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Abstract. In many application domains, e.g. sensor databases, traffic manage-
ment or recognition systems, objects have to be compared based on position-
ally and existentially uncertain data. Feature databases with uncertain data re-
quire special methods for effective similarity search. In this paper, we propose
a probabilistic similarity ranking algorithm which computes the results dynami-
cally based on the complete information given by inexact object representations.
Hence, this can be performed in an effective and efficient way. We assume that the
objects are given by a set of points in a vector space with confidence values fol-
lowing the discrete uncertainty model. Based on this representation, we introduce
a probabilistic ranking algorithm that is able to reduce significantly the compu-
tational complexity of the computation of the probability that an object is at a
certain ranking position. In a detailed experimental evaluation, we demonstrate
the benefits of this approach compared to several competitors. The experiments
show that, in addition to the gain of efficiency, we can achieve convenient query
results of high quality.

1 Introduction

Similarity ranking is one of the most important query types in feature databases. A sim-
ilarity ranking query iteratively reports objects in descending order of their similarity
to a given query object. The iterative computation of the answers is very suitable for
retrieving the results the user could have in mind. This is a big advantage of ranking
queries against the most prominent similarity queries, the distance-range (ε-range) and
the k-nearest neighbor query, in particular if the user does not know how to specify the
query parameters ε and k.

Many modern applications have to cope with uncertain or imprecise data. Exam-
ple applications are location determination and proximity detection of moving objects,
similarity search and pattern matching in sensor databases or personal identification
and recognition systems based on video images or scanned image data. The importance
of this topic in the context of database systems is demonstrated by the increasing in-
terest of the database research community in this subject matter. Several approaches
coping with uncertain objects have been proposed [4, 5, 12, 2]. All these approaches use
continuous probability density functions (pdfs) for the description of the spatial uncer-
tainty while the approaches proposed in [7, 8] use discrete representations of uncertain
objects. The approach proposed in [7] supports probabilistic distance range queries on
uncertain objects. In [8] efficient methods for probabilistic nearest-neighbor queries are
proposed. However, in fact only one-nearest neighbor queries are supported.
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(a) Query on objects with aggregated un-
certainty

(b) Query on objects with probabilistic
uncertainty

Fig. 1. Distance range query on objects with different uncertainty representations.

Similarity search in conjunction with multimedia data like images, music, or data
from personal identification systems like face snapshots or fingerprints commonly in-
volves distance computations within the feature space. If exact features cannot be gen-
erated from uncertain objects, we have to cope with positionally uncertain vectors in
the feature space (i.e. objects are represented by ambiguous feature vectors). Basically,
there exist two forms of representations of positionally uncertain data: Uncertain posi-
tions represented by a probability density function (pdf) or uncertain positions drawn
by alternatives. In this paper we concentrate on uncertain objects represented by a set of
alternative positions, each associated with a confidence value that indicates the degree
of matching the exact object. This type of representation is motivated by the fact that
we often have only discrete but ambiguous object information as usually returned by
common sensor devices, e.g. discrete snapshots of continuously moving objects.

A probabilistic ranking on uncertain objects computes for each object o ∈ D the
probability that o is the k-th nearest neighbor (1 ≤ k ≤ |D|) of a given query object
q. In the context of probabilistic ranking queries we propose diverse forms of ranking
outputs which differ in the order the objects are reported to the user. Furthermore, we
suggest diverse forms in which the results are reported (i.e. which kind of information
is assigned to each result).

The simplest solution to perform queries on uncertain objects is to represent the
objects by an exact feature vector, e.g. the mean vector, and perform query processing
in a traditional way. The advantage of this straightforward solution is that established
query and indexing techniques can be applied. However, this solution is accompanied
by information loss, since the similarity between uncertain objects is obviously more
meaningful when taking the whole information of the object uncertainty into account.
An example of the latter case is depicted in Figure 1(a), where a set of uncertain objects
A . . . U represented by their mean values is depicted. The results of a distance range
query with query object Q are shown in the upper right box. There are critical objects
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like P , that is included in the result, and O, which is not included, though they are
very close to each other and have quite similar uncertainty regions as depicted in Figure
1(b)1. Here, the complete uncertainty information of the objects is taken into account.
The gray shaded fields indicate those objects which are included in the non-probabilistic
result (cf. Figure 1(a)). The results show that objects O and P have quite similar proba-
bilities (P (O) = 50%, P (P ) = 60%) for belonging to the result. Additionally, we can
see that objects E, F , G and M are certain results.

2 Related Work

Several approaches for indexing uncertain vector objects have been proposed. They
mainly differ in the type of uncertainty supported by the index and in the type of sup-
ported similarity query. In [3], the Gauss-tree is introduced which is an index structure
for managing large amounts of Gaussian distribution functions. The proposed system
aims at efficiently answering so-called identification queries. Additionally, [3] proposed
probabilistic identification queries which are based on a Bayesian setting (i.e., given a
query pdf, retrieve those pdfs in the database that correspond to the query pdf with the
highest probability).

The authors of [4, 5, 12, 2] deal with an uncertainty model for positionally uncertain
objects and propose queries which are specified by intervals in the query space. In this
setting, a query retrieves uncertain objects w.r.t. the likelihood that the uncertain object
is indeed placed in the given query interval. The authors of [2] adapt the Gauss-tree
proposed in [3] to a positionally uncertainty model and discuss probabilistic ranking
queries. Here, the probabilistic ranking query has another meaning than the queries
proposed in this paper. In [2], probabilistic ranking queries retrieve those k objects
which have the highest probability of being located inside a given query area.

In [12] an index structure called U-Tree is proposed which organizes pdfs using
linear approximations. Recently, [10] introduced a method and a corresponding index
structure modeling pdfs using piecewise-linear approximations. This new approach also
employs linear functions as the U-Tree but is more exact in its approximation.

All the approaches mentioned above use continuous probability density functions
(pdfs) for the description of the spatial uncertainty. Most of them only support specific
types of pdfs, e.g. uniform distribution within an interval or Gaussian distributions.

The approaches proposed in [7, 8] use discrete representations of positionally un-
certain objects. Instead of continuous probability density functions they use sampled
object positions reflecting the positionally object uncertainty. Based on this concept
they proposed efficient similarity search approaches that allow to approximate uncer-
tain objects represented by pdfs of arbitrary structure. The main advantage of this ap-
proach is that sampled positions in space can efficiently be indexed using traditional
spatial access methods thus allowing to reduce the computational complexity of com-
plex query types. The approach proposed in [7] supports probabilistic distance range
queries on uncertain objects. The advantage of probabilistic distance range queries is
that the result probability for an uncertain object does not depend on the other uncertain

1 Here the object uncertainties are indicated by a set of alternative positions, i.e. each uncertain
object consists of a set of alternative positions.
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objects in the database. The approach proposed in [8] enables an efficient computation
of probabilistic nearest-neighbor queries. However, only one-nearest neighbor queries
are supported. The main challenge for k-NN queries is that the neighborhood probabil-
ity of objects depends on the other objects in the database.

Recently, Soliman et al. presented in [11] a top-k query processing algorithm for un-
certain data in relational databases. The uncertain objects are represented by multiple
tuples where to each tuple a confidence value is assigned indicating the likelihood that
the tuple is a representant of the corresponding object. The authors propose two differ-
ent query methods, the uncertain top-k query (U-Topk) and the uncertain k ranks query
(U-kRanks). The U-Topk query reports tuples with the maximum aggregated proba-
bility of being top-k for a given score function while the U-kRanks query reports for
each ranking position one tuple which is a clear winner of the corresponding ranking
position. For both query types efficient query processing algorithms are presented. An
improved method is given for both query types by Yi et al. in [13]. Though the U-kRanks
query problem defined in [11, 13] is quite related to our problem it is based on the x-
relation model and, thus, differs from our problem definition. Their approaches refer to
the occurrence of single tuples in a possible world instead of objects composed by a set
of mutually exclusive vector points.

In this paper, we propose efficient solutions for probabilistic ranking queries. Thereby,
the results are iteratively reported in ascending order of the ranking parameter k. Similar
to the object uncertainty model used in [7, 8], our approach assumes that the uncertain
objects are represented by a set of points in a vector space. This allows us to use stan-
dard spatial access methods like the R∗-tree [9] for the efficient organization of the
uncertain objects. Furthermore standard similarity search paradigms can be exploited
to support probabilistic ranking in an efficient way.

3 Problem Definition

In this section, we formally introduce the problem of probabilistic ranking queries on
uncertain objects. We first start with the definition of (positionally) uncertain objects.

3.1 Positionally Uncertain Objects

Objects of a d-dimensional vector space Rd are called positionally uncertain, if they
do not have a unique position in Rd, but have multiple positions associated with a
probability value. Thereby, the probability value assigned to a position p ∈ Rd of an
object o denotes the likelihood that o is located at the position p in the feature space. A
formal definition is given in the following:

Definition 1 (Uncertain Object Representation). Let D be a database of objects
located in a d-dimensional feature space Rd. Corresponding to the discrete uncer-
tainty model, an uncertain object o is modelled by a finite set of alternative posi-
tions in a d-dimensional vector space each associated with a confidence value, i.e.
o = {(x, p) : x ∈ Rd, p ∈ [0, 1], p is the probability that x is the position of o}. The
confidence value p indicates the likelihood that the vector position matches the corre-
sponding position of object o. The condition

∑
(x,p)∈o p = 1 holds.
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3.2 Distance Computation for Uncertain Objects

Positionally uncertain objects involve uncertain distances between them. Like the un-
certain position, the distance between two uncertain objects (or between two objects
where at least one of them is an uncertain object) can be described by a probability den-
sity function (pdf) that reflects the probability for each possible distance value. However
for uncertain objects with discrete uncertainty representations we need another form of
distance.

Definition 2 (Uncertain Distance). Let dist : Rd × Rd → R+
0 be an Lp-norm based

similarity distance function, and let oi ∈ D and oj ∈ D be two uncertain objects, where
oi and oj are assumed to be independent of each other. Then an uncertain distance in
the discrete uncertainty model is a collection duncertain(oi, oj) = {(d, p) ∈ R+

0 :
∀(x, px) ∈ oi,∀(y, py) ∈ oj : d = dist(x, y), p = px · py}. Here, the condition∑

(x,p)∈duncertain(oi,oj)
p = 1 holds.

The probability, that returns the likelihood that the uncertain distance duncertain(oi, oj)
between two uncertain objects oi and oj is smaller than a given range ε ∈ R+

0 can be
estimated by:

P (duncertain(oi, oj) ≤ ε) =
∑

(x, p) ∈ duncertain(oi, oj)
d ≤ ε

p.

Since distance computations between uncertain objects are very expensive, we need
computationally inexpensive distance approximations to reduce the candidate set in a
filter step. For this reason, we introduce distance approximations that lower and upper
bound the uncertain distance between two uncertain objects.

Definition 3 (Minimal and Maximal Object Distance). Let oi = {oi,1, oi,2, .., oi,M}
and oj = {oj,1, oj,2, .., oj,M ′} be two uncertain objects. Then the distance dmin(oi, oj) =
mins=1..M,s′=1..M ′{dist(oi,s, oj,s′)} is called minimal distance between the objects oi

and oj . Analogously, the distance dmax(oi, oj) = maxs=1..M,s′=1..M ′{dist(oi,s, oj,s′)}
is called maximal distance between the objects oi and oj .

3.3 Probabilistic Ranking on Uncertain Objects

The output of probabilistic queries is usually in form of a set of result objects, each asso-
ciated with a probability value indicating the likelihood that the object fulfills the query
predicate. However, in contrast to ε-range queries and k-nn queries, ranking queries do
not have such an unique query predicate, since the query predicate changes with each
ranking position. In case of a ranking queries, to each result object a set of probability
values is assigned, one for each ranking position. We call this form of ranking output
probabilistic ranking.

Definition 4 (Probabilistic Ranking). Let q be an uncertain query object and D be
a database containing N = |D| uncertain objects. An uncertain ranking is a function

Proc. 2nd Workshop on Managing Data Quality in Collaborative Information Systems (MCIS'09), Brisbane, Australia, 2009.



prob rankedq : (D×{1, .., N}) → [0..1] that reports for a database object o ∈ D and
a ranking position k ∈ {1, .., N} the probability which reflects the likelihood that o is at
the kth ranking position according to the uncertain distance duncertain(o, q) between
o and the query object q in ascending order.

The probabilistic ranking includes the following information, a probability value for
each object and for each ranking position. Not all of this information might be relevant
for the user and it could be difficult for the user to extract the relevant information.
Commonly, a small part of the probabilistic ranking information should be sufficient
and more easy to read and, thus, more convenient for most applications. Furthermore,
due to the variance of the ranking positions of the objects, there does not exist a unique
order in which the results are reported. For this reason, we define different types of
probabilistic ranking queries which differ in the order the results are reported and in the
form their confidence values are aggregated.

In the following definitions, we assume an uncertain query object q and a database
D containing N = |D| uncertain objects are given. Furthermore, we assume that
prob rankedq is a probabilistic ranking over D according to q. The following variants
of query definitions can be easily motivated by the fact that the user could be over-
strained with ambiguous ranking results. They specify how the results of a probabilistic
ranking can be aggregated and reported in a more comfortable form which is more easy
to read. In particular, for each ranking position only one object is reported, i.e. for each
ranking position k, the object which best fits the given position k is reported.

Probabilistic Ranking Query Based on Maximal Confidence (PRQ MC) The first
query definition reports the objects in such a way that the kth reported object has the
highest confidence to be at the given ranking position k. This query definition is quite
similar to the U-kRanks query defined in [11, 13].

Definition 5. A probabilistic ranking query based on maximal confidence (PRQ MC)
incrementally retrieves for the next ranking position i ∈ IN a result tuple of the form
(o, prob rankedq(o, i)), where o ∈ D has not been reported at previous ranking iter-
ations (i.e. at ranking positions j < i) and ∀p ∈ D which have not been reported at
previous ranking iterations, the following statement holds:

prob rankedq(o, i) ≥ prob rankedq(p, i).

Note that this type of query only considers the occurrence confidence of a certain
ranking position for an object. The confidences of prior ranking positions of an object
are ignored in the case they are exceeded by another object. However, the confidences of
prior ranking positions might also be relevant for the final setting of the ranking position
of an object. This assumption is taken into account with the next query definition.

Probabilistic Ranking Query Based on Maximal Aggregated Confidence (PRQ MAC)
The next query definition PRQ MAC takes aggregated confidence values of ranking po-
sitions into account. Contrary to the previous definition, this query assigns each object
o a unique ranking position k by aggregating over the confidences of all prior ranking
positions i < k according to o.
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Definition 6. A probabilistic ranking query based on maximal aggregated confidence
(PRQ MAC) incrementally retrieves for the next ranking position i ∈ IN a result tuple
of the form (o,

∑
j=1..i prob rankedq(o, j)), where o ∈ D has not been reported at

previous ranking iterations (i.e. at ranking positions j < i) and ∀p ∈ D which have not
been reported at previous ranking iterations, the following statement holds:∑

j=1..i

prob rankedq(o, j) ≥
∑

j=1..i

prob rankedq(p, j).

Both query types defined above specify the ranking position of each object o by
comparing the ranking position confidence of o with that of the other objects. The next
query specification takes for the assignment of a ranking position to an object o only
the ranking confidences of o into account.

Probabilistic Ranking Query Based on Expected k-Matching (PRQ EkM) This
query assigns to each object its expected ranking position without taking the confi-
dences of the other objects into account.

Definition 7. A probabilistic ranking query based on expected k-matching (PRQ EkM)
incrementally retrieves for the next ranking position i ∈ IN a result tuple of the form
(o, prob rankedq(o, i)), where o ∈ D has not been reported at previous ranking it-
erations (i.e. at ranking positions j < i) and o has the ith highest expected ranking
position

µ(o) =
∑

j=1..N

j · prob rankedq(o, j).

In other words, the objects are reported in ascending order of their expected ranking
position.

4 Probabilistic Ranking Algorithm

The computation of the probabilistic ranking is very expensive and is the main bottle-
neck of the probabilistic ranking queries proposed in the previous section. In this sec-
tion, we first introduce in Section 4.1 the data model used to compute the probabilistic
ranking and then, in Section 4.2, we show how the computational cost of the probabilis-
tic ranking on uncertain objects can be drastically reduced. We assume that each object
is represented by M alternative vector positions which we call sample points or simply
samples in the remainder. Furthermore, we assume that the object samples are stored in
a spatial index structure like the R∗-tree [9], in order to organize the uncertain objects
such that proximity queries can be efficiently processed.

Up to now, we have assumed that the database objects are uncertain. If we assume
that the query object is an uncertain object as well, we have to keep the dependencies
between the alternative object representations given by the sample representations in
mind. For this reason, we propose to solve the probabilistic ranking problem for each
representant oq,j of the query object oq = {oq,1, oq,2, .., oq,M} separately. Let us note
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that this computation can be done in parallel and, thus, can be efficiently supported by
distributed systems.

In the following, we concentrate on the computation of the probabilistic ranking
query according to one sample point qj ∈ Rd of the query object q. The computation
is done for each query sample point separately and, in a postprocessing step, the results
can be easily merged to obtain the final result which is shown in Section 4.3.

4.1 Iterative Probability Computation

Initially, an iterative computation of the nearest neighbors of qj w.r.t. the sample points
of all objects o ∈ D (sample point ranking ranks(qj)) is started using the ranking
algorithm proposed in [6]. Then, we iteratively pick object samples from the sample
point ranking ranks(qj) according to the query sample point qj . For each sample point
oi,s (1 ≤ s ≤ M ) returned from ranks(qj), we immediately compute the probability
that oi,s is the kth nearest neighbor of qj for all k (1 ≤ k ≤ i). Thereby, all other
samples oi,t (t 6= s) of object oi have to be ignored due to the sample dependency
within an object as mentioned above.

For the probability computation we need two auxiliary data structures, the sample
table (ST), required to compute the probabilities by incorporating the other objects ol ∈
D (ol 6= oi), and the probability table (PT) used to maintain the intermediate results
w.r.t. oi,s and which finally contains the overall results of the probabilistic ranking. In
the following, both data structures ST and PT are introduced in detail.

Sample Table (ST) We maintain a table ST called sample table that stores for each
accessed object separately the portion of samples already returned from ranks(qj).
Additionally, we need for each accessed object the portion of samples that has not been
accessed so far. Entries of ST according to object oi are defined as follows:

ST [i][1] =
# samples of oi already returned from ranks(qj)

M(=̂ # samples of object oi)
,

ST [i][0] can be directly computed by ST [i][0] = 1−ST [i][1], such that in fact we only
need to maintain entries of the form ST [i][1].

Probability Table (PT) Additionally to the sample table, we maintain a table PT
called probability table that stores for each object oi and each k ∈ N (1 ≤ k ≤ N ) the
actual probability that oi is the kth-nearest neighbor of the query sample point qs. The
entries of PT according to the sth sample point of object oi are defined as follows:

PT [k][i][s] = P ((k−1) objects o ∈ D, (o 6= oi), are closer to qj than the sample point oi,s).

We assume that object oi is the ith object for which ranks(qj) has reported at least
one sample point. The same assumption is made for the sample points of an uncertain
object (i.e., sample point oi,s is the sth-closest sample point of object oi according to
qj). These assumptions hold for the remainder of this paper.
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Now, we show how to compute an entry PT [k][i][s] of the probability table using
the information stored in the sample table ST . Let ST be a sample table of size N
(i.e. ST stores the information corresponding to all N objects of the database D). Let
σk(i) ⊆ {o ∈ D|o 6= oi} denote the set, called k-set of oi, containing exactly (k-

1) objects. If we assume k < N , obviously
(

N
k

)
different k-set permutations σk(i)

exist. For the computation of PT [k][i][s], we have to consider the set Sk of all possible
k-set permutations according to oi. The probability that exactly (k-1) objects are closer
to the query-sample point qj than the sample point oi,s, can be computed as follows:

PT [k][i][s] =
∑

σk(i)∈Sk

∏
l = 1..N

l 6= i

{
ST [l][1] ,if ol ∈ σk(i)
ST [l][0] ,if ol /∈ σk(i)

Let us assume that we actually process the sample point oi,s. Since the object samples
are processed in ascending order according to their distance to qj , the sample table entry
ST [l][1] reflects the probability, that object ol is closer to qj than the sample point oi,s.
On the other hand, ST [l][0] reflects the probability that oi,s is closer to qj than ol.

In the following, we show how the entries of the probability table can be computed
by fetching iteratively the sample points from ranks(qj). Thereby, we assume that all
entries of the probability table are initially set to zero. Then the iterative ranking process
ranks(qj) which reports one sample point of an uncertain object in each iteration, is
started. Each reported sample point oi,s is used to compute for all k (1 ≤ k ≤ N )
the probability value that corresponds to the table entry PT [k][i][s]. After filling the
(i-s)-column of the probability table, we proceed with the next sample point fetched
from ranks(qj) in the same way as we did with oi,s. This procedure is repeated until
all sample points are fetched from ranks(qj).

4.2 Accelerated Probability Computation

The computation of the probability table can be very costly in space and time. One
reason is the size of the table that grows drastically with the number of objects and the
number of samples for each object. Another problem is the very expensive computation
of the probability table entries PT[k][i][s]. In the following, we propose some methods
that reach a considerable reduction of the overall query cost.

Table Pruning Obviously, we do not need to maintain separately the result according
to each sample point of an object. Instead of maintaining a table entry for each sam-
ple point of an object, we have to compute the average over the sample probabilities
according to an object and a ranking position. This can be done on the fly by simply
summing up the iteratively computed sample probabilities. An additional reduction of
the table (i.e., a reduction to those parts of the table that should be available at once)
can be achieved by maintaining only those parts of the table that are required for fur-
ther computations and skip the rest. First, we have to maintain a table column only for
those objects from which at least one sample point has been reported from ranks(qj),
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whereas we can skip those from which we already fetched all sample points. In the same
way we can reduce the sample table in order to reduce the cost required to compute the
probability table entries. Second, we can skip each probability table row that corre-
sponds to a ranking position which is not within a certain ranking range. This range is
given by the minimal and maximal ranking position of the uncertain objects for which
we currently have to maintain a column of the probability table. The following lemmas
utilize the bounds for uncertain distances that are introduced in Definition 3.

Lemma 1 (Minimal Ranking Position). Let oi ∈ D be an uncertain object and qj

be the query sample point. Furthermore, let at least n ∈ IN objects have a maxi-
mal distance that is smaller or equal to the minimal distance of oi, i.e. |{ol : ol ∈
D, dmax(ol, qj) ≤ dmin(oi, qj)}| ≥ n. Then, the ranking position of object oi must be
larger than n.

In the same way, we can upper bound the ranking position of an uncertain object.

Lemma 2 (Maximal Ranking Position). Let oi ∈ D be an uncertain object and qj

be the query sample point. Furthermore, let at most n′ ∈ IN objects have a mini-
mal distance that is smaller or equal to the maximal distance of oi, i.e. |{ol : ol ∈
D, dmin(ol, qj) ≤ dmax(oi, qj)}| = n′. Then, the ranking position of object oi must be
lower than or equal to n′.

As mentioned above, the computation of the object probabilities according to rank-
ing position i only requires to consider those objects whose minimal and maximal
ranking position cover the ranking position i. This holds for those objects having sam-
ple points within as well as outside of the actual range of the actual ranking distance
r − dist. Usually, in practice this is the case for only a small set of objects depending
on their spatial density and specificity of their uncertainty.

Bisection-Based Algorithm The computational cost can be significantly reduced if we
utilize the bisection-based algorithm as proposed in [1]. The bisection-based algorithm
uses divide-and-conquer which computes for a query object q and a database object o
the probability that exactly k other objects are closer to q than the object o. The main
idea is to recursively perform a binary split of the set of relevant objects, i.e. objects
which have to be taken into account for the probability computation. Afterwards, the
corresponding results can be efficiently merged into the final result. Here, we leave out
details due to limited space. Note that this approach, although this approach accelerates
the computation cost of the PT[k][i][s] significantly, the asymptotical cost is still expo-
nential in the ranking range. This approach is mentioned here because it is an important
competitor to the dynamic-programming-based approach presented next (cf. Section 5).

Dynamic-Programming-Based Algorithm In the following, we introduce our new
approach which is able to efficiently compute the PT[k][i][s] and whose runtime is
O(|D|3). The key idea of our approach is based on the following property. Given a
sample q and a set of j objects S = o1, o2, . . . , oj} for which the probability P (oi, q)
that oi ∈ S is ranked higher than q is known. Now, we want to compute the probability
Pk,S,q that exactly k oi ∈ S are ranked higher than q.
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Lemma 3. If we assume that object oj is ranked higher than q, then Pk,S,q is equal to
the probability that exactly k−1 objects of S\{pj} are ranked higher than q. Otherwise,
Pk,S,q is equal to the probability that exactly k objects of S\{pj} are ranked higher
than q.

The above lemma leads to the following recursion that allows to compute Pk,S,q by
means of the paradigm of dynamic programming:

Pk,S,q = Pk−1,S\{pj},q · pj + Pk,S\{pj},q · (1− pj), where P0,∅ = 1.

Let us note that the above dynamic programming scheme was originally proposed
in the context of Top-k queries in the x-relational model [13]. Here, we can exploit
this scheme to compute the probability that an uncertain object o ∈ D is assigned to a
certain ranking position.

4.3 Building Final Query Results

Up to now, we have assumed that the query consists of one query sample point. In the
following, we show how we support queries where the query object is also uncertain, i.e.
consists of several query sample points. Let us assume that the query object q consists
of M query sample points. Then we start for each sample point qj ∈ q separately a
probabilistic ranking query as described above. The results are finally merged simply
by computing for each object the average over all corresponding probabilities returned
from the M queries, i.e.

prob rankedq(i)(o) =

∑
j=1..M prob rankedqj

(i)(o)
M

.

5 Experimental Evaluation

In this section, we examine the effectiveness and efficiency of our proposed proba-
bilistic similarity ranking approaches. Since the computation is highly CPU bounded,
we measured the efficiency by the overall runtime cost required to compute an entire
ranking averaged over 10 queries.

5.1 Datasets

The following experiments are based on artificial and real-world datasets. The arti-
ficial datasets which are used for the efficiency experiments contain 10 to 1000 10-
dimensional uncertain objects that are situated by a Gaussian distribution in the data
space. Each object consists of M = 10 alternative positions that are distributed around
the mean positions of the objects with a variance of 10% of the data space if not stated
otherwise. Figure 2 depicts the distribution of uncertain objects when varying the vari-
ance of the positions of the uncertain objects, i.e. the degree of uncertainty. A growing
variance leads to an increase of the overlap between the object samples. For the eval-
uation of the effectiveness of our methods we used two real-world datasets: O3 and
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N=40 S=20 D=10

(b) Positionally variance V = 5.0.

Fig. 2. Uncertain object distribution (object variance = 10.0) in 60×60 space for different degrees
of positionally uncertainty. (number of objects N = 40, number of samples S = 20)

Fig. 3. Avg. precision for probabilistic ranking queries on different real-world datasets.

NSP. The O3 dataset is an environmental dataset consisting of 30 uncertain time series,
each composing a set of measurements of O3 concentration in the air measured within
one month. Thereby, each measurement features a daily O3 concentration curve. The
dataset covers measurements from the year 2000 to 2004 and is classified according
to the months in a year. The NSP dataset is a chronobiologic dataset describing the
cell activity of Neurospora2 within sequences of day cycles. This dataset is used to in-
vestigate endogenous rhythms. It can be classified according to two parameters among
others: day cycle and type of mold. For our experiments we utilized two subsets of the
NSP data: NSPh and NSPfrq . NSPh is classified according to the day cycle length.
It consists of 36 objects that created three classes of day cycle (16, 18 and 20 hours).
The NSPfrq dataset consists of 48 objects and is classified according to the type of the
mold (frq1, frq7 and frq+).

5.2 Effectiveness

In the first experiments, we evaluate the quality of the different probabilistic ranking
queries (PRQ MC, PRQ MAC, PRQ EkM) proposed in Section 3.3. In order to make a
fair evaluation, we compare them with the results of a non-probabilistic ranking (MP)
which ranks the objects based on the distance between their mean positions. For these

2 Neurospora is the name of a fungal genus containing several distinct species. For further in-
formation see The Neurospora Home Page: http://www.fgsc.net/Neurospora/neurospora.html.
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Fig. 4. Query processing cost w.r.t. the degree of object uncertainty.

experiments, we used the three real-world datasets O3, NSPh and NSPfrq , each con-
sisting of uncertain objects which are classified as described above. The quality of the
proposed approaches can be directly compared in the table depicted in Figure 3 which
shows the average precision over all recall values based on a k-nn classification for
each probabilistic ranking query approach and each dataset. In all experiments, the
PRQ MAC approach outperforms the other approaches including the non-probabilistic
ranking approach. Interestingly, the approach PRQ MC which has a quite similar defini-
tion as the U-kRanks query proposed in [11, 13] does not work very well and shows sim-
ilar quality as the non-probabilistic ranking approach. The approach PRQ EkM loses
clearly and is even significantly below the non-probabilistic ranking approach. This ob-
servation points out that the postprocessing step, i.e. the way in which the results of the
probabilistic rankings are post-processed, indeed affects the result.

5.3 Efficiency

In the next experiment, we evaluate the performance of our probabilistic ranking accel-
eration strategies proposed in Section 4.2 w.r.t. query processing time. We experimen-
tally evaluate the performance of our algorithms by comparing the different proposed
strategies against the straightforward solution where the computation of the query with-
out any additional strategy. A summary of the competing methods is given below (cf.
Section 4.2):

IT Iterative fetching of the sample points from the sample point ranking ranks(qj) and
computation of the probability table PT entries without any acceleration strategy.

TP Table pruning strategy where we used the reduced table space.
BS Bisection-based computation of the probability permutations.
DP Dynamic-Programming-based computation of the probability permutations.

Influence of Degree of Uncertainty In the first experiment, we compare all strate-
gies (including the straightforward solution) for probabilistic rankings on the artificial
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Fig. 5. Comparison of the scalability of all strategies (uniform uncertainty distribution).

datasets with different grade of uncertainty (variance). The evaluation of the query pro-
cessing time of our approaches is illustrated in Figure 4. In particular, the differences
between the used computation strategies are depicted for two different sample sizes
S = 10 and S = 30. Here, we used a database size of 20 uncertain objects of a 10-
dimensional feature space. Obviously, the DP shows the best performance. Using only
the recursive computation BS, the query processing time is quite high even for a low
variance value. However, the query time increases only slightly when further increasing
the variance. On the other hand, using only the table pruning strategy TP leads to a
significant increase in computation time, in particular for high variances. The computa-
tion time of TP is much smaller for low variances compared to BS. The DP approach
is not affected by an increasing variance. To sum up, using a combination of the TP
and BS strategies results in a quite good performance, but it is outperformed by the DP
approach due to its polynomial computational complexity.

Scalability Next, we evaluate the scalability based on the artificial datasets of different
size. Here, we also considered different combinations of strategies. The experimen-
tal results are depicted in Figure 5. Obviously the simple approach IT produces such
overwhelming cost compared to the other strategies that experiments for a database
size above 30 objects are not applicable. It can clearly be observed that the combina-
tion TP+BS significantly outperforms just TP. The scalability over a larger range of
database sizes can be seen on the right hand side of Figure 5. The basic TP approach
is already not applicable for very small databases, even for a low degree of object un-
certainty. It is interesting to see that for very small database sizes and low degree of
uncertainty the TP+BS outperforms DP. Let us note that we would achieve quite less
cost for the query processing if we limit the ranking output to a k � N . Anyway, a
complete ranking of the database is usually not required. In contrast to the other com-
petitors the DP scales well even for large databases.
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6 Conclusions

In this paper, we proposed an approach that efficiently computes probabilistic rank-
ing queries on uncertain objects represented by sets of sample points. In particular,
we proposed methods that are able to break down the high computational complexity
required to compute for an object o the probability, that o has the ranking position k
(1 ≤ k ≤ N ) according to the distance to a query object q. We theoretically and exper-
imentally showed that our approach is able to speed-up the query by factors of several
orders of magnitude. In the future we plan to apply probabilistic ranking queries to
improve data mining applications.
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