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Abstract. In modern multimedia databases, objects can be represented by a large
variety of feature representations. In order to employ all available information in a
best possible way, a joint statement about object similarity must be derived. In this
paper, we present a novel technique for multi-represented similarity estimation
which is based on probability distributions modeling the connection between the
distance value and object similarity. To tune these distribution functions to model
the similarity in each representation, we propose a bootstrapping approach max-
imizing the agreement between the distributions. Thus, we capture the general
notion of similarity which is implicitly given by the distance relationships in the
available feature representations. Thus, our approach does not need any training
examples. In our experimental evaluation, we demonstrate that our new approach
offers superior precision and recall compared to standard similarity measures on
a real world audio data set.

1 Introduction

Similarity search and content-based object retrieval are important topics when handling
multimedia data like sound files or music titles. In recent years, the research community
introduced a large variety of feature transformations for all different types of sound data
and music titles [1]. Systems like Muscle Fish [2] employ multiple representations like
loudness, pitch, or harmonicity for the retrieval of audio data. Additionally, multiple
representations are a common setting in various other areas of multimedia data, such
as image or video data. Since most of the feature transformations focus on different
aspects of the objects, it is beneficial to use more than one feature representation when
processing similarity queries. Thus, the most suitable feature representations need to be
selected or combined.

In this paper, we introduce a novel technique for combining distance values being
observed in multiple representations. In our context, a representation is a method for
calculating a distance value between two objects. Our approach assumes that there ex-
ist two probability distributions modeling the likelihood that a user would state that
two objects displaying a certain distance value in some representation are similar or
dissimilar. These distributions are influenced by the degree of similarity between the
objects as well as the complete set of objects displaying the same given distance value.
Furthermore, we assume that both distributions are connected by a third distribution
modeling the ambiguity of the distance value, e.g. the likelihood that both distributions
display the same distance value. Now, we can derive the likelihood that a given distance
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value has a definite meaning, i.e. the likelihood for an ambiguous meaning is rather
small. Since small distances correspond to similar objects, we can assume that distance
values being smaller than all distances having an ambiguous meaning indicate object
similarity. Based on the local likelihood for similarity in each representation, we can
now calculate a joint probability score indicating object similarity.

An additional contribution of this paper is a method for explicitly describing the lo-
cal similarity likelihoods as explicit functions. Furthermore, to fit the distributions to the
given application, we propose an iterative algorithm which is based on maximizing the
agreement between representations. To run this algorithm, it is not necessary to man-
ually label pairs of similar objects. Instead our new approach is based on the fact that
the feature representations are usually selected to be useful for the given application.
Under the condition of meaningful feature transformations, very small distance values
will imply similarity and very large distance values will imply dissimilarity. Exploiting
this observation, our new algorithm finds a meaningful parametrization within a few
iterations.

The rest of the paper is organized as follows. In Section 2, we survey related work
in the area of multi-represented similarity search. Our new theory about mapping dis-
tances to similarity statements is introduced in Section 3. Section 4 presents solutions
for calculating the similarity likelihood and unsupervised parameter tuning. Our exper-
imental evaluation is presented in section 5. The paper concludes in Section 6 with a
summary and some directions for future work.

2 Related Work

Considering objects with multiple representations has attracted more and more attention
in the multimedia research community. The approaches proposed over the last years can
be divided in two categories, namely supervised and unsupervised. The supervised tech-
niques either revert to user feedback or assume that labeled data with known affiliation
of objects to some classes are available. For both categories, a common framework is
the use of a weighted linear combination.

Supervised by user feedback. Various approaches have been proposed to compute
the weights with the help of user feedback. To give feedback, a user has to label if an
object being retrieved by a similarity query is really similar to the given query object.
In general, the weighted average of the distances observed in all representations was
reported to provide good results in several publications (e.g., [3]). For instance, the ap-
proaches in [4, 5] compute the weights based on the idea of relevance feedback. The
authors of [6] suggest another relevance feedback based technique. This technique im-
plements a weighted distance approach that uses standard deviations of the features.
Another example is logistic regression w.r.t. user feedback [7]. From the user’s point
of view, it is rather inconvenient to provide feedback several times to get the result. In
contrast, our method can operate without any training objects.

The interactive search fusion method [8] provides a set of fusion functions, e.g.
min, max, sum and product function that can be used for combining different represen-
tations in order to improve the effectiveness of similarity search. This method supports
a manual and an interactive search that is supervised by the user’s assistance or by a



user-defined query. In addition, Boolean operators on aggregation functions are sup-
ported, e.g. “AND” can be applied to the product aggregation function. This technique
requires strong interaction with the user. This is not always desirable because in order
to use this method the user has to understand its concepts first.

Supervised by labeled data. The authors of [9] introduce two methods for improv-
ing the effectiveness in a retrieval system that operates on multiple representations of
3D objects. The proposed techniques are based on the entropy impurity measure. The
first method chooses the best representation w.r.t. a given query object. The second
method performs a so-called dynamic weighting of the available representations that is
computed at query time, and that depends on entropy impurity in the local neighbor-
hood of a query object. This work also presents encouraging experimental results that
demonstrate a significant improvement in effectiveness of the similarity search for both
proposed techniques. The methods described in [9] need a set of labeled data in order
to measure entropy impurity.

Unsupervised. An unsupervised way to determine the weights for a linear combi-
nation is counting the number of representations for which a similarity larger than zero
is observed [3]. This method is strongly dependent on the occurrence of zero distances.
An unsupervised technique for the weighted combination of multiple representations
for similarity search in multimedia databases was proposed in [10]. This technique ex-
ploits the fact that it is often beneficial to summarize multimedia data, like e.g. videos,
in order to achieve higher efficiency during query processing. Compared to our new
method, this method has the general drawback that it is only applicable together with
summarization. However, object summarization is not a necessary element of general
multi-represented similarity search. In [11], a template matching method based on the
time warping distance is presented. This approach can measure the temporal edit sim-
ilarity in order to process audio-visual similarity queries. However, temporal order is
not necessary in many applications.

3 A Distribution-Based approach for Similarity Estimation

In this section, we will introduce our new method for estimating the similarity between
two multimedia objects based on multiple feature representations. We can formalize a
multi-represented object as follows:

Definition 1 (Multi-Represented Object).
Let R = {R1, . . . , Rn} be a set of feature spaces. For each feature space Ri there
exists a distance function di : Ri × Ri → R+

0 . A multi-represented object o over the
representations R is given by the n tuple o = (r1, . . . , rn) ∈ R1 × . . .×Rn.

To compare two multi-represented objects o1 and o2, we have to combine the dis-
tances that can be derived from each representation. In general, most systems combine
the distances using the weighted average over all distances and all representation spaces
[3, 9, 10]. Though this standard approach is adjustable by varying the weights, it con-
siders that the dissimilarity is linearly decreasing in all representations. However, we
argue that very small and very large distances indicate a more clear statement about
object similarity and dissimilarity, respectively, than medium distance values and thus,
have to be treated in a different way.
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Fig. 1. Three examples for the distributions of similar and dissimilar distances.

In our new model, we want to quantify similarity as the likelihood that a user would
assign the label “similar” to the comparison of ok and ol given the distance value
di(ok, ol) in representation Ri. Let us note that in this model the complementary la-
bel to “similar” is not “dissimilar”. Instead the user would assign a label “unknown”
in the case if it is not clear whether the object should be considered as similar or not.
Correspondingly, we can consider the likelihood that a user would assign the label “dis-
similar” to both objects. For this distribution, not labeling two objects as similar would
also indicate “unknown”. As a conclusion, we can distinguish two types of distributions
mapping a distance value to “similar”, “dissimilar” or “unknown”. The first distribu-
tion describes the likelihood that a user would consider two objects clearly as similar
and the second distribution describes the likelihood that a user would consider two ob-
jects clearly as dissimilar. Thus, both distributions are not necessarily complementary
because a user could be ambiguous about object similarity as well. However, both dis-
tributions are implicitly connected by a third distribution modeling the ambiguity of
meaning of a given distance value.

In the following, we will refer to the probability density function over the distances
in representation Ri implying similarity as pi

s(x) and the corresponding density func-
tion modeling the distribution of dissimilarity as pi

d(x). Figure 1 displays three exam-
ples of both distributions over the distance values in a data space. For this example,
we assume Gaussian distributions. In Subfigure a), pi

s(x) and pi
d(x) are rather well

separated. Therefore, a ranking query in this representation would most likely retrieve
similar objects first and afterwards objects being dissimilar to the given query object.
Subfigure b) displays the other extreme. Both distributions are rather identical. Thus, the
distance in this representation is rather uncorrelated with object similarity. Therefore,
similar as well as dissimilar objects are encountered for any given distance value. Fi-
nally, subfigure c) illustrates a more realistic distribution. pi

s(x) is much more dense for
small distances and displays a small density for large distances. pi

d(x) displays medium
densities for a large spectrum of small and large distance values. A corresponding rank-
ing, would start with similar as well as with dissimilar objects. However, after a certain
distance is reached, the ranking would contain mostly dissimilar objects.

Based on this observation, we can measure the suitability of a given representation
Ri to distinguish similar from dissimilar objects. To measure how meaningful observing



a certain distance δ between two objects ok and ol is, we can consider the likelihood that
the distance δ is observed for similar as well as for dissimilar objects. If δ is common
in both distributions pi

s(x) and pi
d(x) the meaning is rather ambiguous. However, if it is

much likelier that δ is observed for similar objects, the meaning of δ is rather definite.
Formally, the complete likelihood that both distributions display the same distance

in representation Ri can be expressed as follows:

pi
ambiguous =

∫ ∞

−∞
pi

s(x)pi
d(x)dx

The product of densities corresponds to the event that both distributions display
the same distance and the integral sums up this joint density for all possible distance
values. Since pi

ambiguous describes the complete amount of ambiguity in representation
i, it can be considered as a measure of how far a given representation is suitable to model
similarity. If pi

ambiguous is rather large, the implication of most distance values in Ri

on similarity will be rather small. To calculate the probability that a given interval of
distance values [a, b] contains more ambiguous distances than the rest, we can determine
the portion of the error relative to pi

ambiguous:

P i
ambiguous(a, b) =

∫ b

a
pi

s(x)pi
d(x)dx

pi
ambiguous

To determine the probability that a distance x < δ has a definite meaning, we can
now determine the probability of the ambiguity of distances which are larger than δ:

P i
definite(x < δ) = P i

ambiguous(x ≥ δ) =

∫∞
δ

pi
s(x) · pi

d(x)dx

pi
ambiguous

Since distances between similar objects are naturally smaller than distances between
dissimilar objects, we can conclude that pi

definite(x < δ) corresponds to the likelihood
that two objects having a distance of δ or smaller are similar. Formally, we can define
the local similarity likelihood in representation Ri as follows:

Definition 2 (Local Similarity Likelihood in Ri). Let ok and ol be multi-represented
objects over the representations R = {R1, . . . , Rn}. Then the similarity Likelihood for
the comparison of ok and ol in representation Ri is defined as follows:

Li
S(ok, ol) = pi

definite(x < di(ok, ol))

After having formalized the local similarity likelihood for representation Ri, we can
now define the complete similarity likelihood over all representations:

Definition 3 (Similarity Likelihood).
Let ok and ol be multi-represented objects over the feature spaces or representations
R = {R1, . . . , Rn}. For each representation Ri, we consider the similarity likelihood
Li

S(x). The similarity likelihood PSIM between ok and ol is defined as follows:

PSIM(ok, ol) =
∏

Ri∈R

Li
S(ok, ol),



Let us note that the similarity likelihood assumes independence between the repre-
sentations. This is a valid assumption because the benefit of combining multiple rep-
resentations strongly depends on the use of independent object representations. Thus,
when using a set of representations which always have the same implication on object
similarity, any combination rule will follow this implication anyway.

4 Efficient Calculation and Parameter Fitting

After describing the general model, we will now turn to calculating the similarity like-
lihood. Therefore, we need to explicitly describe our distribution functions and fit the
parameters of the distributions to the data objects in the given application.

In order to select a suitable distribution function, we have to examine co-occurrence
between distance values and object similarity. Let us note that our technique can work
with an arbitrary probability distribution function. In our application, we observed that
Gaussian distribution functions seem to be a suitable description of the density of object
pairs being labeled as similar or dissimilar. Furthermore, when modeling pi

s(x) and
pi

d(x) as Gaussian distribution, it can be shown that pi
ambiguous(x) again follows a

Gaussian distribution.
A Gaussian distribution function is characterized by the mean value and the standard

deviation which can be calculated in a straight-forward way.
In order to calculate Li

S(ok, ol), we would need to integrate over a Gaussian distribu-
tion function modeling pi

ambiguous(x). Unfortunately, there is no known antiderivative
for the Gaussian density function and thus, we need to employ an approximation in
order to calculate our similarity likelihoods. To solve this problem, we employ the sig-
moid function which is quite often used to approximate the integral from −∞ to a or
from a to ∞ over a Gaussian distribution. The sigmoid function is defined as follows:

sigα,β(x) =
1

1 + exp (α · x + β)

The local similarity likelihood is modeled by a sigmoid function having a negative
α-value. To determine the sigmoid function approximating the cumulative density for a
given Gaussian, there are various methods. In our system, we employed the following:
We derived a set of sample points by cumulating the values of the Gaussian. Afterwards
we employed the method of Levenberg and Marquadt [12] for fitting a sigmoid function
to the sample points.

Finally, to employ the similarity likelihood, we have to find suitable function param-
eters for each representation. Our method is based on distinguishing the distributions
of distance values implying similarity and dissimilarity. Thus, we need to find a way
for approximating the likelihood that two objects are similar or dissimilar. Our solution
to this problem is based on the following observation. If the distances observed in all
representations for a given pair of objects are rather small, it is very likely that the ob-
jects are considered as similar. Correspondingly, if the distances between two objects
are rather large in all representations, we can assume that the objects are dissimilar. To
apply this observation for determining a good parametrization, we have to find a way



FUNCTION unsupervisedParameterTuning()
D = generateDistanceVectors()
FOR EACH representation Ri ∈ R DO

initSimilarityLikelihoods(Ri,D)
END FOR
DO

LAVG
S = calculateAVGSIM(D)

FOR EACH representation Ri ∈ R DO
calcDistributions(D, LAVG

S )
pi

ambiguous = calcAmbiguity(D, LAVG
S )

approximateSimilarityLikelihoods(D, LAVG
S ,pi

ambiguous)
END FOR

WHILE(old parameters 6= new parameters)

Fig. 2. The algorithm for unsupervised parameter tuning.

to maximize the agreement between the similarity likelihoods. In other words, the den-
sity functions modeling the ambiguity of a distance in each representation should be
synchronized in a way that di(ok, ol) has a comparable probability density in represen-
tation Ri as dj(ok, ol) in representation Rj . In order to avoid a costly computation of
the distances between all database objects, we sample a small example data set S. We
observed in our experiments that using about 100 - 200 objects is sufficient to compute
a good approximation. Formally, we can capture the agreement between the similarity
likelihoods in all representations by the average variance of estimate values on a sample
data set S:

Definition 4. Let R = {R1, . . . , Rn} be a set of representations and let Li
S(ok, ol) be

the similarity for Ri with 1 ≤ i ≤ n. Then the average similarity LAVG
S (ok, ol) for the

comparison of two multi-represented objects ok, ol is defined as :

LAVG
S (ok, ol) =

∑
Ri∈R Li

S(ok, ol)
|R|

Consequently, the average variance of a given example set S consisting of multi-represented
objects is given as:

V ar(S) =
∑

on,om∈S

∑
Ri∈R

(Li
S(on, om)− LAVG

S (on, om))2

After providing a measure of the agreement between the distributions in each rep-
resentation on a given example set S, we now introduce an iterative method to find
estimate parameters minimizing V ar(S). Our method iteratively minimizes a target
function, i.e. V ar(S), and updates the parameters in each representation to better re-
semble the similarity value induced by LAVG

S (ok, ol).
In the following, we describe the method in more detail. Figure 2 depicts the al-

gorithm in pseudo code. In the initialization step, we calculate all distances in all rep-



resentations between two example objects. As a result, each object comparison is de-
scribed by a distance vector

−−→
dm,n of dimensionality |R| containing the distance in each

representation. It makes sense to store the distance vectors for all pairs of objects to
avoid recalculating the distances in each iteration. To derive an initial parametrization
for the distribution function in representation Ri, all distance vectors are sorted w.r.t.
the i-th component. The initial similarity likelihoods are now computed under the as-
sumption that the s smallest observed distance values correspond to similarity. Based
on this initial notion of similarity, the parameters of the underlying Gaussian distribu-
tion are derived. To get an initialization of dissimilarity, we assume that the d largest
distances correspond to dissimilarity. After approximating both distributions, we can
derive pi

ambiguous and fit a sigmoid to model Li
S(ok, ol). Now the algorithm can enter

the iteration loop. In a first step, we calculate LAVG
S (ok, ol) for each distance vector and

thus, receive a joint notion of similarity for each object comparison.
After building the current notion of similarity, we first of all can update the Gaussian

distributions describing similar and dissimilar distances in each representation. Each
distance is weighted with the current likelihood that the corresponding distance vec-
tor induces similarity or dissimilarity. After updating the distributions, we continue by
calculating pi

ambiguous and transform both Gaussian distributions into our probability

distribution describing ambiguity. Now the sigmoid functions describing Li
S(ok, ol) can

be updated to fit the joint notion of similarity in a better way. After having updated the
similarity in each representation, we can check if any parameter value was indeed op-
timized. If this was the case, we proceed with an additional iteration. If the parameters
did not change, the algorithm converges and we have found a suitable set of parameters
maximizing the agreement between distributions. In our experiments, we observed that
the algorithm usually terminates after 5 to 10 iterations.

5 Evaluation

All methods were implemented in Java 1.5, the experiments were performed on a work-
station having 2GB main memory and an Intel Pentium IV (2.6 GHz) processor. We
conducted our experiments on a music collection consisting of almost 500 songs which
were taken from 15 different musical genres as the basis for the audio data set. We gen-
erated 6 different feature representations per song and depending on the representation,
we extracted 30 to 300 features per second. Timbre features are derived from the fre-
quency domain and were mainly developed for the purpose of speech recognition. The
extraction of the timbral texture is performed by computing the short time fourier trans-
form. We use the Mel-frequency cepstral coefficients (MFCCs), spectral flux, spectral
deviation and spectral rolloff as timbral representations [1]. Rhythmic content features
are useful for describing the beat frequency and beat strength of a piece of music. Fea-
tures derived from beat histograms [1] are used for the description of the rhythmic con-
tent. Pitch extraction tries to model the human perception by simulating the behavior of
the cochlea. Similar to the rhythmic content features, we derive pitch features from pitch
histograms which were generated by a multipitch analysis model [13]. For each repre-
sentation, we applied a vantage point based instance reduction [14] and transformed the
corresponding feature vector set into one feature vector of about 500 dimensions.
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Fig. 3. Quality results on audio data set.

We compared our approach with three competitors, namely logistic regression [7],
the weighted distances approach “WAVG”, and the best single representation “Best
Single”, which provides the best single model for similarity and dissimilarity. The
weights for each representation for WAVG are selected in the following way which
is known as mean normalization. We normalize the distance with regard to the mean
value µorig

i of the original distance distorig
i in representation Ri, i.e. distnorm

i (o, q) =
distorig

i (o, q)/µorig
i . The mean value can be approximated by sampling a small set of

objects from the current representation Ri.
Nearest Neighbor Classification. In this type of experiment, we employed near-

est neighbor classification in combination with 10-fold cross validation to avoid over-
fitting. We employed our unsupervised method for parameter fitting and compared the
classification accuracy of a nearest neighbor classifier. The results are depicted in Fig-
ure 3(a). The classification accuracy when using the similarity likelihood was higher
than the accuracy of the classification employing logistic regression, WAVG, or any of
the underlying representations. Thus, the similarity likelihood provided a even better
notion of similarity than the supervised approach employing logistic regression.

Precision-Recall Results. A final type of experiment tries to capture precision and
recall of the proposed method by constructing so-called precision-recall graphs. For
this type of experiment a ranking query is posed for each object in the test set. For
each query, we now measure the precision for 5 different levels of recall. Afterwards,
the average precision for each recall level over all queries is computed. Thus, the 0.25
bin of the precision/recall graph corresponds to average precision observed in the result
sets containing 25 % of the objects belonging the same class as the query object. We
examined the performance of each representation separately and additionally, examined
the performance of WAVG and logistic regression (cf. Figure 3(b)). For all measured
recall values, the similarity likelihood achieves a significantly higher precision than both
WAVG and the best single representation. Only logistic regression was able to slightly
outperform our method for very high recall values.

6 Conclusions

In this paper, we proposed a novel method for multi-represented similarity search. Un-
like previous methods which only focus on achieving comparability between the dis-



tances derived in each representation space, our new method additionally distinguishes
the meaning of distance relationships in each representation. To capture this meaning,
we define a so-called similarity likelihood which approximates the probability that two
compared objects are truly similar. We propose an unsupervised method which finds
parameters that resemble the current notion of similarity in a best possible way. This
method employs the idea that the selection of representation spaces itself yields an
implicit statement about the notion of similarity of the given application. Thus, our
approach maximizes the agreement between the similarity likelihoods in the given rep-
resentations in order to find a meaningful parameter setting. In our experimental evalu-
ation, we demonstrate on a real world audio data set that our new likelihood based tech-
nique outperforms standard combination methods w.r.t precision and recall. For future
work, we plan to investigate the use of other distribution functions to model distances
between similar and dissimilar objects.
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