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Abstract. Effective similarity search in multi-media time series such as video
or audio sequences is important for content-based multi-media retrieval applica-
tions. We propose a framework that extracts a sequence of local features from
large multi-media time series that reflect the characteristics of the complex struc-
tured time series more accurately than global features. In addition, we propose a
set of suitable local features that can be derived by our framework. These features
are scanned from a time series amplitude-levelwise and are called amplitude-level
features. Our experimental evaluation shows that our method models the intuitive
similarity of multi-media time series better than existing techniques.

1 Introduction

Time series data is a prevalent data type in multi-media applications such as video or
audio content analysis. Videos are usually modeled as sequences of features extracted
for each picture of the video stream. Analogously, audio content is also modeled as a
series of features extracted continuously from the audio stream. Similarity search in
such time series data is very important for multi-media applications such as query-by-
humming, plagiarism detection, or content-based audio and video retrieval.

The challenge for similarity search in time series data is twofold. First, the adequate
modeling of the intuitive similarity notion between time series is important for the ac-
curacy of the search. For that purpose, several distance measures for time series have
been defined recently, each of which works fine under specific assumptions and in dif-
ferent scenarios (e.g. the Euclidian distance or Dynamic Time Warping (DTW)). Most
of them apply features comprising quantitative information of the time series. How-
ever, in particular for complex structured time series, features comprising quantitative
information are often too susceptible to noise, outliers, and other interfering variables.
Second, since time series are usually very large, containing several thousands of values
per sequence, the comparison of two time series can be very expensive, particularly
when using distance measures that require the access to the raw time series data (i.e.
the entire sequence of time series values). For example, for a audio sequence we can
derive 300 features per second. Thus, a 3 minute audio sequence is represented by a
time series of length 54,000. Generally, shape-based similarity measures like the DTW
are very expensive, and are usually not applicable for multi-media data.

In this paper, we propose a novel framework for shape-based similarity search on
multi-media time series that addresses both mentioned problems. Our approach allows
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Fig. 1. Global vs. local feature extraction.

to incorporate the relevant features that model qualitative characteristics of the time se-
ries and, thus, is able to represent the similarity of complex time series more accurately
than recent approaches. In addition, the runtime complexity of our method is indepen-
dent of the length of the time series which is important for very long multi-media time
series. Figure 1 depicts our novel approach of local feature extraction (cf. Figure 1(b))
in comparison to the traditional global feature extraction strategies [1] (cf. Figure 1(a)).
The traditional global approach extracts a set of n one-dimensional features represent-
ing the global characteristics of the time series. The resulting n features are used to
build an n-dimensional feature vector and the Euclidean distance is used to measure
the similarity between the derived features. In contrast, our approach is based on a de-
composition of the complex structured time series into a reasonable set of more simple
structured components which we call local representations. Then, we extract a set of lo-
cal features of different types from these local representations. Subsequently, we merge
the local features of each type into a feature vector. As a result, we obtain a set of
n feature vectors. The main advantage of our strategy is that we dissect the complex
feature extraction problem into a set of small subproblems which can be solved more
easily. In order to reduce the complexity of the similarity measure based on the result-
ing features, we can subsequently compress the results using standard dimensionality
reduction techniques. In this paper, we focus on one-dimensional time series. However,
our approach can easily be adapted to the multi-dimensional case by extracting features
for each dimension.

The rest of the paper is organized as follows. In Section 2, we survey related work. In
Section 3, we present our feature extraction framework. A set of feature types reflecting
the characteristics of time series in Section 4. Section 5 comprises the experimental
results. The paper is concluded in Section 6.

2 Related Work

Modeling multimedia objects by time series. Recently, modeling multimedia data (e.g.,
audio streams, video sequences) as time series attracted more and more attention in the
field of content-based multimedia object retrieval. In [2], a template matching method
is presented. This approach measures similarity of videos by applying the time warping
distance on sequences of low-level feature vectors. Another efficient scheme for video



sequence matching was suggested in [3]. This method applies a time-series-based de-
scription of visual features from every video frame to capture the visual similarity w.r.t.
the order of their appearance in the query video. The authors of [4] propose a clustering
process and a weighted similarity measure between so-called key frames calculated for
each shot in order to capture the dynamics of visual contents for matching. This key-
frame based representation of a video can be viewed as a multi-dimensional time series
in order to retain the temporal order of events.

In order to compare two multimedia objects represented by time series, a proper dis-
tance measure is required. The most prominent similarity measure for time series is the
Euclidean distance. In the past years, the Dynamic Time Warping (DTW) [5] which is
conceptually similar to sequence alignment has become as prominent as the Euclidean
distance. Contrary to the Euclidean distance which is a measure for the similarity in
time, DTW is a measure for the similarity in shape.

Feature extraction for time series. For long time series usually structure level similar-
ity measures based on global features or model parameter extraction are used [6–9]. A
similarity model for time series that considers the characteristics of the time series was
recently proposed in [1]. A set of global features including periodicity, self-similarity,
skewness, kurtosis among others are used to compute the similarity between the time
series. Some of the features are generated from the raw time series data as well as from
trend and seasonally adjusted time series. The authors focused on clustering as a special
application of similarity search and showed that a small set of global features can be
sufficient to achieve an adequate clustering quality. However, this approach is success-
ful only as long as adequate features that reflect the time series characteristics can be
identified. Unfortunately, long time series often feature very complex structures which
cannot sufficiently be reflected by a single global feature, e.g. modeling the periodicity
of a long time series with only one value may be too coarse in most cases.

In the multimedia community, publications about global features can be grouped in
two main categories. Approaches belonging to the first category calculate features in the
so-called frequency domain. The following feature transformations of this category are
well known in the audio and signal processing area: Relative Spectral Predictive Lin-
ear Coding, Pitch [10], Spectral Flux, Mel Frequency Cepstral Coefficients, Bark Fre-
quency Cepstral Coefficients [11], and coefficients calculated by basic time-frequency
transformations (e.g., DCT, FFT, CWT, DWT). The second category consists of tech-
niques that extract features in the so-called time domain. This category consists of the
following features: Linear Predictive Coding coefficients[12], Zero Crossing Rate Peri-
odicity Histogram [10], Sone and Short Time Energy [13], Length of High Amplitude
Sequence, Length of Low Amplitude Sequence, or Area of High Amplitude [14].

In contrast to the existing features working in the time-based domain, the features
proposed in this paper are calculated over the whole amplitude spectrum. This fact al-
lows us capturing time-domain properties over the whole available amplitude range.
Moreover, we suggest an automatical method for the combination of the derived fea-
tures which results in a significant improvement of effectiveness.
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3 Feature Sequence Extraction

As discussed above, traditional similarity measures like the Euclidean distance or DTW
that work on the raw time series are not appropriate for multi-media applications.
Rather, it is more suitable to extract features from qualitative representations of time
series. Here, we propose a qualitative representation of time series that relies on se-
quences of intervals each representing all time slots at which the value of the original
time series is above a given amplitude level.

3.1 Amplitude-Level-Wise Feature Extraction

Using only features according to one single amplitude level to describe a time series
might be much too coarse to get satisfying results. Rather, we use several amplitude
levels in order to capture the entire shape of the time series and extract features for
each amplitude value. Instead of one feature value we get a sequence of feature values,
called feature sequence, as illustrated in Figure 2. However, it is not very appropriate
to consider all possible amplitude values for the feature extraction due to two reasons:
First, the number of amplitude levels is infinite. Second, close amplitude values are
likely to contain similar information, so that the feature sequence will contain a lot of
redundant information.

We propose a framework that extracts time series features in two steps: In a first
step, we generate sequences of feature values by scanning the amplitudes of the corre-
sponding time series with a reasonable high resolution. In order to improve the similar-
ity search quality we suggest to extract several features from the interval sequences. As
depicted in Figure 2 we use the feature scan line (fsl) to vertically scan the time series
from bottom to top and retrieve at each (relevant) amplitude level τ a set of features
called Amplitude-Level Features (ALFs). Examples of simple ALFs include the frac-
tion of time series values that exceed each amplitude level (denoted by ALFATQ in the
following) and the number of intervals of consecutive time slots above each amplitude
level (denoted by ALFTIC in the following).

As a result, we obtain a sequence of ALFs 〈(τmin, fτmin
), . . . (τmax, fτmax

)〉, where
τmin denotes the global minimum of all amplitudes of all time series and τmax denotes
the corresponding global maximum of all amplitudes. The resolution r of the amplitude
scan (i.e. the length of the ALF sequence) is a user-defined parameter that influences the
length of the resulting feature sequence as well as the accuracy of the representation. If
we choose a high value for the resolution r, we will obviously obtain a more accurate
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description of the time series and may achieve better results. On the other hand, a high
value for the resolution r results in larger space required to store the ALF sequences and
in a lower query performance. In order to reduce the size of the extracted features and
to decrease redundant information, we subsequently apply appropriate dimensionality
reduction methods to reduce the large feature sequences to a smaller set of coefficients.
These coefficients correspond to the feature vectors that are finally used to represent the
time series and are used for the similarity search methods.

3.2 Feature Sequence Compression

Depending on the resolution r of the feature extraction method, the ALF sequences
may usually have a more or less smooth shape. Assuming a high resolution, the fea-
tures extracted from adjacent amplitude thresholds do not vary very much. For this
reason, common dimensionality reduction techniques for time series like DFT, PAA, or
Chebyshev applied to the ALF sequences lead to shorter ALF sequences while accu-
rately approximating the original ALF sequence. Finally, for each feature we generate
a dimensionality reduced ALF sequence in the form of a vector which can be indexed
by any spatial index structure. This strategy helps to solve the performance problems
while keeping the quality of the similarity measure.

The principle of our framework is depicted in Figure 3. The framework takes a time
series as input and produces a set of feature vectors as output. It consists of the two steps,
the amplitude-level-wise feature extraction and the feature sequence compression. In
particular, for a given time series and a given feature A we extract a sequence of local
feature values a1, a2, and a3. Subsequently, the generated ALF sequence is compressed
by means of standard dimensionality reduction techniques resulting in a feature vector.
This step is repeated for each feature extraction method so that finally a set of feature
vectors is returned. This set is afterwards used to measure the similarity between the
time series objects. Obviously, the final set of feature vectors and the dimension of
each feature depends on the number and type of derived features, the resolution r, and
the applied dimensionality reduction techniques. The length of the input time series
however, has no influence on the dimensions of the resulting feature vectors. So the
time complexity of a query is constant with respect to the length of the input time
series. In the following section, we will present some high quality ALFs and discuss
how to compute the similarity of the resulting set of feature vectors.



3.3 Feature Sequence Combination

As mentioned above, we generate a set of feature vectors for each time series. As the
combination of different feature vectors usually improves the search quality we apply
a combination approach similar to the techniques described in [15] and [16]. In order
to compute weights for the different representations, we initially chose a small sub-
set of training objects from the database. For each query object, we then perform a
k-NN query on our training set and aggregate the number of objects for each class in
a confidence vector. The coefficients of this confidence vector reflect the frequency of
each class in the k-NN sphere of the query object. After normalization, the weights are
derived by computing the entropy for each representation. The idea of this method is
that feature spaces yielding a pure k-NN sphere are more suitable than representations
containing objects from a lot of classes. After having determined the weights, a stan-
dard combination method like sum, product, min, or max can be used to combine the
distances according to the different feature representations.

4 Amplitude-Level Features

The number and type of adequate features depend on the application and on the data. In
the following, we propose a selection of features that mainly reflect shape characteris-
tics of time series, and thus, might be suitable to common applications. Let us note that
there may be other features that are sensible for special applications. However, we will
show in our experiments that even the basic features described in the following already
yield a rather accurate similarity model for shape-based similarity search in time series
databases.

In the previous section, we already introduced two simple amplitude-level features,
the Above Amplitude Level Quota (ATQ) that measures the fraction of time series val-
ues that exceed a given amplitude level τ and the Threshold Interval Count (TIC) that
measures the relative number of amplitude level intervals. Both are easy to compute
but reflect well the basic characteristic of time series. The resulting feature values obvi-
ously range from 0 to 1, where ALFATQ decreases monotonously for increasing values
of τ . Noise has a stronger impact on ALFTIC curve than on that of ALFATQ as a lot
of noise can lead to a huge number of intervals. Similar to ALFATQ all chronological
information is lost.

In the following, we present further adequate amplitude-level features. Here tiτ,X

denotes the qualitative representation of a time series X w.r.t. the amplitude level τ , i.e.
the set of intervals where the value of X is above τ .

Threshold Interval Length (TIL). In contrast to the ALFTIC , TIL tries to capture more
complex characteristics of the intervals than just their existence. An obvious choice is
the average and the maximal length of all intervals for a given amplitude level τ and a
time series X , formally

ALFmaxTIL(X, τ) = max{(uj − lj) : j ∈ tiτ,X}

ALF∅TIL(X, τ) =
1

|tiτ,x|
M∑

j=0

(uj − lj)
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ALFmaxTIL and ALF∅TIL show similar behavior in most cases, whereas the for-
mer always yields monotonously decreasing feature values and naturally is more robust
against noise (cf. Figure 4(a)). The contained information basically indicates at which
amplitudes the time series contain high/low frequent sections. The same observation
could be made for ALFATQ , however, for noisy data ALF∅TIL is more effective than
ALFATQ (cf. Figure 4(b)).

Threshold Interval Distance (TID). A further reasonable feature is the distance be-
tween consecutive intervals. Generally, distances between intervals are ambiguous, so
we have some options for the feature generation. We can build distances between the
start points of the intervals only or between the end points only or we take both points
into account. Here, we use the distance between the start point lj of an interval and the
start point lj+1 of the subsequent interval. We again consider both, the maximum and
the average distance value:

ALFmaxTID(X, τ) = max{(lj+1 − lj) : j ∈ 1..tiτ,X − 1}

ALF∅TID(X, τ) =
1

|tiτ,X | − 1

|tiτ,X |−1∑
j=1

(lj+1 − lj)

This feature differs from the others in being not invariant against mirroring of the
time series along the time axis. It is adequate to separate periodical signals having
different frequencies. Like ALFTIL, ALFmaxTID is more robust against noise than
ALF∅TID .

Threshold Crossing Angle (TXA). This feature differs slightly from the previous as it
does not take the interval sequences into account. Here, we consider the slopes of the
time series that occur at the start and end points of the time intervals.

First, we define the slope angle angle(ti) of a time series value (xi, ti) ∈ X : i ∈
2 . . . N as follows:

angle(ti) := arctan(xi − xi−1).



Based on this definition, we can define the features:

ALFabsTXA(X, τ) =
1

Nπ

|tiτ,X |∑
j=1

(|angle(lj)| + |angle(uj)|) ∗ (uj − lj)

ALFdiffTXA(X, τ) = 0,5 +
1

Nπ

|tiτ,X |∑
j=1

(angle(lj) + angle(uj)) ∗ (uj − lj)

We weight the slope angles according to the corresponding interval length. The factor
1

Nπ as well as the constant value 0.5 are used to normalize the results to the range (0, 1)
and are necessary to compare time series of different lengths.

Obviously, this feature primarily aims at separating time series having different rate
of changes. Unfortunately, the determination of such kind of patterns can be easily
perturbed by noise. As a consequence, the quality of the similarity measures based on
this feature mainly depends on the intensity of the noise in a dataset.

Threshold Balance (TB). The last feature incorporates the temporal behavior of the
time series by considering the distribution of the amplitude values that are above the
corresponding amplitude threshold. First, we need the auxiliary function

aboveτ (xi) :=

{
1 if xi > τ

0 else
.

By means of this function, we can define the Threshold-Balance feature ALFTB that
aggregates those values of the time series which are above the amplitude threshold,
whereas values of different time slots are weighted differently. Formally

ALFTB (X, τ) =
1

N2

N∑
i=1

(
i − N

2

)
aboveτ (xi).

Each of the presented features covers specific characteristics of a time series. Natu-
rally, depending on the application, the full power of the features can be achieved if we
use combinations of them.

5 Evaluation

We used four datasets from the UCR Time Series Data Mining Archive [17]. Dataset
“DS1” contains 600 time series of length 60 divided into 6 classes. This dataset is the
SynthCtrl dataset and contains artificially created time series. The GunX dataset will be
denoted as “DS2”. It contains tracking data of the movement of persons while either
drawing or pointing a gun. This dataset contains 200 time series of length 150 grouped
into 2 classes. The Trace dataset is a synthetic dataset which describes instrumentation
failures in a power plant. It will be referred to as “DS3” and contains 200 time series
in 4 different classes. The length of each time series is 275. The last dataset (“DS4”) is
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Fig. 5. Comparison of different approaches.

the Leaf dataset. Images were used to create this dataset. It consists of 442 time series
of length 150 grouped into 6 classes.

We compared our approach in terms of accuracy (average precision/recall of kNN
classification experiments) with the following approaches: (1) Euclidean distance on the
raw time series, (2) DTW on the raw time series, the global feature extraction approach
from [1] with (3) unweighted and (4) weighted feature combination, and our approach
using all proposed ALFs with (5) an unweighted feature combination as well as (6) the
weighted feature combination. For both weighted competitors (approaches (4) and (6)),
we applied the method proposed above using 20% of the particular datasets for learning
the weights. Moreover, the k parameter of our weighting method was chosen to be 5
times the number of existing classes.

We ran a kNN classifier with several k values. The resulting average precisions
for all competitors applied to our datasets are presented in Figure 5(a). As it can be
observed, our ALF approaches outperform the competing techniques for all examined
datasets (cf. Figure 5(a)). Let us note that we even achieved a higher classification
accuracy than DTW which, in contrast to our approach, has a quadratic runtime w.r.t.
the length of the time series. In addition, the experiments show that our novel weighted
feature combination in average further boosts the classification quality. Even the global
feature based classification can be improved with our proposed feature combination
technique. Let us note, that the single precision results obtained for each tested k value
look very similar. The average runtimes for one distance computation of the competitors
are depicted in Figure 5(b). It can be observed that our approach clearly outperforms
DTW by more than one order of magnitude. This is important because DTW is the only
competitor that achieves roughly similar accuracy like our approach but for the cost of
far higher runtimes.

We also evaluated the classification accuracy of each proposed ALF separately. Ta-
ble 1 compares these accuracy values with the accuracy of the (weighted) combination
of all ALFs. It can be observed, that on three out of four datasets choosing only one (the
best) ALF is less accurate than combining all ALFs for similarity search.



ALF ATQ TIC ∅TIL maxTIL ∅TID maxTID absTXA diffTXA TB combined
DS1 77.2 78.6 64.8 73.5 56.4 64.0 78.5 44.9 62.8 83.6
DS2 59.2 54.8 56.2 59.9 52.4 52.5 69.5 55.9 53.8 62.9
DS3 63.8 43.8 65.4 74.5 74.8 84.5 65.3 81.3 54.7 90.5
DS4 41.0 37.6 32.4 30.9 30.7 33.3 26.0 27.1 18.8 42.5

Table 1. Classification accuracy of single ALFs (in percent).
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Fig. 6. Average classification accuracy of ALF for different resolutions.

In a further experiment, we evaluated the resolution r that specifies the number
of amplitude-levels used for deriving the corresponding ALFs. Since r determines the
length of the derived ALF sequences, this parameter seems to be important for the
accuracy of the search. In fact, for a broad range of resolution values (r between 10 and
100), the average classification accuracy was very stable for all datasets. In Figure 6 we
depicted the results for the two real-world datasets DS2 and DS4 for the unweighted
and the weighted combination. The experiments showed that even for a very low value
of r, i.e. rather short ALF sequences, we gain very accurate results.

6 Conclusions

In this paper we proposed a new general framework for generating high quality Amplitude-
Level Features (ALF) from time series. An advantage when using ALFs for similarity
search is that the runtime is independent of length of the time series. Thus, ALFs are
adequate even for long sequences as occurring frequently in multimedia applications.
We furthermore introduced several ALFs that are able to describe the characteristic
properties of a time series. We also proposed a method to combine several feature rep-
resentations. We showed in our experimental evaluation that our proposed technique
outperforms traditional similarity search methods in terms of accuracy. In addition, our



approach significantly outperforms the only competitor that achieves roughly similar
accuracy in terms of runtime.
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