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Abstract. Traditional clustering algorithms are based on one represen-
tation space, usually a vector space. However, in a variety of modern
applications, multiple representations exist for each object. Molecules
for example are characterized by an amino acid sequence, a secondary
structure and a 3D representation. In this paper, we present an efficient
density-based approach to cluster such multi-represented data, taking
all available representations into account. We propose two different tech-
niques to combine the information of all available representations depen-
dent on the application. The evaluation part shows that our approach is
superior to existing techniques.

1 Introduction

In recent years, the research community spent a lot of attention to clustering
resulting in a large variety of different clustering algorithms [1]. However, all
those methods are based on one representation space, usually a vector space
of features and a corresponding distance measure. But for a variety of modern
applications such as biomolecular data, CAD- parts or multi-media files mined
from the internet, it is problematic to find a common feature space that incorpo-
rates all given information. Molecules like proteins are characterized by an amino
acid sequence, a secondary structure and a 3D representation. Additionally, pro-
tein databases such as Swissprot [2] provide meaningful text descriptions of the
stored proteins. In CAD-catalogues, the parts are represented by some kind of
3D model like Bezier curves, voxels or polygon meshes and additional textual
information like descriptions of technical and economical key data. We call this
kind of data multi-represented data, since any data object might provide several
different representations that may be used to analyze it.

To cluster multi-represented data using the established clustering methods
would require to restrict the analysis to a single representation or to construct a
feature space comprising all representations. However, the restriction to a single
feature space would not consider all available information and the construction
of a combined feature space demands great care when constructing a combined
distance function.
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In this paper, we propose a method to integrate multiple representations di-
rectly into the clustering algorithm. Our method is based on the density-based
clustering algorithm DBSCAN [3] that provides several advantages over other
algorithms, especially when analyzing noisy data. Since our method employs a
separated feature space for each representation, it is not necessary to design a
new suitable distance measure for each new application. Additionally, the han-
dling of objects that do not provide all possible representations is integrated
naturally without defining dummy values to compensate for the missing repre-
sentations. Last but not least, our method does not require a combined index
structure, but benefits from each index that is provided for a single representa-
tion. Thus, it is possible to employ highly specialized index structures and filters
for each representation.We evaluate our method for two example applications.
The first is a data set consisting of protein sequences and text descriptions. Ad-
ditionally, we applied our method to the clustering of images retrieved from the
internet. For this second data set, we employed two different similarity models.

The rest of the paper is organized as follows. After this introduction, we
present related work. Section 3 formalizes the problem and introduces our new
clustering method. In our experimental evaluation that is given in section 4,
we introduce a new quality measure to judge the quality of a clustering with
respect to a reference clustering and display the results achieved by our method
in comparison with the other mentioned approaches. The last section summarizes
the paper and presents some ideas for future research.

2 Related Work

There are several problems that are closely related to the clustering of multi-
represented data. Data mining of multi-instance objects [4] is based on the pre-
condition that each data object might be represented by more than one instance
in a common data space. However, all instances that are employed are elements
of the same data space and multi-instance objects were predominantly treated
with respect to classification not to clustering.

A similar setting to the clustering of multi-represented objects is the cluster-
ing of heterogenous or multi-typed objects [5, 6] in web mining. In this setting,
there are also multiple databases each yielding objects in a separated data space.
Each object within these data spaces may be related to an arbitrary amount of
data objects within the other data spaces. The framework of reinforcement clus-
tering employs an iterative process based on an arbitrary clustering algorithm.
It clusters one dedicated data space while employing the other data spaces for
additional information. It is also applicable for multi-represented objects. How-
ever, due to its dependency on the data space for which the clustering is started,
it is not well suited to solve our task. Since to the best of our knowledge rein-
forcement clustering is the only other clustering algorithm directly applicable to
multi-represented objects, we use it for comparison in our evaluation section.

Our approach is based on the formal definitions of density-connected sets
underlying the algorithm DBSCAN [3]. Based on two input parameters (ε and



k), DBSCAN defines dense regions by means of core objects. An object o ∈ DB
is called core object, if its ε-neighborhood contains at least k objects. Usually
clusters contain several core objects located inside a cluster and border objects
located at the border of the cluster. In addition, objects within a clusters must
be “density-connected”. DBSCAN is able to detect arbitrarily shaped clusters
by one single pass over the data. To do so, DBSCAN uses the fact, that a
density-connected cluster can be detected by finding one of its core-objects o
and computing all objects which are density-reachable from o. The correctness
of DBSCAN can be formally proven (cf. lemmata 1 and 2 in [3], proofs in [7]).

3 Clustering Multi-Represented Objects

Let DB be a database consisting of n objects. Let R := {R1, ..., Rm} be the
set of different representations existing for objects in DB. Each object o ∈
DB is therefore described by maximally m different representations, i.e. o :=
{R1(o), R2(o), ..., Rm(o)}. If all different representations exist for o, than |o| = m,
else |o| < m. The distance function is denoted by dist. We assume that dist is
symmetric and reflexive. In the following, we call the εi-neighborhood of an
object o in one special representation Ri its local ε-neighborhood w.r.t. Ri.

Definition 1 (local εi-neighborhood w.r.t Ri ).
Let o ∈ DB, εi ∈ IR+ , Ri ∈ R, disti the distance function of Ri. The local
εi-neighborhood w.r.t. Ri of o, denoted by NRi

εi
(o), is defined by

NRi
εi

(o) = {x ∈ DB | disti(Ri(o), Ri(x)) ≤ εi}.

Note that εi can be chosen optimally for each representation. The simplest way of
clustering multi-represented objects, is to select one representation Ri and cluster
all objects according to this representation. However, this approach restricts
data analysis to a limited part of the available information and does not use the
remaining representations to find a meaningful clustering. Another way to handle
multi-represented objects is to combine the different representations and use a
combined distance function. Then any established clustering algorithm can be
applied. However, it is very difficult to construct a suitable combined distance
function that is able to fairly weight each representation and handle missing
values. Furthermore, a combined feature space, does not profit from specialized
data access structures for each representation.

The idea of our approach is to combine the information of all different repre-
sentations as early as possible, i.e. during the run of the clustering algorithm, and
as late as necessary, i.e. after using the different distance functions of each rep-
resentation. To do so, we adapt the core object property proposed for DBSCAN.
To decide whether an object is a core object, we use the local ε-neighborhoods of
each representation and combine the results to a global neighborhood. Therefore,
we must adapt the predicate direct density-reachability proposed for DBSCAN.
In the next two subsections, we will show how we can use the concepts of union
and intersection of local neighborhoods to handle multi-represented objects.



Fig. 1. The left figure displays local clusters and a noise object that are aggregated to
a multi-represented cluster C. The right figure illustrates, how the intersection-method
divides a local clustering into clusters C1 and C2.

3.1 Union of Different Representations

This variant is especially useful for sparse data. In this setting, the clusterings in
each single representation will provide several small clusters and a large amount
of noise. Simply enlarging ε would relief the problem, but on the other hand, the
separation of the clusters would suffer. The union-method assigns objects to the
same cluster, if they are similar in at least one of the representations. Thus, it
keeps up the separation of local clusters, but still overcomes the sparsity. If the
object is placed in a dense area of at least one representation, it is still a core
object regardless of how many other representations are missing. Thus, we do
not need to define dummy values. The left part of figure 1 illustrates the basic
idea. We adapt some of the definitions of DBSCAN to capture our new notion
of clusters. To decide whether an object o is a union core object, we unite all
local εi-neighborhoods and check whether there are enough objects in the global
neighborhood, i.e. whether the global neighborhood of o is dense.

Definition 2 (union core object).
Let ε1, ε2, ..., εm ∈ IR+, k ∈ IN . An object o ∈ DB is called union core object,
denoted by CoreUk

ε1,..,εm
(o), if the union of all local ε-neighborhoods contains

at least k objects, formally:

CoreUk
ε1,..,εm

(o) ⇔ |
⋃

Ri(o)∈o

NRi
εi

(o) | ≥ k.

Definition 3 (direct union-reachability).
Let ε1, ε2, .., εm ∈ IR+, k ∈ IN . An object p ∈ DB is directly union-reachable
from q ∈ DB if q is a union core object and p is an element of at least one local
NRi

εi
(q), formally:

DirReachUk
ε1,..,εm

(q, p) ⇔ CoreUk
ε1,..,εm

(q)∧∃ i ∈ {1, ..,m} : Ri(p) ∈ NRi
εi

(q).

The predicate direct union-reachability is obviously symmetric for pairs of
core objects, because the disti are symmetric distance functions. Thus, analo-
gously to DBSCAN reachability and connectivity can be defined.



3.2 Intersection of Different Representations

The intersection method is well suited for data containing unreliable represen-
tations, i.e. there is a representation, but it is questionable, whether it is a good
description of the object. In those cases, the intersection-method requires that
a cluster should contain only objects which are similar according to all repre-
sentations. Thus, this method is useful, if all different representations exist, but
the derived distances do not adequately mirror the intuitive notion of similarity.
The intersection-method is used to increase the cluster quality by finding purer
clusters.

To decide, whether an object o is an intersection core object, we examine,
whether o is a core object in each involved representation. Of course, we use dif-
ferent ε-values for each representation to decide, whether locally there are enough
objects in the ε-neighborhood. The parameter k is used to decide, whether glob-
ally there are still enough objects in the ε-neighborhood, i.e. the intersection of
all local neighborhoods contains at least k objects.

Definition 4 (intersection core object).
Let ε1, ε2, ..., εm ∈ IR+, k ∈ IN . An object o ∈ DB is called intersection
core object, denoted by CoreISk

ε1,..,εm
(o), if the intersection of all its local εi-

neighborhoods contain at least k objects, formally:

CoreISk
ε1,..,εm

(o) ⇔ |
⋂

i=1,..,m

NRi
εi

(o) | ≥ k.

Using this new property, we can now define direct intersection-reachability
in the following way:

Definition 5 (direct intersection-reachability).
Let ε1, ε2, ..., εm ∈ IR+, k ∈ IN . An object p ∈ DB is directly intersection-
reachable from q ∈ DB if q is an intersection core object and p is an element of
all local Nε(q), formally:

DirReachISk
ε1,..,εm

(q, p) ⇔ CoreISk
ε1,..,εm

(q) ∧ ∀i = 1, ..,m : Ri(p) ∈ NRi
εi

(q) .

Again, reachability and connectivity can be defined analogously to DBSCAN.
The right part of figure 1 illustrates the effects of this method.

3.3 Determination of Density Parameters

In [3], a heuristic is presented to determine the ε-value of the ”thinnest” clus-
ter in the database. This heuristic is based on a diagram that represents sorted
knn-distances of all given objects. In the case of multi-represented objects, we
have to choose ε for each dimension separately, whereas k can be chosen globally.
A user determines a value for global k . The system computes the knn-distance
diagrams for the given global k (one diagram for every representation). The user
has to choose a so-called border object o for each representation. The ε for the



i -th representation is given by the knn-distance of the border object of Ri. Let
us note that this method still allows a certain range of ε-values to be chosen. The
selection should mirror the different requirements of the proposed methods. For
the union method, it is more advisable to chose a lower or conservative value,
since its characteristic demands that the elements of the local ε-neighborhood
should really be similar. For the intersection-method, the ε-value should be se-
lected progressively, i.e. at the upper rim of the range. This selection reflects
that the objects of a cluster need not be too similar for a single representation,
because it is required that they are similar with respect to all representations.

4 Performance Evaluation

To demonstrate the capability of our method, we performed a thorough experi-
mental evaluation for two types of applications. We implemented the proposed
clustering algorithm in Java 1.4. All experiments were processed on a work sta-
tion with a 2.6 GHz Pentium IV processor and 2 GB main memory.

4.1 Deriving Meaningful Groupings in Protein Databases

The first set of experiments was performed on protein data that is represented
by amino-acid sequences and text descriptions. Therefore, we employed entries
of the Swissprot protein database [2] belonging to 5 functional groups (cf. Table
1) and transformed each protein into a pair of feature vectors. Each amino acid
sequence was mapped into a 436 dimensional feature space. The first 400 features
are 2-grams of successive amino-acids. The last 36 dimensions are 2-grams of 6 ex-
change groups that the single amino-acids belong to [8]. To compare the derived
feature vectors, we employed Euclidian distance. To process text documents, we
rely on projecting the documents into the feature space of relevant terms. Doc-
uments are described by a vector of term frequencies weighted by the inverse
document frequency (TFIDF) [9]. We chose 100 words of medium frequency as
relevant terms and employed cosine distance to compare the TFIDF-vectors.
Since Swissprot entries provide a unique mapping to the classes of Gene Ontol-
ogy [10], a reference clustering for the selected proteins was available. Thus, we
are able to measure a clustering of Swissprot entries by the degree it reproduces
the class structure provided by Gene Ontology.

To have an exact measure for this degree, we employed the class entropy in
each cluster. However, there are two effects that have to be considered to obtain a

Table 1. Description of the protein data sets.

Set 1 Set 2 Set 3 Set 4 Set 5

Name Isomerase Lyase Signal
Transducer

Oxidore-
ductase

Transferase

Classes 16 35 39 49 62

Objects 501 1640 2208 3399 4086



Fig. 2. Clustering quality and noise ratio.

fair measure of a clustering with noise. First, a large cluster of a certain entropy
should contribute more to the overall quality of the clustering than a rather
small cluster providing the same quality. The second effect is that a clustering
having a 5 % noise ratio should be ranked higher than a clustering having the
same average entropy for all its clusters, but contains 50 % noise.

To consider both effects we propose the following quality measure for com-
paring different clusterings with respect to a reference clustering.

Definition 6. Let O be the set of data objects, let C = {Ci|Ci ⊂ O} be the set
of clusters and let K = {Ki|Ki ⊂ O} be the reference clustering of O. Then we
define:

QK(C) =
∑

Ci∈C

|Ci|
|O|

· (1 + entropyK(Ci))

where entropyK(Ci) denotes the entropy of cluster Ci with respect to K.

The idea is to weight every cluster by the percentage of the complete data
objects being part of it. Thus, smaller clusters are less important than larger
ones and a clustering providing an extraordinary amount of noise can contribute
only the percentage of clustered objects to the quality. Let us note that we add
1 to the cluster entropies. Therefore, we measure the reference clustering K with
the quality score of 1 and a worst case clustering – e.g. no clusters are found
at all– with the score of 0. To relate the quality of the clustering achieved by
our methods to the results of former methods, we compared it to 4 alternative
approaches. First, we clustered text and sequences separately using only one
of the representations. A second approach combines the features of both rep-
resentations into a common feature space and employs the cosine distance to
relate the resulting feature vectors. As the only other clustering method that is
able to handle multi-represented data, we additionally compared reinforcement
clustering using DBSCAN as underlying cluster algorithm. For reinforcement
clustering, we ran 10 iterations and tried several values of the weighting param-
eter α. The local ε-parameters were selected as described above and we chose



Fig. 3. Example of an image cluster. The left rectangle contains images clustered by the
intersection-method. The right rectangles display additional images that were grouped
with the corresponding cluster when clustering the images with respect to a single
representation.

k = 2. To consider the different requirements of both methods, for each data set
a progressive and a conservative ε-value was determined. All approaches were
run for both settings and the best results are displayed.

The left diagram of figure 2 displays the derived quality for those 4 methods
and the two variants of our method. In all five test sets, the union-method using
conservative ε-values outperformed any of the other algorithms. Furthermore,
the noise ratio for each data set was between 16% and 28% (cf. figure 2, right),
indicating that the main portion of the data objects belongs to some cluster.
The intersection method using progressive ε-parameters performed comparably
well, but was to restrictive to overcome the sparseness of the data as good as
the union-method.

4.2 Clustering Images by Multiple Representations

Clustering image data is a good example for the usefulness of the intersection-
method. A lot of different similarity models exists for image data, each having
its own advantages and disadvantages. Using for example text descriptions of
images, one is able to cluster all images related to a certain topic, but these
images must not look alike. Using color histograms instead, the images are clus-
tered according to the distribution of color in the image. But as only the color
information is taken into account a green meadow with some flowers and a green
billiard table with some colored shots on it, can of course not be distinguished
by this similarity model. On the other hand, a similarity model taking content



information into account might not be able to distinguish images of different
colors.

Our intersection approach is able to get the best out of all these different
types of representations. Since the similarity in one representation is not really
sound, the intersection-method is well-suited to find clusters of better quality
for this application. For our experiments, we used two different representations.
The first representation was a 64-dimensional color histogram. In this case, we
used the weighted distance between those color histograms, represented as a
quadratic form distance function as described for example in [11]. The second
representation were segmentation trees. An image was first divided into seg-
ments of similar color by a segmentation algorithm. In a second step, a tree was
created from those segments by iteratively applying a region-growing algorithm
which merges neighboring segments, if their colors are alike. In [12] an efficient
technique is described to compute the similarity between two such trees using
filters for the complex edit-distance measure.

As we do not have any class labels to measure the quality of our cluster-
ing, we can only describe the results we achieved. In general, the clusters we
got using both representations were more accurate than the clusters we got us-
ing each representation separately. Of course, the noise ratio increased for the
intersection-method. Due to space limitations we only show one sample clus-
ter of images we found with the intersection-method (see Figure 3). Using this
method, very similar images are clustered together. When clustering each single
representation, a lot of additional images were added to the corresponding clus-
ter. As one can see, using the intersection-method only the most similar images
of both representations still belong to the cluster.

5 Conclusions

In this paper, we discussed the problem of clustering multi-represented objects.
A multi-represented object is described by a set of representations where each
representation belongs to a different data space. Contrary to existing approaches
our proposed method is able to cluster this kind of data using all available repre-
sentations without forcing the user to construct a combined data space. The idea
of our approach is to combine the information of all different representations as
early as possible and as late as necessary. To do so, we adapted the core object
property proposed for DBSCAN. To decide whether an object is a core object,
we use the local ε-neighborhoods of each representation and combine the results
to a global neighborhood. Based on this idea, we proposed two different methods
for varying applications. For sparse data, we introduced the union-method that
assumes that an object is a core object, if k objects are found within the union of
its local ε-neighborhoods. Respectively, we defined the intersection-method for
data where each local representation yields rather big and unspecific clusters.
Therefore, the intersection-method requires that at least k objects are within
the intersection of all local ε-neighborhoods of a core object. In our experimen-
tal evaluation, we introduced an entropy based quality measure that compares



a given clustering with noise to a reference clustering. Employing this quality
measure, we demonstrated that the union method was most suitable to overcome
the sparsity of a given protein data set. To demonstrate the ability of the inter-
section method to increase the cluster quality, we applied it to a set of images
using two different similarity models.

For future work, we plan to examine applications providing more than two
representations. We are especially interested, in clustering proteins with respect
to all of the mentioned representations. Another interesting challenge is to ex-
tend our method to an multi-instance and multi-representation clustering. In
this setting each object may be represented by several instances in some of the
representations.
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