
Proc. 11th International Conference on Multi Media Modeling (MMM 2005), Melbourne, Australia, pp. 352-357
Database Support for Haptic Exploration in Very Large Virtual Environments

Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz
University of Munich, Germany

{kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de

Abstract
The efficient management of complex objects has be-
come an enabling technology for modern multimedia
information systems as well as for many novel database
applications. Unfortunately, the integration of modern
database systems into human centered virtual reality
applications including multimodal simulations fails to
achieve the indispensably required interactive response
times. In this paper, we present an approach which
achieves efficient query processing along with indus-
trial-strength database support for real time haptic ren-
dering systems which compute force feedback (haptic
display). Our approach externalizes and accelerates the
approved main-memory Voxmap-PointShellTM (VPS)
approach. We group numerous independent database
queries together according to a cost model which takes
statistical information reflecting the actual data distri-
bution into account. The performance of our approach
is experimentally evaluated using a realistic data-set
CAR, provided by our industrial partner, a German car
manufacturer. Our results show that we can achieve
satisfying rendering frame rates using the presented ac-
cess techniques.

1. Introduction

In the past decades the interest in the science of
haptics has increased enormously. In combination with
Virtual Reality (VR) applications, haptic rendering en-
ables to simulate a physical environment in such a way
that humans can readily visualize, feel, explore and in-
teract with the objects in the environment.

A realistic virtual environment typically consists of
thousands of objects which may occupy gigabytes of
storage space, especially for high resolution objects. In
order to allow multiple users concurrently exploring the
same data space we have to provide shared access to the
data. In order to fulfill these requirements we integrate
an off-the-shelf database system into a haptic rendering
system for the management of the complete environ-
ment data. Thereby, we use the substantial advantages
of modern database systems, such as logical and physi-

cal data independence, concurrency control, recovery
and security [1]. In our approach, we employ the ob-
ject-relational data model, as it is widely accepted and
implemented by many database systems. Its extensibili-
ty is a necessary precondition for the seamless embed-
ding of spatial data types and operations.

2. Related Work

To the best of our knowledge, there does not ex-
ist any published work that addresses the issue how to
combine haptic rendering methods with novel database
technologies, so that the force computation can be exter-
nalized. For that reason, we separately point out the re-
lated work on haptic rendering and on spatial query pro-
cessing.
Haptic Rendering. There are numerous haptic render-
ing algorithms for virtual simulations, differing in ob-
ject and surface modeling, a survey is given in [5]. The
Voxmap-PointShellTM (VPS) approach of McNeely,
Puterbaugh and Troy [6] is very promising due to con-
stant sample rates, independent of the static environ-
ment. In this paper, we present an externalization of the
VPS approach which still provides high haptic render-
ing frame rates.
Relational Spatial Query Processing. The database in-
tegration into the haptic rendering system requires that
collision queries are forwarded to the database query en-
gine. In this paper, we focus on the acceleration of these
database queries, in order to achieve the performance
requirements of the haptic rendering systems.
Numerous spatial query algorithms have been proposed
over the last decades. For a general overview on spatial
index structures, we refer the reader to the surveys of
Manolopoulos, Theodoridis and Tsotras [7] or Gaede
and Günther [2]. Most of them rely on the paradigm of
multi-step query processing. A fast filter step excludes
all objects that cannot satisfy the join predicate. The
subsequent refinement step is applied to the result set
which are returned from the filter step.
Recently, a general survey on the paradigm of relational
index structures has been published [4]. The basic idea
of relational access methods relies on the exploitation of

the built-in functionality of existing database systems.
A relational access method delegates the management
of persistent data to an underlying relational database
system by strictly implementing the index definition
and manipulation on top of an SQL interface. Thereby,
the SQL layer of the ORDBMS is employed as a virtual
machine managing persistent data.

3. Haptic Rendering

In the VPS approach [6], the virtual environment con-
sists of objects which can be divided into dynamic and
static objects.
Static Object Model. The static environment is collec-
tively represented by a single spatial occupancy map
called a voxmap (volume map). It is created by rasteriz-
ing the static environment space. The collection of the
discrete volume elements (voxels) of the object spaces
builds the voxmap.
Dynamic Object Model. The dynamic object is de-
scribed by a collection of points (PointShell), which
models its surface. Each point is assigned a surface nor-
mal vector, pointing inside the object.
Force Computation. The haptic rendering algorithm
includes a fast collision detection technique based on
probing the voxmap with the surface point samples of
the PointShell. By using the normal vectors of the Point-
Shell, an approximate collision force can be computed
in constant time for each point-voxel interpenetration.
The time consumed to render a single frame depends
only on the number of PointShell points.

4. Relational Embedding

In this section, we show how to embed the haptic
rendering method into a relational schema in order to
enable the integration into a commercial database man-
agement system. Let us first mention, that the
Point-Shell representing the dynamic object is small
enough, so that it easily fits into main memory. The stat-
ic environment is stored in a relational table which we
call object-table. The object-table contains a set of tu-
ples (id, link) where id denotes a unique object identifier

and link refers to an external file containing the vector-
ized object as high order surface representation (cf. Fig-
ure 1a)

4.1 Spatial Access Method

In order to carry out point-voxel queries efficiently,
we propose a simple relational access method, which
consists of the object table and an additional index table
storing all index data exclusively derived from the ob-
ject table (cf. Figure 1b). Each object from the user table
which is used in the haptic simulation is converted into
a voxelized form and stored in the index table.

Definition 1 (voxelized object)
Let O be the domain of all object identifiers and let id ∈
O be an object identifier. Furthermore, let INd be the do-
main of d-dimensional points. Then we call a pair
Ovoxel = (id, {v1, ..., vn}) a d-dimensional
voxelized object. We call each of the vi an object voxel,
where i ∈ {1, .., n}.

We employ a space-filling curve to transform the
3-dimensional object voxels into a set of linear ordered
values, each represented by one integer value z-val. Ex-
amples for space filling curves include the lexicograph-
ic-, Z-, or Hilbert-order (cf. Figure 2). Due to a good
trade-off between spatial clustering properties and com-
putational complexity, we employ the Z-order. The in-
dex table consists of tuples (id, z_val), where the foreign
key id denotes the identifier of the associated object and
z-val denotes the encoded position of the voxel using
the Z-order. Since the z-val values are 1-dimensional,
the objects can be dynamically indexed by the z-val at-
tribute using built-in index structures, e.g. a B+-tree.

4.2 Simple Query Processing.

We express the haptic query (contact-force compu-
tation) on top of the SQL engine as shown in Figure 3.

object table

a) id
A
B
C

link
’file_A’
’file_B’
’file_C’

index table

b) id
A
...

z-val
105...

B
...

21
...

A 753

Figure 1: Relational data model.

O 2INd×∈

lexicographic order Hilbert-orderZ-order

Figure 2: Examples of space-filling curves in the
two-dimensional case.

Figure 3: SQL statement for haptic query.

SELECT force(PS.point,PS.z_val)
FROM PointShell :PS
WHERE EXISTS (

SELECT 1
FROM INDEX_TABLE I
WHERE I.z_val = PS.z_val)

The input of this nested SQL query is the index-table
and a collection of points derived from the PointShell
(c.f. Figure 4). We assume that the 3-dimensional Point-
Shell points are mapped to the corresponding z-val val-
ues associated with the voxel grid of our static environ-
ment. In the projection part of the SQL statement, we
use the function force() which is a user-defined aggre-
gate function as provided in the SQL:1999 standard.
This function collects all points of the PointShell which
intersect an object voxel of the index-table and returns
the aggregated contact force vector. The exist-quantifier
is necessary to filter out redundant results.

5. Cost Based Query Acceleration

 Our approach aims at reducing the total query cost
associated with the built-in B+-tree. If we assume that
our PointShell consists of n points, the simple query
process as proposed in Section 4.2 leads to n point que-
ries on the index table (cf. Figure 5a). Thus, we have to
navigate n times through the built-in index (B+-tree) di-
rectory. The general idea of our approach is to minimize
the overall navigational cost of the built-in index. This is
achieved by a cost-based grouping of n query points into
m query ranges, where m << n holds. For each query
range we have to traverse the built-in index directory
only once, and read the range query result by a single

scan on the leaf level of the built-in index as shown in
Figure 5b.

In the following, we assume that all points of the
PointShell are transformed to the corresponding z-val
values. We start with a straightforward approach of a
PointShell query, the Point Query Sequence:
Point Query Sequence. The PointShell query Q leads
to an ordered sequence SeqQ,I = (〈p1,..., pn〉) of query
points on the index table I, where pi < pi+1 for all i ∈ {1,
.., n-1} (cf. Figure 6a). For SeqQ,I the following as-
sumptions hold:
 • The elements ri stored in the index are of the same

type as pi. Furthermore, we assume that the elements
ri can be regarded as a linear ordered list
L(I) = 〈r1,...,rN〉 for which r1 ≤ ... ≤ rN holds.

 • We assume that the disk blocks bi of the index obey
a linear ordering ≤ and fulfill the following property:
r’≤ r’’⇔ b(r’) ≤ b(r’’), where b(r) denotes the disk
block of the index I, which contains the entry r.

Range Query Sequences. Consecutive query points of
the point query sequence SeqQ,I = (〈p1,..., pn〉) can be
grouped into subsequences (〈seq1,..., seqm〉) of the form
(〈〈p1,...,pl(1)〉, 〈pl(1)+1,...,pl(2)〉, .., 〈pl(m-1)+1,..., pn〉〉) where
l(i-1) < l(i) and 1 ≤ l(i) ≤ n for all i ∈ {1, .., m ≤ n}. Each
subsequence seqi builds the new query range si, which is
bounded by the first and last point of seqi. Thus, the
large amount of point queries is reduced to a small se-
quence RSeqQ,I of query ranges associated with the
PointShell Q and index table I. When carrying out a
range query s = (pu, pv) derived from the subsequence
〈pu,...,pv〉, we traverse the index directory only once and
perform a range scan (pu pv) on the leaf-level, as for ex-
ample (p3, p4) in Figure 6b. Thereby we read false hits
from the index table I, which have to be filtered out in a
subsequent refinement step.

The cost C(s) associated with a range query s are
composed of the I/O part required to access the query

id z-val

B+-tree

A
B

A
C

...
105
105

120
121

...

index-table built-in index

PointShell
VoxMap

haptic
query

z_val
computation

(static environment)
(dynamic object)

query points

Figure 4: Relational embedding of the haptic query
loop.

Figure 5: General Idea.
a) Simple query process b) Range query approach

...

0

L
.
.
.

a) b)

one query rangethree point queries

{di
re

ct
or

y
le

ve
ls

le
af

le
ve

l

...
...

...
...

...
...

...
...

...
...

...
...

....
1

bu
ilt

-in
 in

de
x

(B
+ -tr

ee
)

p3

bB

Figure 6: Accelerated query processing
a) Point query sequence b)

Index range scan sequence

PointShell PointShell-query Q yields to an
point query sequence SeqQ,I = (p1, p2, p3, p4)

p1 p2 p4

b1

index range scan sequence
RSeqQ,I = (s1, s2)

(p3, p4)

bB

(p1, p2)

p1 p2 p3 p4

b1

blocks of index data I

a)

b)

blocks of index data Iscan

result and the CPU cost which is required for the refine-
ment step: C(s) = CI/O(s) + CCPU(s).
I/O cost. The I/O cost CI/O(s) associated with one range
scan s = (pu, pv) are composed from two parts CI/O(s) =
Cn

I/O(s) + Cs
I/O(s), with the following properties:

(i) Cn
I/O(s) = Cn

I/O(pu) (navigational cost)
(ii) Cs

I/O(s) = Cs
I/O((pu ,pv)) (scan cost)

CPU cost. The CPU cost CCPU(s) associated with one
range scan s = (pu, pv) denote the cost which are required
to perform the refinement operation for all tuples result-
ing from the range scan: CCPU(s) = CCPU(〈r’,..,r’’〉),
where ∀r ∈ L(I) : (r’ ≤ r ≤ r’’) ⇔ (pu ≤ r ≤ pv).

The total cost C(RSeqQ,I) associated with a range
query sequence is the sum of the cost of the single range
queries.

The navigational cost Cn
I/O(s) are independent of

the actual query range s and can easily be estimated by
Cn

est, e.g. by the height of the B+-directory. In contrast,
both cost Cs

I/O(s) and CCPU(s) depend on the size of the
query range s. In the following we present our cost
based grouping which is based on an estimation method
for the selectivity of query ranges.
Grouping Rules. The crucial question is how we can
achieve the most profitable set of query ranges covering
the query points. Consider the two extreme cases: If we
group all query points into one single query range we
save almost all navigational cost of the B+-tree (the nav-
igational cost to find the starting point is required only),
but we might obtain too many false hits which increase
the I/O cost associated with the range scan. On the other
hand, if we group only query points with adjacent z-val-
ues together into one query range, we probably obtain
too many short ranges which lead to a high overhead of
the navigational cost. Consequently, a good selection of
the query points which should be grouped into one
range is required. A good grouping should take the fol-
lowing “grouping rules” into consideration:

The first rule guarantees that the navigational cost
of the built-in index is kept small, whereas the second
rule guarantees that many unnecessary candidate tests
of the refinement step can be omitted, as the number of
false hits included in the range query, i.e. the approxi-
mation error, is small. A good query response behavior
results from an optimal trade-off between these two
grouping rules.

For the computation of appropriate query ranges
we apply the introduced cost model, extended by selec-
tivity estimations which are based on statistical infor-
mations.

Selectivity Estimation based on Statistics. In [3], it
was shown that using quantiles (‘equi-count histo-
grams’) is more suitable for estimating the selectivity
and the corresponding I/O cost associated with a query
range scan than using histograms (‘equi-width histo-
grams’). Fortunately, most ORDBMS comprise effi-
cient built-in functions to compute single-column statis-
tics, particularly for cost-based query optimization. The
basic idea of our quantile-based selectivity estimation is
to exploit these built-in index statistics rather than to
add and maintain user-defined histograms. We start with
the definition of a quantile vector, the typical statistics
type supported by relational database kernels.
Definition 2 (quantile vector).
Let (M, ≤) be a totally ordered multi-set. Without loss of
generality, let M = {m1, m2, …, mN} with mj ≤ mj+1,
1 ≤ j < N. Then, Q(M, ν) = (q0, …, qν) ∈ Mν is called a
quantile vector for M and a resolution ν ∈ IN, iff the
following conditions hold:
(i) q0 = m1

(ii) ∀i ∈ 1, …, ν: ∃j ∈ 1, …, N: qi = mj ∧ < ≤

The multi-set M of our quantile vector (q0, …, qν)
(cf. Definition 2) is formed by the values of the first at-
tribute of the domain values of our index I. By means of
these statistics we can estimate the I/O cost Cs

I/O(s) as-
sociated with one range scan s = (pu, pv). In the follow-
ing formula, B denotes the number of disk blocks at the
leaf level of I, ρ denotes the resolution of the quantile
vector and overlap returns the intersection length of two
intersecting ranges.

We can also apply the above formula to estimate the
total cost Cs(s) = Cs

I/O(s) + CCPU(s) which are required
to scan over the gap g =] p’v , p’’u [between two adjacent
point and range queries s’ and s’’ respectively. The CPU
cost can be estimated by CCPU(g) = , with a
parameter k > 0, since both the I/O cost and the CPU
cost are directly proportional to the size of the result set
of the range scan.
We will now discuss how we can use this information
for our cost model in order to speed up the PointShell
query.
Cost Based Grouping. For each haptic query, there ex-
ist a lot of different possibilities to group the PointShell
points into a range query sequence.
Lemma 1 (number of grouping possibilities).
Let (〈p1,..., pn〉) be a point query sequence. Furthermore,
let W = {(pu, pv) ∈ IN2, pu ≤ pv} be the domain of ranges

Rule 1: The number of query ranges should be small.
Rule 2: The approximation error of all query ranges

should be small.

j 1–
N

---------- i
ν
--- j

N

Cs
I O/ pu pv,()()

overlap pu pv,() qi 1– qi,(),()

qi qi 1––--

i 1=

ρ

∑

ρ B⁄()
--≈

k Cs
I O/ g()⋅

and let s1 = (pu(1), pv(1)), …, sn = (pu(n), pv(n)) ∈ W be a
sequence of range queries where pv(i) + 1 < pu(i+1). Then,
there exist O(2n) different range query sequences.

Proof. The point query sequence consists of n-1 “gaps”.
For each of these gaps we can decide whether it is in-
cluded in a range query, or whether it separates two
range queries. Thus we have 2n-1 different possible
range query sequences. ■

Based on the cost formulas of the range query se-
quence, we can find a cost optimum grouping algo-
rithm. Unfortunately, as shown in the above lemma,
there exist exponentially many grouping possibilities,
which results in an exponential runtime O(2n) of an op-
timum cost-based grouping algorithm, where n denotes
the number of PointShell points. In this section, we will
present an algorithm with a guaranteed worst-case runt-
ime complexity of O(n) which produces a cost optimal
range query sequence helping to accelerate the query
process considerably (cf. Section 6).

Our approach closes the gaps between two query
points if and only if the cost related to the additional
read data is smaller than the navigational cost related to
an additional point query. More precisely, for each gap g
of the n-1 gaps between the point queries p1,..., pn of a
point query sequence SeqQ,I = (〈p1,..., pn〉) we decide
whether to close this gap or to skip it. The cost-based
grouping algorithm CBGroup implementing our ap-
proach is depicted in Figure 7. With CBGroup, we ob-
tain a range query sequence RSeqQ,I = (〈seq1,..., seqm〉) =
(〈〈p1,...,pl(1)〉, 〈pl(1)+1,...,pl(2)〉, .., 〈pl(m-1)+1,..., pn〉〉) which
satisfies the following property:

In the following, we assume that our selectivity esti-
mation method exactly corresponds to the correct data
distribution.
Lemma 2 (cost-optimal grouping).
The CBGroup algorithm generates a cost optimal range
query sequence.
Proof. We start with a range query sequence RSeq
which is generated by applying our grouping method to
a sequence of point queries Seq. Let us assume that there
exists another range query sequence RSeq’ ≠ RSeq gen-
erated from Seq which yields less query cost than RSeq.
In order to transform the sequence RSeq into RSeq’, we
have to modify the sequence RSeq by opening respec-
tively closing at least one gap between adjacent points
of Seq. For each possible gap, our cost based grouping
method has determined the cost optimal solution and
each modification of the initial sequence RSeq would
increase the overall query cost, which contradicts to our
assumption. ■

6. Experimental EvaluationI

In this section, we evaluate the performance of our ap-
proach with a special emphasis on the haptic frame rate.
The tests are based on a real-world test data set CAR
which was provided by our industrial partner, a German
car manufacturer, in form of high resolution voxelized
3-dimensional CAD parts. Table 1 shows the properties
of this data set.

The query processing functionality of our approach
is implemented on top of the Oracle9i Server using
PL/SQL for the computational main memory based pro-
gramming. All experiments were performed on a Pen-
tium 4/2600 machine with IDE hard drives. The data-
base block cache was set to 500 disk blocks with a block
size of 8 KB and was used exclusively by one active
session.

In the following, we examine the benefits of using
range query sequences instead of point query sequenc-

Figure 7: Cost based grouping algorithm.

CBGroup (PointShell PS, QuantileVector Q) {
Integer left := compute_zvalue(PS.point[1]);
Integer right := left;
Integer next := 0;
Float nav_cost := estimate_navigational_cost();
for i := 2 to PS.size() do {

next := compute_zvalue(PS.point[i]);
if estimate_gap_cost(right,next,Q) > nav_cost then {

perform_range_query (left, right);
left := next;

}
right := next;

}
perform_range_query (left, right);}

j 1… n 1–()∈∀ : j l 1()...l m 1–() ⇔∈

Cn
est pj 1+() Cs pj 1+ pj 1+ 1–,()()<

Table 1: Test Data Set

data set # voxels # objects size of data space
CAR 14x106 200 233 cells

0

200

400

600

800

1000

1200

1E+01 1E+03 1E+04 5E+04 1E+05

group query refinement

Figure 8: Avg. query processing time for different
quantile resolutions

qu
er

y
pr

oc
es

si
ng

 ti
m

e
[m

ic
ro

 se
co

nd
s]

number of quantiles

es. We carried out several PointShell queries at different
locations and logged the average response times. The
query PointShell consists of about 300 points.

In a first experiment, we investigated how different
resolutions of the quantile vector influence the perfor-
mance of our approach (cf. Figure 8). A low quantile
resolution leads to a cheap grouping, but badly esti-
mates the query selectivity. Contrary, if we choose a
high quantile resolution the query is well adjusted to the
respective selectivity, at the expense of the grouping
performance. In our experiments we achieved the best
results using a quantile resolution of about 10000 which
we use for our CBGroup algorithm throughout the next
experiments.

In the following experiments, we compare our CB-
Group algorithm with another grouping approach which
does not use any statistical information at all. The com-
parison algorithm, called MaxGap approach, groups
query points into a range query, in which the gap be-
tween two adjacent query points does not exceed a spec-
ified MAXGAP parameter. Note that a MAXGAP pa-
rameter of 0 corresponds to a point query sequence.

The next experiment shows that the runtime of our
cost-optimum CBGroup algorithm corresponds to the
best possible runtime achieved by the MaxGap ap-
proach. By varying the MAXGAP parameter, we can
find the optimum trade-off between the grouping rules
of Section 5. Figure 9 shows that using low MAXGAP
values results in a low query performance. This is
caused by a substantial navigational overhead of the in-
dex because we have to carry out many range queries.
On the other hand, high MAXGAP values result in a
very low filter selectivity which leads to high I/O and
refinement cost. We can observe that a good trade-off
between the navigational overhead and filter selectivity
is achieved using a MAXGAP value of 500. Note, that
the results presented in Figure 9 also show that our
CBGroup approach outperforms the MaxGap approach
for all possible MAXGAP parameters. This is due to the
fact that the CBGroup algorithm locally adapts the
grouping to the data distribution.

In the last experiment (cf. Figure 10), we performed
haptic queries in regions having different voxel density.

Thereby, the density denotes the ratio of object voxels to
free space. In areas where the voxel density is low, a
high MAXGAP value performs best. Although the que-
ry ranges are large, which results in low navigational
cost, the result set stays small due to low region density.
With increasing voxel density, high MAXGAP values
result in many false hits, leading to high I/O and refine-
ment cost. For all three experiments shown in Figure 10,
our cost-based grouping algorithm adapts automatically
to the voxel density.

7. Conclusions

In this paper, we presented an approach which ex-
ternalizes and accelerates the approved main-memory
Voxmap-PointShell approach. We presented a cost-opti-
mum access method which groups different indepen-
dent point queries together to larger range scans. In a
broad experimental evaluation based on a real-world
test data set we demonstrated that we achieve an enor-
mous acceleration of the query process. We obtain a
frame rate of about 1000 Hz for the haptic rendering
loop, which is by far sufficient for many haptic render-
ing applications.

8. References

[1]Date C. J.: An Introduction to Database Systems. Addison
Wesley Longman, Boston, MA, 1999.
[2]Gaede V., Günther O.: Multidimensional Access Methods.
ACM Computing Surveys 30(2): pp. 170-231, 1998.
[3]Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model
for Interval Intersection Queries on RI-Trees. SSDBM, pp.
131-141, 2002.
[4]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas
Seidl: The Paradigm of Relational Indexing: a Survey. BTW,
pp. 285-304, 2003.
[5]Lin, Ming C. and Gottschalk, Stefan: Collision detection
between geometric models: a Survey. Proc. IMA Conference
on Mathematics of Surfaces 1998, p. 20.
[6]McNeely W. A., Puterbaugh K. D., Troy J. J.: Six Degree of
Freedom Haptic Rendering Using Voxel Sampling. ACM SIG-
GRAPH, pp. 401-408, 1999.
[7]Manolopoulos Y., Theodoridis Y., Tsotras V. J.: Advanced
Database Indexing. Boston. MA: Kluwer, 2000.

0

500

1000

1500

2000

2500

5E+00 5E+01 5E+03 5E+04 5E+05

query time filter time

Figure 9: Performance of range query sequences.
MAXGAP

qu
er

y
pr

oc
es

si
ng

 ti
m

e
[m

ic
ro

 se
co

nd
s]

CBGroup
0

2

4

6

8

10

5,E+00 5,E+01 5,E+02 5,E+03 5,E+04

0 - 3%
3 - 30%
30 - 100%

Figure 10: Query processing time for regions having
different voxel density

qu
er

y
pr

oc
es

si
ng

 ti
m

e
[m

ill
i s

ec
on

ds
]

MAXGAP

18

CBGroup

MAXGAP

	Database Support for Haptic Exploration in Very Large Virtual Environments
	Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz
	University of Munich, Germany
	{kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de
	Abstract
	1. Introduction
	2. Related Work
	3. Haptic Rendering
	Figure 1: Relational data model.

	4. Relational Embedding
	4.1 Spatial Access Method
	Definition 1 (voxelized object)
	Figure 2: Examples of space-filling curves in the two-dimensional case.

	4.2 Simple Query Processing.
	Figure 3: SQL statement for haptic query.
	Figure 4: Relational embedding of the haptic query loop.

	5. Cost Based Query Acceleration
	Figure 5: General Idea.

	a) Simple query process b) Range query approach
	Range Query Sequences
	Figure 6: Accelerated query processing

	a) Point query sequence
	b) Index range scan sequence
	Definition 2 (quantile vector).
	Lemma 1 (number of grouping possibilities).
	Figure 7: Cost based grouping algorithm.

	Lemma 2 (cost-optimal grouping).
	6. Experimental EvaluationI
	Figure 8: Avg. query processing time for different quantile resolutions
	Table 1: Test Data Set

	Figure 9: Performance of range query sequences.
	Figure 10: Query processing time for regions having different voxel density

	7. Conclusions
	8. References

