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ABSTRACT
Many outlier detection methods do not merely provide the
decision for a single data object being or not being an out-
lier but give also an outlier score or “outlier factor” signaling
“how much”the respective data object is an outlier. A major
problem for any user not very acquainted with the outlier
detection method in question is how to interpret this “fac-
tor” in order to decide for the numeric score again whether
or not the data object indeed is an outlier. Here, we formu-
late a local density based outlier detection method provid-
ing an outlier “score” in the range of [0, 1] that is directly
interpretable as a probability of a data object for being an
outlier.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—Data mining

General Terms: Algorithms

Keywords: Outlier Detection

1. INTRODUCTION
The problem of identifying outliers has been addressed by

different approaches that can be roughly classified as global
versus local outlier models. This distinction refers to the
scope of a database being considered when a method de-
cides on the “outlierness” of a given object. While some
methods take always the complete database into account,
others consider only a local selection of database objects,
e.g., the ε-neighborhood or the k nearest neighbors of a
point. At a different axis, one can distinguish “labeling”
versus “scoring” outlier detection methods. The former are
leading to a binary decision of whether or not a given object
is an outlier while the latter are rather assigning a degree
of “outlierness” to each object. Such an “outlier factor” is a
value characterizing each object in “how much” this object
is an outlier. In the literature, in most cases global outlier
detection schemas produce binary labels whereas local out-
lier approaches often assign scores to the database objects.
However, this relation does not appear to be necessary. For
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a more detailed discussion of outlier detection methods and
their relations to and differences between each other, see [5].
Here, we are primarily interested in the nature and mean-
ing of outlier scores provided by “scoring” outlier detection
methods because these approaches are usually more flexible
since they can also produce labels. In addition, we focus
on a local scope of the database to decide about the outlier
score. Indeed, the scores provided by different methods dif-
fer widely in their scale, their range, and their meaning. In
some cases, high values of an outlier score mean, the corre-
sponding database object is not at all an outlier, in other
cases, a higher value indicates more “outlierness”. For many
methods, the scaling of occurring values of the outlier score
even differ within the same method from data set to data
set, i.e., outlier score x in one data set means, we have an
outlier, in another data set it is not extraordinary at all.
In many cases, even within one and the same data set, the
identical outlier score x for two different database objects
can denote substantially different degrees of outlierness, de-
pending on different local data distributions around the two
objects.

Here, we propose a scoring that includes a normalization
to become independent from the specific data distribution
in a given data set as well as a statistically sound motivation
for a mapping into the range of [0, 1] readily interpretable
as the probability of a given database object for being an
outlier. In the remainder, we will introduce this new local
scoring scheme LoOP in Section 2. The behavior of LoOP
in comparison to existing approaches is evaluated in Section
3. Section 4 concludes the paper.

2. FORMAL DEFINITION OF LOCAL
OUTLIER PROBABILITY

In this paper, we introduce a new outlier model that com-
bines the idea of local, density-based outlier scores like LOF
[4], its variants, and LOCI [8] with probabilistic concepts to
model the “outlierness” of a point. A probabilistic approach
means to offer a natural tolerance to noise effects in the
data. Traditional approaches such as LOF and LOCI may
even emphasize such effects. For example, LOF is based on
comparing the k-distances of points, i.e., the distances of
points to their respective kth nearest neighbor. A (locally)
inappropriate choice of k can cause instable results.

In the following, we assume D being a set of n objects and
d being a distance function used to distinguish outliers. To
become more reliable, we introduce the probabilistic distance
of o ∈ D to a context set S ⊆ D, referred to as pdist(o, S).
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This distance has the following property:

∀s ∈ S : P[d(o, s) ≤ pdist(o, S)] ≥ ϕ.

Intuitively, a sphere around o with radius pdist covers any
element in the context set S with a probability of ϕ. The
probabilistic distance pdist(o, S) of o to S can be interpreted
as the statistical extent of the context set S. The main
difference to the (normal) extent of a set of points is that
the statistical extent deliberately allows for some error. The
reciprocal of the probabilistic distance can be seen as an
estimation for the density of S, i.e.,

pdens(S) =
1

pdist(o, S)
,

and, thus, for the local context of o in terms of S. If we
use λ =

√
2 · erf−1(ϕ) instead of ϕ, where erf denotes the

Gaussian error function, in the estimation of the density of
S, we can simulate the classical and sound statistical notion
of outliers defined as objects that deviate more than a given
λ times the standard deviation σ from the mean. Values
of λ are those of the empirical 68-95-99.7 (“three sigma”)
rule, e.g. λ = 1 ⇔ ϕ ≈ 68%, λ = 2 ⇔ ϕ ≈ 95%, and
λ = 3⇔ ϕ ≈ 99.7%.

Assuming that o is the center of S and the set of distances
of s ∈ S to o is approximately half-Gaussian, one can com-
pute a standard distance of the object in S to o similar to
the standard deviation:

σ(o, S) =

sP
s∈S d(o, s)2

|S|

Note that this is subtly different from Stddev(d(o, S)), since
it uses a mean of d(o, o) = 0 instead of E[d(o, S)]. In par-
ticular, the difference is that we cannot assume the distance
values to be normally distributed, but instead we assume S
to be approximately normally distributed around o. When
we determine S for a given object o this assumption should
be taken into account. As a consequence, we propose to ob-
tain the context set S via a k nearest neighbor query around
o. As such, the assumption of S being centered around o is
usually reasonable. Based on these considerations, we define
the probabilistic set distance of o to S with significance λ as

pdist(λ, o, S) := λ · σ(o, S).

Intuitively, this probabilistic set distance estimates the den-
sity around o based on S. The parameter λ gives control
over the approximation of the density. It is, however, just a
normalization factor solely affecting contrast in the resulting
scores. The ranking of outliers will not be affected by λ.

Naturally any statistical modeling is based on certain as-
sumptions. The local probabilistic modeling of outliers is
based on the assumptions (i.) that the context set S is cen-
tered around the query object o, and (ii.) that the distances
behave like the positive leg of a normal distribution. Re-
garding assumption (i.), we admit that not every space will
offer the option to compute a centroid cS for the set S to be
used instead of o in order to compute the standard distance
and the probabilistic set distance, so that this would not
be a generally viable solution. However, we need to inves-
tigate what happens if o differs substantially from cS and
in which situations this can occur. By definition of the cen-
troid, E[d(cS , s)] ≤ E[d(o, s)], we will usually obtain higher
distances and thus a higher value for σ compared to the case

when using the centroid cS of S. This situation occurs if the
context set S is asymmetric to o, especially if o is an outlier
point w.r.t. S. Thus, by using o as context center, we over-
estimate σ in particular for outlier points. This however is a
beneficial effect, since it will only increase this points outlier
score. Assumption (ii.) is not directly assuming a certain
distribution of the data. Rather, we make an assumption
only about the distribution of the distances from the point
o. Intuitively, this means that the full-dimensional vector
space is projected onto a one-dimensional subspace of dis-
tances. To this projection, the central limit theorem can be
applied which states the following: Assuming that there are
sufficiently many independent components involved in com-
puting the distances, these distances behave approximately
normally distributed. Note that this will not necessarily
hold for dimension-selecting distances; it does however ap-
ply to Lp-norms such as Euclidean or Manhattan distances.
However, based on this theorem, we can assume that the
distances are normally distributed without limiting our ap-
proach to any fixed type of distribution. In other words,
our method works with any kind of data distribution. Thus,
it combines the advantages of two worlds, the density-based
approaches that do not assume any specific data distribution
and the sound mathematical concepts of statistical methods.

Based on this reasoning for estimating the density around
an object w.r.t. a context set, the Probabilistic Local Outlier
Factor (PLOF) of an object o ∈ D w.r.t. a significance λ, a
context set S(o) ⊆ D, can be defined as follows:

PLOFλ,S(o) :=
pdist(λ, o, S(o))

Es∈S(o)[pdist(λ, s, S(s))]
− 1.

The PLOF value of an object o ∈ D calculates the ratio
of the estimation for the density around o which is based
on S(o) and the expected value of the estimations for the
densities around all objects in the context set S(o). Let us
note that the resulting value—which scales similar to the
LOF score (minus 1)—is not yet a probability and not nor-
malized. A value ≤ 0 is not an outlier, while higher values
indicate an increasing outlierness. Similar to existing outlier
models, these values still cannot be easily compared between
data sets. To achieve a normalization making the scaling of
PLOF independent of the particular data distribution, the
aggregate value nPLOF is obtained during PLOF computa-
tion.

nPLOF := λ ·
p
E[(PLOF)2]

This value can be seen as a kind of standard deviation of
PLOF values, i.e., λ · Stddev(PLOF) assuming a mean of 0.
To convert the not yet normalized PLOF value into a prob-
ability value, we assume that the values are normally dis-
tributed around 1 with a standard deviation of nPLOF. We
then apply the Gaussian Error Function to obtain a proba-
bility value, the Local Outlier Probability (LoOP), indicating
the probability that a point o ∈ D is an outlier:

LoOPS(o) := max


0, erf

„
PLOFλ,S(o)

nPLOF ·
√

2

«ff
The LoOP value will be close to 0 for points within dense re-
gions and close to 1 for density based outliers. Hence, while
traditional local density based outlier scores are not readily
comparable with each other even within one single data set
we have obtained means to directly derive the probability of
a database object of any given data set for being a density
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(a) LOF values.

(b) LoOP values.

Figure 1: Comparison of the interpretability of local,
density-based outlier scoring (here: LOF) values and
LoOP values on 2D synthetic data. Both algorithms
were run with k = 20, for LoOP λ = 3.

based local outlier. In other words, while an outlier score
of x computed by any local approach like LOF will desig-
nate different degrees of outlierness for different regions of
the same data set and cannot be compared to a score of x
on a different data set, LoOP values are consistent over the
complete data set and over multiple data sets.

Figure 1 illustrates some differences between LOF and
LoOP on a synthetic 2D data set. In the respective figures,
the interesting outlier scores are given. Additionally, LOF
values are converted to a circle radius with non-trivial scal-
ing, while LoOP values can be directly used as circle radius.
For example, object A (obviously an outlier) is not recog-
nized by LOF due to an unlucky choice of k = 20: the cluster
left of object A together with object A makes 21 objects, and
the 20-nearest-neighbor distance of any point in the cluster
will be the distance to A. Thus, the difference in their k-
distance is small and A gets a low LOF score. LoOP assigns

an outlier probability of 59% to this object: due to the av-
eraging effects, the pdist for cluster points just covers the
cluster itself, and object A gets a significantly higher pdist
value. The situation with object B is similar. Although
LOF values below 3 are usually considered “insignificant”,
even clear outliers such as the objects at C are just at ap-
proximately 2. LoOP assigns them an outlier probability of
about 85%. Object D highlights another weakness of LOF:
it is designed for clusters of uniform density. The cluster
around D shows a Gaussian distribution. LOF assigns ob-
ject D an outlier score higher than e.g. object B while this
point was in fact generated by the cluster it is adjacent to.
When modeling the data set using three Gaussian distri-
butions and uniform background noise, the probability of
object D being generated by the cluster is higher than that
of the noise distribution. The LoOP value of 16% is much
more useful here: there is a clear chance the the point is an
outlier, but it is also very likely it is just an outer point of
the clusters normal distribution.

3. EXPERIMENTS
We compare the accuracy of our novel LoOP model with

several competitive algorithms: We used the LOF [4] and
one of its latest variants LDOF [10] as representative algo-
rithms for local, density-based outlier models. We also used
the angle-based ABOD [6] as recent non-density-based pro-
posal. As a baseline, we used k-NN based outlier detection
as defined in [9] (distance to k-th nearest neighbor, or“kNN”
in short) and [2] (sum of the distances to the k nearest neigh-
bors, or “kNN weight” in short). Since we are not interested
in efficiency but in the recall and precision of the methods,
we did not use the efficient since approximate solutions for
“kNN” and “kNN weight” as proposed along with the model
in the corresponding papers but the exact implementations
of the corresponding outlier-models. All competitors have
been implemented in the unified framework ELKI [1]. We
chose λ = 3 for LoOP throughout all experiments that are
reported here. However, results for different λ values (λ = 1
and λ = 2) are identical because they give the same rank-
ing. This confirms our statement above, that LoOP is robust
against the choice of λ.

We used three real-world data sets known from classifica-
tion and prepared them for unsupervised outlier detection by
sampling one of the classes to become sparse, and using this
class as outliers. The first data set is the “Wisconsin Breast
Cancer” diagnosis set [3], which consists of 357 “benign” and
212 “malignant” medical diagnosis records (31 dimensions).
We removed the malignant records except for the first 10
records, which we consider outliers. Thus, the data set con-
sists of 367 records. The second data set is called“Pen-Based
Recognition of Handwritten Digits” training set [3], which
consists of 7494 records, 719 to 780 for each of the classes
(which correspond to the digits 0 to 9). The dimensionality
is 16, each dimension resembling a pixel value in a 4x4 grid.
We chose the digit 4 to be our outlier class, and again only
kept the first 10 records of this digit, resulting in a data set
size of 6724 records. A third set consists of metabolic data
records [7] measuring the concentration of 43 metabolites in
the blood of newborns. The largest share in this data set is
a control group with 19,730 instances. We removed all atyp-
ical records except for “Phenylketonuria” entries. These 306
records were kept as outliers in the data set. The final data
set contains 20,036 records with 43 measurements each.
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(a) Wisconsin Breast Cancer data set.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

R
O

C
 A

U
C

k
LoOP

LOF
kNN

kNN weight
LDOF
ABOD

(b) Pen Digits data set.
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(c) Metabolic data set.

Figure 2: Accuracy of different outlier models on different data sets.

Using the outlier scores as a ranking criterion, ROC curves
(receiver operating characteristic) are the means of choice
to compare the performance of different methods. A ROC
curve compares the true positive rate with the false posi-
tive rate. Given a ranking of the objects according to their
outlier score, a perfect outlier detection method would first
return all outliers followed by all remaining objects. A single
ROC curve can then be summarized by computing the area
under curve (AUC). An AUC value of 1.0 means a perfect
separation because first the true positive rate goes to 1.0
and then the false positive rate increases. An AUC value
of 0.5 corresponds to random sampling, i.e., the true posi-
tive rate and the false positive rate both increase simultane-
ously. An AUC value significantly below 0.5 indicates that
the method prefers non-outliers. Finally, an AUC value of
0.0 is a perfect separation again, although with non-outliers
coming first. Since all competitors rely on the parameter k
specifying the scope of the database, we will focus on this
parameter. For that purpose, we use a two-dimensional plot
comparing AUC and k for a wide range of values in k.

Figure 2 shows the results for different algorithms on dif-
ferent data sets. On the Wisconsin Breast Cancer (cf. Fig-
ure 2(a)) all algorithms receive high scores. For a well-chosen
value of k, LOF performs best. However, it is very sensitive
to the choice of k. For a large range of values, LoOP per-
forms best (and close to the top result of LOF). Both the
kNN and the kNN weight outlier detection approaches drop
quickly on this data set. ABOD is also quite stable, but at a
lower level than LoOP or LDOF. Results on the Pen Digits
data set are shown in Figure 2(b). Again LOF is performing
very well. However, LoOP is slightly better and in particu-
lar much more stable in its results. Both the kNN and the
kNN weight models also work very well, while ABOD and
LDOF struggle for this data set. A slightly different obser-
vation can be made from the results on the Metabolic data
set in Figure 2(c). Here the two kNN variants and ABOD
perform consistently good. The local, density-based meth-
ods produce good or even better results but only for large
values of k. Anyway, for high values of k LOF, LDOF and
LoOP outperform the other approaches.

In summary, LoOP performs good on all the used real-
world data sets. In most cases, it achieves the best results
for a specific choice of k and shows to be more robust against
this choice than the competitors.

4. CONCLUSION
The state-of-the-art approaches for unsupervised outlier

detection usually rely on computing an outlier score for each
database object based on a local scope of the database as
a reference. However, for different approaches, the calcu-
lated scores are not standardized and often hard to inter-
pret. Thus, scores of objects from different data sets and
even scores of objects from the same data set can not be
compared. In this paper, we propose the novel LoOP (Local
Outlier Probability) outlier detection model that combines
the idea of local, density-based outlier scoring with a prob-
abilistic, statistically-oriented approach. The benefit of our
model is that it provides for each data object an outlier
probability as score that is easily interpretable and can be
compared over one data set and even over different data
sets. Our experimental evaluation confirms the competitive
behavior of LoOP on several synthetic and real-world data
sets.
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