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Abstract. Efficient query processing is one of the basic needs for data mining
algorithms. Clustering algorithms, association rule mining algorithms and OLAP
tools all rely on efficient query processors being able to deal with high-dimension-
al data. Inside such a query processor, multidimensional index structures are used
as a basic technique. As the implementation of such an index structures is a diffi-
cult and time-consuming task, we propose a new approach to implement an index
structure on top of a commercial relational database system. In particular, we map
the index structure to a relational database design and simulate the behavior of the
index structure using triggers and stored procedures. This can easily be done for a
very large class of multidimensional index structures. To demonstrate the feasibil-
ity and efficiency, we implemented an X-tree on top of Oracle 8. We ran several
experiments on large databases and recorded a performance improvement of up to
a factor of 11.5 compared to a sequential scan of the database. 

1.  Introduction
Efficient query processing in high-dimensional data spaces is an important require-

ment for many data analysis tools. Algorithms for knowledge discovery tasks such as
clustering [EKSX 98], association rule mining [AS 94], or OLAP [HAMS 97], are often
based on range search or nearest neighbor search in multidimensional feature spaces.
Since these applications deal with large amounts of usually high-dimensional point data,
multidimensional index structures must be applied for the data management in order to
achieve a satisfactory performance.

Multidimensional index structures have been intensively investigated during the last
decade. Most of the approaches [Gut 84, LS 89] were designed in the context of geo-
graphical information systems where two-dimensional data spaces are prevalent. The
performance of query processing often deteriorates when the dimensionality increases.
To overcome this problem, several specialized index structures for high-dimensional
query processing have been proposed that fall into two general categories: One can
either solve the d-dimensional problem by designing a d-dimensional index. Examples
are the TV-tree [LJF 95], the SS-tree [WJ 96], the SR-tree [KS 97] or the X-tree
[BKK 96]. We refer to this class of indexing techniques as multidimensional indexes.
Alternatively, one can map the d-dimensional problem to an equivalent 1-dimensional
problem and then make use of an existing 1-dimensional index such as a B+-tree. Thus,
we provide a mapping that maps each d-dimensional data point into a 1-dimensional
value (key). We refer to this class of indexing techniques as mapping techniques. Exam-
ples for this category are the Z-order [FB 74], the Hilbert-curve [FR 89, Jag 90], Gray-
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Codes [Fal 85], or the Pyramid-tree [BBK 98]. We refer to [Böh 98] for a comprehen-
sive survey on the relevant techniques. 

Recently, there is an increasing interest in integrating high-dimensional point data into
commercial database management systems. Data to be analyzed often stem from pro-
ductive environments which are already based on relational database management sys-
tems. These systems provide efficient data management for standard transactions such
as billing and accounting as well as powerful and adequate tools for reports, spread-
sheets, charts and other simple visualization and presentation tools. Relational databas-
es, however, fail to manage high-dimensional point data efficiently for advanced knowl-
edge discovery algorithms. Therefore, it is common to store productive data in a
relational database system and to replicate the data for analysis purposes outside the
database in file-based multidimensional index structures. We call this approach the hy-
brid solution.

The hybrid solution bears various disadvantages. Especially the integrity of data
stored in two ways, inside and outside the database system, is difficult to maintain. If an
update operation involving both, multidimensional and productive data fails in the rela-
tional database (e.g. due to concurrency conflicts), the corresponding update in the mul-
tidimensional index must be undone to guarantee consistency. Vice versa, if the multidi-
mensional update fails, the corresponding update to the relational database must be
aborted. For this purpose, a two-phase commit protocol for heterogeneous database sys-
tems must be implemented, a time-consuming task which requires a deep knowledge of
the participating systems. The hybrid solution involves further problems. File systems
and database systems usually have different concepts for data security, backup and con-
current access. File-based storage does not guarantee physical and logical data indepen-
dence. Thus, schema evolution in “running” applications is difficult.

A promising approach to overcome these disadvantages is based on object-relational
database systems. Object-relational database systems are relational database systems
which can be extended by application-specific data types (called data cartridges or data
blades). The general idea is to define data cartridges for multidimensional attributes and
to manage them in the database. For data-intensive applications it is necessary to imple-
ment multidimensional index structures in the database. This requires the access to the
block-manager of the database system, which is not granted by most commercial data-
base systems. The current universal server by ORACLE, for instance, does not provide
any documentation of a block-oriented interface to the database. Data cartridges are
only allowed to access relations via the SQL interface. Current object-relational data-
base systems are thus not very helpful for our integration problem.

We can summarize that using current object-relational database systems or pure rela-
tional database systems, the only possible way to store multidimensional attributes in-
side the database is to map them into the relational model. 

In this paper, we propose a technique which allows a direct mapping of the concepts
of specialized index structures for high-dimensional data spaces into the relational mod-
el. For concreteness, we concentrate here on a relational implementation of the X-tree
on top of Oracle-8. The X-tree, an R-tree variant for high-dimensional data spaces, is
described in detail in section 4.1. The presented techniques, however, can also be ap-
plied to other indexing approaches such as the TV-Tree [LJF 95] or the SS-Tree



[WJ 96]. Similarly, the underlying database system can be exchanged using the same
concept we suggest. The general idea is to model the structure of the relevant compo-
nents of the index (such as data pages, data items, directory pages etc.) in the relational
model and to simulate the query processing algorithms defined on these structures using
corresponding SQL statements. 

The simulation of mapping techniques is pretty straightforward and is therefore not
explained in depth in this paper. One just stores the 1-dimensional value in an additional
column of the data table and then searches this column. Obviously, a database index is
used to support the search. Thus, the whole query process is done in three steps: 

1. compute a set of candidates based on the 1-dimensional key
2. refine this set of candidates based on the d-dimensional feature vectors
3. refine this set of candidates by looking up the actual data items

2.  Simulation of Hierarchical Index Structures
The implementation of hierarchical index structures is much more complex than the

implementation of mapping techniques. This applies to any implementation strategy.
The reason for this is that hierarchical index structures have a complex structure that
dynamically changes when inserting new data items. Thus, algorithms do not run on a
previously given structure and have to be implemented recursively. To demonstrate that
even in this complex scenario, an implementation of an index structure on top of a
commercial database system can be done relatively easy and is preferable compared to
a legacy implementation, we implemented the X-tree, a high-dimensional index struc-
ture, based on R-trees. 

2.1  Simulation
The basic idea of our technique is to simulate the X-tree within the relational schema.

Thus, we keep a separate table for each level of the tree. One of those tables stores the
data points (simulating the data pages) the other tables store minimum bounding boxes
and pointers (simulating the directory pages). Figure 1 depicts this scenario. In order to
insert a data item, we first determine the data page in which the item has to be inserted.
Then, we check whether the data page overflows and if it does, we split the page accord-
ing to the X-tree split strategy. Note that a split might also cause the parent page in the
directory to overflow. If we have to split the root node of the tree which causes the tree
to grow in height, we have to introduce an additional table1 and thus change the schema.
A practical alternative is to pre-define tables for a three or four level directory. As only
in case of very large databases, an X-tree grows beyond height four, by doing so we can
handle a split of the root node as an exception that has to be handled separately. Thus,
the schema of the tree becomes static. All these actions are implemented in stored pro-
cedures. 

In order to search the tree, we have to join all tables and generate a single SQL state-
ment that queries the entire tree. This statement has to be created dynamically whenever

1. A technical problem arises here when dealing with commercial database systems: Oracle 8, for
instance, ends a transaction whenever a DDL command is executed. This means that if we use Ora-
cle 8, an insert operation on a tree that caused the root node to be split cannot be undone by simply
aborting the current transaction. 



the schema of the X-tree changes due to tree growth. If we process range queries, the
SQL statement is rather simple. The details are provided in section 2.3.

Relational Schema
All information usually held in the data pages of the X-tree is modeled in a relation

called DATA. A tuple in DATA contains a d-dimensional data vector, which is held in a
set of d numerical attributes x0, x1, ..., xd-1, a unique tuple identifier (tid), and the page
number (pn) of the data page. Thus, DATA has the schema “DATA (x0 FLOAT, x1
FLOAT, ..., xd-1 FLOAT, tid NUMBER NOT NULL, pn NUMBER NOT NULL)”. In-
tuitively, all data items located in the same data page of the X-Tree share the same value
pn. 

The k levels of the X-tree directory are modeled using k relations DIRECTORY0, ...,
DIRECTORYk-1. Each tuple in a relation DIRECTORYi belongs to one entry of a direc-
tory node in level i consisting of a bounding box and a pointer to a child node. Therefore,
DIRECTORYi is of the scheme “DIRECTORYi (lb0 FLOAT, ub0 FLOAT, ...., lbd-1
FLOAT, ubd-1 FLOAT, child NUMBER NOT NULL, pn NUMBER NOT NULL)“. The
additional attribute child represents the pointer to the child node which, in case of DI-
RECTORYk-1, references a data page and pn identifies the directory node the entry
belongs to. Thus, the two relations DIRECTORYk-1 and DATA can be joined via the
attributes child and pn which actually form a 1:n-relationship between DIRECTORYk-1
and DATA. The same relationship exists for two subsequent directory levels DIRECTO-
RYi and DIRECTORYi+1. Obviously, it is important to make the join between two sub-
sequent levels of the directory efficient. To facilitate index-based join methods, we cre-
ate indexes using the pn attribute as the ordering criterion. The same observation holds
for the join between DIRECTORYk-1 and DATA. To save table accesses, we also added
the quantized version of the feature vectors to the index. The resulting relational schema
of the X-Tree enhanced by the required indexes (triangles) is depicted in Figure 1.

Compressed Attributes

If we assume a high-dimensional data space, the location of a point in this space is
defined in terms of d floating point values. If d increases, the amount of information, we
are keeping, also increases linearly. Intuitively however, it should be possible to keep the
amount of information stored for a single data item almost constant for any dimension.
An obvious way to achieve this is to reduce the number of bits used for storing a single
coordinate linearly if the number of coordinates increases. In other words, as in a high-
dimensional space we have so much information about the location of a point, it should
be sufficient to use a coarser resolution to represent the data space. This technique suc-
cessfully has been applied in the VA-file [WSB 98] to compute nearest neighbors. In the
VA-file, a compressed version of the data points is stored in one file and the exact data

child
ub0, ub1, ..., ubd-1

lb0, lb1, ..., lbd-1pn

child
ub0, ub1, ..., ubd-1

lb0, lb1, ..., lbd-1
x0, x1, ..., xd-1

tid
compr
pn

DIRECTORY0 DIRECTORY1 DATA...

Figure 1: Relational Schema (Including B+-Tree Indexes) of the X-Tree. 



is stored in another file. Both files are unsorted, however, the ordering of the points in
the two files is identical. Query processing is equivalent to a sequential scan of the
compressed file with some look-ups to the second file whenever this is necessary. In
particular a look-up occurs, if a point cannot be pruned from the nearest neighbor search
only based on the compressed representation. 

In our implementation of the X-tree, we suggest the similar technique of compressed
attributes. A compressed attribute summarizes the d-dimensional information of an en-
try in the DATA table in a single-value representation. Thus, the resolution of the data
space is reduced to 1 byte per coordinate. Then, the 1-byte coordinates are concatenated
and stored in a single attribute called comp. Thus the scheme of DATA changes to DATA
(REAL x0, REAL x1, REAL xd-1, RAW[d] comp, INT tid, INT pn). To guarantee an
efficient access to the compressed attributes, we store comp in the index assigned to
DATA. Thus, in order to exclude a data item from the search, we first can use com-
pressed representation of the data item stored in the index and only if this is not suffi-
cient, we have to make a look-up to the actual DATA table. This further reduces the
number of accesses to the DATA table because most accesses are only to the index. 

2.2  Index Creation 
There are two situations when one intends to insert new data into an index structure:

Inserting a single data item, and building an index from scratch given a large amount of
data (bulk-load). We are supposed to handle these two situations separately, due to effi-
ciency considerations. The reason for this is that a dynamic insert of a single data item
is usually relatively slow, however, knowing all the data items to be inserted in advance,
we are able to preprocess the data (e.g. sort) such that an index can be built very effi-
ciently. This applies to almost all multidimensional index structures and their imple-
mentations. 

The dynamic insertion of a single data item involves two steps: determining an inser-
tion path and, when necessary, a local restructuring of the tree. There are basically two
alternatives for the implementation: An implementation of the whole insert algorithm
(e.g. using embedded SQL), or directly inserting the data point into the DATA relation
and then to raise triggers which perform the restructuring operation. 

In any implementation, we first have to determine an appropriate data page to insert
the data item. Therefore, we recursively look-up the directory tables as we would handle
it in a legacy implementation. Using a stored procedure, we load all affected node entries
into main memory and process them as described above. Then, we insert the data item
into the page. In case of an overflow, we recursively update the directory, according to
[BKK 96]. 

If an X-Tree has to be created from scratch for a large data set, it is more efficient to
provide a bulk-load operation, such as proposed in [BBK 98a]. This technique can also
be implemented in embedded SQL or stored procedures. 

2.3  Processing Range Queries
Processing a range query using our X-Tree implementation with a k-level-directory

involves (k + 2) steps. The first step reads the root level of the directory
(DIRECTORY0) and determines all pages of the next deeper level (DIRECTORY1)
which are intersected by the query window. These pages are loaded in the second step



and used for determining the qualifying pages in the subsequent level. The following
steps read all k levels of the directory in the same way, thus filtering between pages
which are affected or not. Once the bottom level of the directory has been processed, the
page numbers of all qualifying data pages are known. The data pages in our implemen-
tation contain the compressed (i.e. quantized) versions of the data vectors. Step number
(k + 1), the last filter step, loads these data pages and determines candidates (a candidate
is a point whose quantized approximation is intersected by the query window). In the
refinement step (k + 2), the candidates are directly accessed (the position in the data file
is known) and tested for containment in the query window.

In our relational implementation, all these steps are comprised in a single SQL state-
ment (c.f. Figure 2 for a 2-level directory). It forms an equi-join between each pair of
subsequent directory levels (DIRECTORYj and DIRECTORYj + 1, 0 ≤ j ≤ k – 2) and an
additional equi-join between the last directory level DIRECTORYi and the DATA rela-
tion. It consists of (k + 2) AND-connected blocks in the WHERE-clause. The blocks
refer to the steps of range query processing as described above. For example, the first
block filters all page numbers of the second directory level qualifying for the query.
Block number (k + 1) contains various substring-operations. The reason is that we had
to pack the compressed attributes into a string due to restrictions on the number of
attributes which can be stored in an index. The last block forms the refinement step.
Note that it is important to translate the query into a single SQL statement, because
client-/server communication involving costly context switches or round-trip delays can
be clearly reduced.

Figure 2: An Example for an SQL Statement Processing a Range Query. 

SELECT data.*
FROM directory0 dir0, directory1 dir1, data
WHERE

/* JOIN */
dir0.child = dir1.pn

AND dir1.child = data.pn
/* 1st step*/

AND dir0.lb0 ≤ qub0ANDqlb0 ≤ dir0.ub0
AND ...
AND dir0.lbd-1 ≤ qubd-1ANDqlbd-1 ≤ dir0.ubd-1

/* 2nd step */
AND dir1.lb0 ≤ qub0ANDqlb0 ≤ dir1.ub0
AND ...
AND dir1.lbd-1 ≤ qubd-1ANDqlbd-1 ≤ dir1.ubd-1

/* 3rd step */
AND ASCII(SUBSTR(data.comp,1,1)) BETWEEN qclb0 and qcub0
AND ...
AND ASCII(SUBSTR(data.comp,1,1)) BETWEEN qclbd-1 and qcubd-1

/* 4th step */
AND data.x0 BETWEEN qlb0 AND qub0
AND ...
AND data.xd-1 BETWEEN qlbd-1 AND qubd-1



The particularity of our approach is that processing of joins between (k + 1) tables is
more efficient than a single scan of the data relation provided that the SQL statement is
transformed into a suitable query evaluation plan (QEP). This can be guaranteed by
hints to the query optimizer. Query processing starts with a table scan of the root table.
The page regions intersecting the query window are selected and the result is projected
to the foreign key attribute child. The value of this result is used in the index join to
efficiently search for the entries in DIRECTORY1 which are contained in the corre-
sponding page region. For this purpose, an index range scan is performed. The corre-
sponding directory entries are retrieved by internal-key-accesses on the corresponding
base table DIRECTORY1. The qualifying data page numbers are again determined by
selection and projection to the child-attribute. An index range scan similar to the index
scan above is performed on the index of the DATA-table containing the page number,
and the quantized version of the data points. Before accessing the exact representation
of the data points, a selection based on the compressed attribute is performed to deter-
mine a suitable candidate set. The last step is the selection based on the exact geometry
of the data points. 

3.  Experimental Evaluation 

In order to verify our claims that the suggested implementation of multidimensional
index structures does not only provide advantages from a software engineering point of
view but also in terms of performance, we actually implemented the X-tree on top of
Oracle 8 and performed a comprehensive experimental evaluation on both, synthetic
and real data. Therefore, we compared various query processing techniques for high-
dimensional range queries in relational databases: 

1. sequential scan on the data relation, 

2. sequential scan on the data relation using the COMPRESSED attributes tech-
nique

3. standard index (B-tree) on the first attribute

4. standard index on all attributes concatenated in a single index

5. standard indexes on each attribute (inverted-list approach)

6. X-tree-simulation with and without COMPRESSED attributes technique

Figure 3: Times to Create an X-tree in Oracle 8. 



As first experimental results show, the variants 4 and 5 demonstrate a performance
much worse than all other variants. We will therefore not show detailed results for these
techniques. 

In our first experiment, we determine the times for creating an X-tree on a large data-
base. Therefore, we bulk-load the index using different techniques. The results of this
experiment are shown in figure 3. The relational implementation requires, depending on
the dimensionality of the data set, between one and five minutes to build an index on a
100,000 record 16-dimensional database. For this experiment, we use the algorithms
described in [BBK 98a] for bulk-loading the X-tree caching intermediate results in a
operating system file. The times for the standard B-tree approach and the X-tree ap-
proach show that a standard B-tree can be built about 2.5 times faster. However, both
techniques yield a good overall performance. 

In the  next experiment, we compare the query performance of the different imple-
mentations on synthetic data. The result of an experiment on 100,000 data items of
varying dimensionality is presented in figure 4. The performance of the inverted lists
approach and the standard index on a single attribute is not presented due to bad perfor-
mance. It can be seen that both, the compressed attributes technique and the X-tree
simulation yield high performance gains over all experiments. Moreover, the combina-
tion of both these techniques outperforms the sequential scan and the standard index for

Figure 4: Performance for Range Queries (Synthetic Data) for Varying Dimensions. 

Figure 5: Performance for Range Queries (Synthetic Data) for Varying Database Size (a) 
and for Varying Selectivity (b). 

SelectivityNumber of Objects N



all types of data over all dimensions. It can also be seen that the combination of the
directory and the compressed attributes technique yields a much better improvement
factor than each single technique. The factor even improves for higher dimensions, the
best observed improvement factor in our experiments was 11.5.

In the experiment depicted in figure 5a, we investigate the performance of the imple-
mentations when varying the size of the database. Again, the relational implementation
of the X-tree with compressed attributes outperforms all other techniques by far. The
acceleration even improves with growing database size.

In the last experiment on real data, we investigate the performance for varying selec-
tivities. The results of this experiment on 1,000,000 16-dimensional feature vectors are
shown in figure 5b. The data comes from a similarity search system of a car manufactur-
er and each feature vector describes the shape of a part. As we can observe from the
chart, our technique outperforms all other techniques. The effect of the compressed
attributes, however, was almost negligible. Thus, the performance of the X-tree with and
without compressed attributes is almost identical. This confirms our claim that imple-
menting index structures on top of a commercial relational database system shows very
good performance for both, synthetic and real data. 

4.  Conclusions
In this paper, we proposed a new approach to implement an index structure on top of

a commercial relational database system. We map the particular index structure to a
relational database design and simulate the behavior of the index structure using triggers
and stored procedures. We showed that this can be done easily for a very large class of
multidimensional index structures. To demonstrate the feasibility and efficiency we im-
plemented an X-tree on top of Oracle 8. We ran several experiments on large databases
and recorded a performance improvement of up to a factor of 11.5 compared to a se-
quential scan of the database. 

In addition to the performance gain, our approach has all the advantages of using a
fully-fledged database system including recovery, multi-user support and transactions.
Furthermore, the development times are significantly shorter than in a legacy imple-
mentation of an index.
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