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Abstract

Graph classification is an increasingly impor-
tant step in numerous application domains,
such as function prediction of molecules and
proteins, computerised scene analysis, and
anomaly detection in program flows.

Among the various approaches proposed in
the literature, graph classification based on
frequent subgraphs is a popular branch:
Graphs are represented as (usually binary)
vectors, with components indicating whether
a graph contains a particular subgraph that
is frequent across the dataset.

On large graphs, however, one faces the
enormous problem that the number of these
frequent subgraphs may grow exponentially
with the size of the graphs, but only few
of them possess enough discriminative power
to make them useful for graph classification.
Efficient and discriminative feature selection
among frequent subgraphs is hence a key
challenge for graph mining.

In this article, we propose an approach to fea-
ture selection on frequent subgraphs, called
CORK, that combines two central advan-
tages. First, it optimises a submodular qual-
ity criterion, which means that we can yield
a near-optimal solution using greedy feature
selection. Second, our submodular qual-
ity function criterion can be integrated into
gSpan, the state-of-the-art tool for frequent
subgraph mining, and help to prune the
search space for discriminative frequent sub-
graphs even during frequent subgraph min-
ing.

Preliminary work. Under review by the International Work-
shop on Mining and Learning with Graphs (MLG). Do not
distribute.

1. Introduction

A typical graph classification problem has the follow-
ing formulation: given a set of training graphs associ-
ated with labels {Gi, yi}

n
i=1, yi ∈ {±1}, the task is to

learn a classifier that predicts the labels of unclassified
structures. The resulting classification algorithm has
a wide variety of real world applications.

As in classification problems on vectorial data, we are
interested in feature selection: Which features, that is
which subgraphs, are most correlated with the class
membership of the graphs in a dataset? In other
words, we would like to find discriminative sets of
subgraphs that allow us to tell apart different classes
of graphs. This problem is involved for two reasons:
First, the search space grows exponentially with the
number of subgraphs we have to consider. Second,
the number of subgraphs grows exponentially with the
number of nodes in a graph.

In data mining, efficient strategies have been devel-
oped to search the space of subgraphs to perform
frequent subgraph mining, that is, to find those sub-
graphs that occur in more than t% of all graphs in our
dataset. Despite their efficient mining, these frequent
subgraphs are not necessarily discriminative. Both a
very frequent and a rather rare subgraph can be uni-
formly distributed over different classes of graphs and
may possess little discriminative power. Hence com-
bining the efficiency of frequent subgraph mining with
feature selection for discriminative frequent subgraphs
is an attractive research goal.

Goal Our goal is to define an efficient near-optimal ap-
proach to feature selection among frequent subgraphs
generated by gSpan (Yan & Han, 2002). The key idea
is to pick frequent subgraphs that greedily maximise
a submodular quality criterion, thereby guaranteeing
that the greedy solution to the feature selection prob-
lem is close to the global optimal solution (Nemhauser
et al., 1978). To make this approach efficient, we in-
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tegrate it into gSpan, the state-of-the-art tool for fre-
quent subgraph mining, and derive pruning criteria
that allow us to narrow down the search space when
looking for discriminative subgraphs.

Unlike its predecessors that use ad-hoc strategies for
feature selection (such as (Cheng et al., 2007)) or
do not provide optimality guarantees, we define a
principled, near-optimal approach to feature selection
on frequent subgraphs that can be integrated into
gSpan (Yan & Han, 2002). An excellent wrapper ap-
proach to this problem has recently been published
by (Tsuda, 2007). Our approach differs from Tsuda’s
in two ways: Our feature selection method is indepen-
dent from the choice of classifer (filter method) and we
can provide optimality guarantees for our solution.

2. Near-optimal feature selection on

frequent subgraphs

2.1. Feature Selection and Submodularity

Assume that we are measuring the discriminative
power q(S) of a set of frequent subgraphs S in terms
of a quality function q. A near-optimality solution is
reached for a submodular quality function q when used
in combination with greedy feature selection. Greedy
forward feature selection consists in iteratively picking
the feature that – in union with the features selected
so far - maximises the quality function q. In general,
this strategy will not yield an optimal solution, but it
can be shown to yield a near-optimal solution if q is
submodular:

Definition 1 (Submodular set function) A qual-
ity function q is said to be submodular on a set D if
for T ′ ⊂ T ⊆ D and X ∈ D

q(T ′ ∪{X}) − q(T ′) ≥ q(T ∪{X}) − q(T ) (1)

If q is submodular and we employ greedy forward fea-
ture selection, then we can exploit the following theo-
rem from (Nemhauser et al., 1978):

Theorem 2 If q is a submodular, nondecreasing set
function on a set D and q(∅) = 0, then greedy forward
feature selection is guaranteed to find a set of features
T ⊆ D such that

q(T ) ≥

(

1 −
1

e

)

max
U⊆D: |U|=t

q(U) , (2)

where t is the number of features to be selected.

As a direct consequence, the result from greedy fea-
ture selection achieves at least

(

1 − 1
e

)

≈ 63% of the

score of the optimal solution to the feature selection
problem. This is referred to as being near-optimal in
the literature (e.g. (Guestrin et al., 2005)).

2.2. Feature selection on frequent subgraphs

Once we have determined the frequent subgraphs using
gSpan, a natural way of representing each graph G is
in terms of a binary indicator vector of length |S|:

Definition 3 (Indicator vector) Given a graph Gj

from a dataset G and a set of frequent subgraph features
S discovered by gSpan. We then define an indicator
vector v(j) for Gj as

v
(j)
i =

{

1 if Si ⊑ Gj (Si is a subgraph of Gj)
0 otherwise

,

(3)

where v
(j)
i is the i-th component of v(j) and Si is the

i-th graph in S.

2.3. Definition of CORK

Definition 4 Let G be a dataset of binary vectors,
consisting of two classes G = {A,B}. Let D denote
the set of features of the data objects in G, and let X

be a single feature from D, i.e., X ∈ D.

Definition 5 (Correspondence) A pair of data ob-
jects (v(i), v(j)) is called a correspondence in a set
of features indicated by indices U ⊆ {1, . . . , |D|} (or,
w.r.t. to a set of features U) iff

(v(i) ∈ A) ∧ (v(j) ∈ B) ∧ ∀d ∈ U : (v
(i)
d = v

(j)
d ), (4)

Definition 6 (CORK) We define a quality criterion
q, called CORK (Correspondence-based Quality Cri-
terion), for a subset of features U as

q(U) = (−1) ∗ number of correspondences in U (5)

This criterion is submodular, and can be turned (by
adding a constant) into a submodular set function that
fulfills the conditions of Theorem 2 (Proof in extended
version of this abstract).

2.4. Pruning gSpan’s search space via CORK

gSpan exploits the fact that the frequency of a sub-
graph S ∈ S is an upper bound for the frequency of all
of its super-graphs S′ ⊒ S (all subgraphs containing S)
when pruning the search space for frequent subgraphs.
In a similar way, we show that from the CORK-value
of a subgraph S, we can derive an upper bound for the
CORK-values of all of its supergraphs, that allows us
to further prune the search space.



Combining near-optimal feature selection with gSpan

Filter Wrapper
SC PC CORK LAR

Dataset # of Features Accuracy Std Accuracy Std Accuracy Std Accuracy Std
NCI1 57 66.98 2.31 65.43 3.82 70.98 2.31 73.08 2.06
NCI33 53 66.50 2.57 64.15 3.46 70.08 2.76 72.81 2.51
NCI41 49 70.20 3.23 65.37 4.27 70.38 2.72 72.39 2.58
NCI47 56 67.04 2.35 67.00 3.45 71.42 2.22 72.62 2.07
NCI81 64 69.04 2.17 64.27 5.01 70.76 2.21 72.58 1.88

Table 1. Classification accuracy (and standard deviation (std)) in % on the 5 NCI graph datasets (SC = Sequential Cover,
PC = Pearson’s Correlation Coefficient, CORK = Correspondence-based Quality Criterion, LAR = LAR-LASSO used
for feature selection). Frequency threshold for frequent subgraphs is 10%.

Theorem 7 Let S, S′ ∈ S be frequent subgraphs, and
S′ be a supergraph of S. Let AS1

denote the number
of graphs in class A that contain S, AS0

the number
of graphs in A that do not contain S (and define BS0

,
BS1

analogously). Then

q({S}) = − (AS0
∗BS0

+AS1
∗BS1

) (6)

and

q({S′}) ≤ q({S})+

max({AS1
(BS1

−BS0
), (AS1

−AS0
)BS1

, 0}) (7)

Proof See extended version of this abstract.

We can now use Inequality (7) to provide an upper
bound for the CORK values of supergraphs of a given
subgraph S and exploit this information for pruning
the search space in a branch-and-bound fashion.

Inequality (7) can be directly applied in the first itera-
tion of greedy selection. For later iterations of greedy
selection, we can define a similar bound for pruning
(see extended version). The main difference to (7) is
that in later iterations of greedy selection, we only
have to consider those graphs which are part of a cor-
respondence (rather than all graphs).

3. Results and Discussion

To assess the quality of the features selected by CORK,
we use it on five (balanced) NCI anti-cancer-screen
graph classification benchmarks. We let CORK pick
informative frequent subgraphs, as determined by
gSpan (frequency threshold 10%), on these datasets,
and then perform 10-fold cross-validation using a C-
SVM. All SVM-parameters are determined on the
training set only. We compare CORK to two state-of-
the-art filter methods, namely Pearson’s Correlation
Coefficient and the Sequential Cover method (Desh-
pande et al., 2005), and to the LAR-LASSO wrapper
approach by (Tsuda, 2007).

Among the filter methods, CORK performs best, and
among all methods, it is second to the LAR-LASSO
wrapper approach by (Tsuda, 2007). We are currently
exploring other submodular criteria (Boros et al.,
2003) for subgraph feature selection that might lead
to even higher levels of prediction accuracy.

References

Boros, E., Horiyama, T., Ibaraki, T., Makino, K.,
& Yagiura, M. (2003). Finding essential attributes
from binary data. Ann. Math. Artif. Intell., 39, 223–
257.

Cheng, H., Yan, X., Han, J., & Hsu, C. (2007). Dis-
criminative frequent pattern analysis for effective
classification. Proc. of ICDE. Istanbul, Turkey.

Deshpande, M., Kuramochi, M., Wale, N., & Karypis,
G. (2005). Frequent substructure-based approaches
for classifying chemical compounds. IEEE Trans-
actions on Knowledge and Data Engineering, 17,
1036–1050.

Guestrin, C., Krause, A., & Singh, A. (2005). Near-
optimal sensor placements in gaussian processes.
Proc. Intl. Conf. Machine Learning. Bonn, Ger-
many.

Nemhauser, G., Wolsey, L., & Fisher, M. (1978). An
analysis of the approximations for maximizing sub-
modular set functions. Mathematical Programming,
14, 265–294.

Tsuda, K. (2007). Entire regularization paths for
graph data. Proc. Intl. Conf. Machine Learning (pp.
919–926).

Yan, X., & Han, J. (2002). gSpan: Graph-based sub-
structure pattern mining. Proc. 2002 Int. Conf. on
Data Mining (ICDM’02) (pp. 721–724).


