CT, denoted by NCT,ε(o), is defined by

NCT,ε(o) = NCT.root
ε (o)

Since the core distance predicate of OPTICS is based on the concept of k-
nearest neighbor (k-NN) distances, we have to redefine the k-nearest neighbor
distance of an object o w.r.t. a combination tree CT.

Definition 4 (k-NN distance w.r.t. CT).
Let o ∈ D, k ∈ IN , |D| ≥ k, R = {R1, . . . , Rm}, CT be a combination tree for R,
and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.
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The k-nearest neighbors of o w.r.t. CT is the smallest set NNCT,k(o) ⊆ D
that contains (at least) k objects and for which the following condition holds:

∀p ∈ NNCT,k(o),∀q ∈ D −NNCT,k(o) : dCT(o, p) < dCT(o, q).

The k-nearest neighbor distance of o w.r.t. CT, denoted by nn-distCT,k(o),
is defined as follows:

nn-distCT,k(o) = max{dCT(o, q)} | q ∈ NNCT,k(o)}.

Now, we can adopt the core distance definition from OPTICS to our combi-
nation approach: If the ε-neighborhood w.r.t. CT of an object o contains at least
k objects, the core distance of o is defined as the k-nearest neighbor distance of
o. Otherwise, the core distance is infinity.

Definition 5 (core distance w.r.t. CT).
Let o ∈ D, k ∈ IN , |D| ≥ k, R = {R1, . . . , Rm}, CT be a combination tree for R,
and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The core distance of o w.r.t. CT, ε and k, denoted by CoreCT,ε,k(o), is
defined by

CoreCT,ε,k(o) =
{

nn-distCT,k(o) if |NCT,ε(o)| ≥ k
∞ otherwise.

The reachability distance of an object p ∈ D from o ∈ D w.r.t. CT is an
asymmetric distance measure that is defined as the maximum value of the core
distance of o and the distance between p and o.
Definition 6 (reachability distance w.r.t. CT).
Let o, p ∈ D, k ∈ IN , |D| ≥ k, R = {R1, . . . , Rm}, CT be a combination tree for
R, and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The reachability distance of o to p w.r.t. CT, ε, and k, denoted by ReachCT,ε,k(p, o),
is defined by

ReachCT,ε,k(p, o) = max{CoreCT,ε,k(p), dCT(o, p)}

5 Performance Evaluation

We implemented the proposed clustering algorithm in Java 1.5 and ran several
experiments on a work station with two 1.8 GHz Opteron processors and 8 GB
main memory. The experiments were performed on protein data that is described
by text descriptions (R1) and amino-acid sequences (R2). We employed entries of
the Swissprot protein database 1 belonging to 5 functional groups (cf. Table 1).
As reference clustering, we employed the classes of Gene Ontology 2. To evaluate
the derived cluster structure C, we extracted flat clusters from OPTICS plots
1 http://us.expasy.org/sprot/sprot-top.html
2 www.geneontology.org
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and applied the following quality measure for comparing different clusterings
w.r.t. the reference clustering K: QK(C) =

∑
Ci∈C

|Ci|
|DB| · (1− entropyK(Ci)).

We employed an combination tree describing the union of both representations.
As first comparison partners, we clustered text and sequences separately using
only one of the representations. A second approach combines the features of
both representations into a common feature space (CFS) and employs the co-
sine distance to relate the resulting feature vectors. Additionally, we compared
reinforcement clustering (RCL) using DBSCAN as underlying cluster algorithm.
For reinforcement clustering, we ran 10 iterations and tried several values of
the weighting parameter α. The ε-parameters were set sufficiently large and we
chose k = 2. Table 1 displays the derived quality for our method and the four
competitive methods mentioned above. As it can be seen, our method clearly
outperforms any of the other algorithms.

Table 1. Description of the protein data sets and results.
Set 1 Set 2 Set 3 Set 4 Set 5

Name Isomerase Lyase Signal
Transducer

Oxidore-
ductase

Transferase

No. of Classes 16 35 39 49 62

No. of Objects 501 1640 2208 3399 4086

R1 ∪ R2 0.66 0.56 0.43 0.50 0.38

R1 0.61 0.54 0.32 0.46 0.35

R2 0.31 0.25 0.36 0.39 0.24

CFS 0.62 0.46 0.28 0.41 0.29

RCL 0.55 0.43 0.25 0.33 0.19

Another, set of experiments were performed on a data set of images being
described by 4 representations. The OPTICS clustering based on a 2 level combi-
nation trees achieved encouraging results as well. More information about these
experiments can be found in [7].
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