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Abstract. An object o of a database D is called a hot item, if there is a suffi-
ciently large population of other objects inD that are similar to o. In other words,
hot items are objects within a dense region of other objects and provide a basis for
many density-based data mining techniques. Intuitively, objects that share their
attribute values with a lot of other objects could be potentially interesting as they
show a typical occurrence of objects in the database. Also, there are a lot of appli-
cation domains, e.g. sensor databases, traffic management or recognition systems,
where objects have vague and uncertain attributes. We propose an approach for
the detection of potentially interesting objects (hot items) of an uncertain database
in a probabilistic way. An efficient algorithm is presented which detects hot items,
where to each object o a confidence value is assigned that reflects the likelihood
that o is a hot item. In an experimental evaluation we show that our method can
compute the results very efficiently compared to its competitors.

1 Introduction

The detection of objects which build dense regions with other objects within a fea-
ture space is a foundation of several density-based data mining techniques, in particular
density-based clustering [8], outlier detection and other density-based mining applica-
tions [11, 13]. We call an object o, for which exists a sufficiently large population of
other objects in D that are similar to o, a hot item. Intuitively, an item that shares its
attributes with a lot of other items could be potentially interesting as its shows a typical
occurrence of items in the database. Application areas where the detection of hot items
is potentially important exemplarily include scientific applications, e.g. astrophysics,
biomedical, sociological and economic applications.

The applications mentioned above require special methods supporting the efficient
search in modern databases that may contain not-standard data. Modern databases have
to cope with uncertain or imprecise data. Example applications are location determina-
tion and proximity detection of moving objects, similarity search and pattern matching
in sensor databases or personal identification and recognition systems based on video
images or scanned image data. Several approaches that cope with uncertain objects have
been proposed [6, 14, 15, 9]. The proposed methods mainly address efficient solutions
for similarity search on uncertain data including probabilistic distance range, k-nearest
neighbor and ranking. To the best of our knowledge there does not exist any approach
addressing retrieval of hot items in uncertain domains.

A hot item o has the property that the number of other items (objects) which are in
the proximity of o, i.e. are similar to o, exceed a given minimal population value. In this
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Fig. 1. Examples of hot items.

paper, we give a more general definition of hot items by relaxing the distance/similarity
predicate between the objects.

Definition 1 (Hot Item). Given a database D with objects and a minimum population
threshold min items. Furthermore, we assume a score function dscore : D×D → R+

0

which is defined on pairs of objects in D and a predicate Φε : R+
0 → {true, false},

where Φε ∈ {< ε,≤ ε, = ε,≥ ε, > ε} and ε ∈ R+
0 is a given scalar. An object o ∈ D

is called hot item, iff there exist at least min items objects o′ ∈ D\{o} which fulfill
the predicate Φε, formally

|{o′ ∈ D\{o} : Φε(dscore(o, o′)) = true}| ≥ min items ⇔ o is a hot item.

In the case of uncertain objects, an exact score cannot be determined, particularly
if the score relates to the object attributes which are assumed to be uncertain. Con-
sequently, uncertain objects lead to uncertain scores which in turn lead to uncertain
predicate results. Thus, the result of the predicate Φε is no longer binary and instead
yields a probability value. This probabilistic predicate result can be estimated. Based
on this estimation we are able to compute for each object o of an uncertain database
a probability value which reflects the likelihood that o is a hot item or not. A formal
definition of probabilistic hot item detection is given later in Section 3. The solution for
the efficient computation of hot item probabilities can be found in Section 4.

2 Related Work

In the context of this paper, hot items can be abstracted to objects that fulfill a given
predicate together with a reasonably large set of other items. If we assume the equality
predicate, i.e. Φε(dscore) := dscore = 0, then a hot item satisfies the frequent item prop-
erty. The detection of frequent items or frequent itemsets as a preprocessing step for rule
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mining is one of the most important problems in data mining. Chui et al. study in [7]
the problem of mining frequent itemsets from uncertain data. They assume transactions
whose items are associated with existential probabilities and introduce the U-Apriori
algorithm, which is a modified version of the Apriori algorithm. They present a frame-
work which probabilistically computes frequent items in an efficient way.

The aspect to identify objects that are similar to a given amount of other objects
is the basis of several density-based algorithms for discovering clusters and outliers.
There exist approaches for density-based clustering of uncertain data, e.g. [10] which
are quite related to our approach. However the proposed model used to determine the
probabilistic density does not respect the mutual exclusiveness of alternative attribute
values. The missing conditional probability in their approach leads to approximative
results only which disqualifies this approach from the accurate detection of hot items.

A lot of work has been published for managing uncertain data [4, 5, 14], probabilis-
tic similarity queries [9] and quite recently for probabilistic top-k queries [12, 15]. The
detection of hot items can be efficiently supported by a similarity join query used in
a preprocessing step, in particular the distance range self-join. Approaches for an effi-
cient join on uncertain data are proposed in [9]. The main advantage of this approach is
that sampled positions in space can efficiently be indexed using traditional spatial ac-
cess methods thus allowing to reduce the computational complexity of complex query
types. Our approach exploits the similarity join approach proposed in [9]. However, the
cost of the probabilistic detection of hot items are originally highly CPU-bound which
is demonstrated in our experimental evaluation (cf. Section 5). The advantage of an I/O
cost efficient approach for the preprocessing step only becomes noticeable when ap-
plying the methods proposed in this paper such that the CPU cost less outbalance the
overall query cost.

3 Problem Definition

In this section, we formally introduce the problem of probabilistic identification of hot
items in uncertain databases.

3.1 Probabilistic Score

The identification whether an object is a hot item or not requires to know the neighbor-
hood of the object according to a given (similarity) distance score function. Assuming
that the object attributes the score function relates to are uncertain, then the score result
is uncertain, too. Therefore, we require a probabilistic score function which is defined
as follows: Let PΦε

: D × D → [0, 1] be a probabilistic function defined on a pair of
objects that returns the likelihood that a given score w.r.t. both objects fulfills a given
predicate Φε. For example, if we use the distance d(oi, oj) between two uncertain vector
objects oi and oj as score function and we use the predicate Φε = d(oi, oj) ≤ ε, then
PΦε(oi, oj) denotes the probability that oj is within the ε-range of oi and vice versa.
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3.2 Probabilistic Hot Items

Based on the definitions given above, we can compute hot items in uncertain data in
a probabilistic way. However, we have to solve the problem of dependencies of the
uncertain attributes. Though we assume that the attributes of uncertain objects are inde-
pendent of each other, we have to respect that the values of an uncertain object attribute
are mutually exclusive. For this reason, first we have to define probabilistic hot items
based on a conditional probability.

Definition 2 (Conditional Probabilistic Hot Item). Given a database D with uncer-
tain objects and a minimum population threshold min items. Furthermore, we assume
a predicate Φε : R+

0 → {true, false} which is defined on a probabilistic score function,
where Φε ∈ {< ε,≤ ε, = ε,≥ ε, > ε} and ε ∈ R+

0 is a given scalar. Under the condi-
tion that an uncertain object o ∈ D is equal to a certain vector x ∈ Rd, the probability
that o is a hot item can be computed by

P (o is a hot item|o = x) =

P (|{o′ ∈ D\{o} : Φε(dscore(o, o′)) = true}| ≥ min items) =∑
Smin items ⊆ D\{o}

|Smin items| ≥ min items

(
∏

o′∈Smin items

PΦε
(o, o′)·

∏
o′∈D\(Smin items∪{o})

(1−PΦε
(o, o′))).

The above definition gives rise to the following general definition of probabilistic hot
items which depends on the used uncertainty model. The probability P(o is a hot item)
of an object o being an (unconditionally) probabilistic hot item can be computed by
aggregating the conditional hot item probabilities over all possible instances x of o
multiplied with the probability that object o corresponds to x, i.e.∑

x∈Rd

P (o = x) · P (|{o′ ∈ D\{o} : Φε(dscore((x, 1), o′)) = true}| ≥ min items).

4 Hot Item Detection Algorithm

Let D be a database with uncertain objects. Each object o ∈ D is probed w.r.t. the hot
item property. This computation can be split into the preprocessing step which finds
candidates that match the predicate Φε and the query step which detects the hot items.

4.1 Preprocessing Step

First, for each object o′ ∈ (D\{o}) we have to compute the probability that o′ fulfills a
given predicate Φε ∈ {< ε,≤ ε, = ε,≥ ε, > ε} w.r.t. object o, i.e. we have to compute
PΦε(o, o

′). Obviously, only those objects o′ ∈ D′ ⊂ D for which the predicate Φε is
fulfilled with a probability greater than zero, i.e. PΦε

(o, o′) > 0, have to be taken into
account in order to compute the probability P (o is a hot item). Note that, depending on
the used predicate Φε, usually only a small portion D′ ⊂ D of the database fulfills the
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predicate Φε(o, o′ ∈ D′) with a probability greater than zero. A quick search of those
objects which have to be taken into account can be efficiently supported by means of
an index structure, e.g. the R*-tree. In particular for the predicate Φε = “ ≤ ε”, the
index supported ε-range join [2] can be used to speed-up the search as proposed in [3].
Here, approximative representations like the minimal bounding rectangle (mbr) of an
uncertain object are very appropriate to be used as index key for a filter step following
the multi-step query processing paradigm. A solution for the ε-range join on uncertain
data is proposed in [9] which can be used as a preprocessing step for our proposed
algorithm for the detection of hot items.

4.2 Query Step

In the following, we introduce our new approach which is able to efficiently compute the
probability that an object o ∈ D is a hot item. As mentioned above, our algorithm has
quadratic runtime or even needs linear time if min items is assumed to be constant.
The key idea of our approach is based on the following property. Given a set of j
predicates S = {p1, p2, . . . , pj} for which the probability P (pi) that the predicate
pi ∈ S is “true” is known, respectively. Now, we want to compute the probability Pk,S
that at least k predicates of S are “true”.

Lemma 1. If we assume that predicate pj is “true”, then Pk,S is equal to the proba-
bility that at least k − 1 predicates of S\{pj} are “true”. Otherwise, Pk,S is equal to
the probability that at least k predicates of S\{pj} are “true”.

The above lemma leads to the following recursion that allows to compute Pk,S by
means of the paradigm of dynamic programming:

Pk,S = Pk−1,S\{pj} · pj + Pk,S\{pj} · (1− pj),

where
P0,S = 1.

The above dynamic programming scheme is an adaption of a technique previously used
in the context of probabilistic top-k queries [15]. Here, we generalize this technique for
arbitrary probabilistic predicates. We apply this method to compute the probability that
an uncertain object o ∈ D is a hot item. Given an uncertain object o ∈ D, the value for
min items and the set D′ ⊆ D of objects for which the probability that the predicate
PΦε(o

′, o) (o′ ∈ D′) is “true” is greater than zero, i.e. ∀o′ ∈ D′ : PΦε(o, o
′) > 0. The

probability P that object o is a hot item is equal to the probability Pmin items,D′(o)
that for at least min items objects o′ ∈ D′ the predicates Φε(o, o′) are “true”. With
Lemma 1 and the dynamic programming technique described above we can compute
P = Pmin items,D′(o) efficiently by:

Pmin items,D′(o) =

 Pmin items−1,D′\{o′}(o) · PΦε
(o, o′)+

Pmin items,D′\{o′}(o) · (1− PΦε
(o, o′)) , if min items > 0

1 , if min items = 0.
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Fig. 2. Performance w.r.t database size.

5 Experimental Evaluation

In this section, we present the results of an experimental evaluation of the proposed
methods w.r.t. efficiency. First we specify the used datasets and experimental setup. In
the artificial ART dataset, each object is represented by a set of positions sampled from
an individual five-dimensional hyper-rectangle R with a given size. The samples are
uniformly distributed within the rectangles. The rectangles are arbitrarily distributed
within the object space. Each of the 1500 objects of the two real-world datasets SCI1
and SCI2 consists of 10 samples, where each sample corresponds to a set of environ-
mental sensor measurements of one single day that consist of several dimensions (at-
tributes). The attribute set of SCI1 describes temperature, humidity and CO concen-
tration, whereas SCI2 has a larger set of attributes (temperature, humidity, speed and
direction of wind as well as concentrations of CO, SO2, NO, NO2 and O3).

In this section, we compare two variants of our approach denoted by DPB and
PHID. In contrast to PHID, DPB applies dynamic programming on the complete database,
i.e. D′ = D and, thus, does not require the pre-processing step. The performance of
PHID and DPB is compared to that of the brute-force solution (BF) by simply applying
the formulas given in Section 3.2. Furthermore, we compare them to the bisection-based
method (BSB) which is adapted to the method proposed in [1]. This method is able to
significantly speed-up computation compared to the brute-force method, but is still ex-
ponential. Note that in our algorithm, we concentrate on the evaluation of the CPU-cost
only. The reason is that the PHID-algorithm is clearly CPU-bound. The only I/O bot-
tleneck is the initial computation of the likelihood that o is in the ε-range of so′ , for
each object o ∈ DB and each sample so′ , where o′ ∈ DB and o 6= o′. This requires a
distance-range-self-join of the database which can be performed by a nested-block-loop
join that requires O(|DB|2) page-faults in the worst case. In contrast, the CPU time for
the PHID-algorithm is cubic: Each call of the dynamic programming algorithm requires
O(|DB|2) time and has to be performed once for each sample in the database.
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Fig. 3. Performance experiments.

The first experiments relate to the scalability of the proposed approaches. The re-
sults depicted in Figure 2 demonstrate how the runtime of the competing techniques
is influenced by the database size. Figure 2(a) shows that, though the bisection-based
approach has exponential runtime, it outperforms the brute-force approach by several
orders of magnitude. However, the dynamic-programming-based approaches scale sig-
nificantly better than their competitors which in contrast to DPB and PHID have ex-
ponential runtime. Furthermore, the pre-processing step of PHID obviously pays off.
The performance can be further improved by an order of magnitude when applying the
dynamic-programming technique only on objects o′ where the probabilistic predicate
PΦε(o, o

′) is not zero. The next experiment shows the scalability of PHID for differ-
ent ε-range values. Here, the average time required to compute the hot item probability
for an object was measured. The results shown in Figure 2(b) demonstrate that PHID
scales well, even for very large databases. Figure 3(a) demonstrates the performance
w.r.t. the min items value for different database sizes. Contrary to DPB and PHID, the
BSB method is very affected by the min items value due to the expensive probability
computation. The slight increase of the DPB and PHID performances can be explained
by the reduced number of hot items with increasing min items value.

Finally, we evaluate the performance based on real-world data (cf. Figure 3(b)).
Unlike the exponential algorithms, DPB and PHID are able to perform a full hot item
scan of the database in reasonable time, even for a relatively large database size.

6 Conclusions

In this paper, we propose an efficient approach for probabilistic queries for hot items,
i.e. objects for which at least min items other objects exist which are similar to o. In
particular our approach computes for each object o in an uncertain database the prob-
ability that o is a hot item. We proposed methods that are able to break down the high
computational complexity required to compute for an object o the probability, that o is
a hot item. We theoretically and experimentally show that our approach can efficiently
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solve the problem (in worst-case O(n3)) while the competing techniques have expo-
nential runtime. Thereby, we achieve a speed-up of several orders of magnitude.
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