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Abstract

The similarity join has become an important database primitive to
support similarity search and data mining. A similarity join com-
bines two sets of complex objects such that the result contains all
pairs of similar objects. Well-known are two types of the similarity
join, the distance range join where the user defines a distance
threshold for the join, and the closest point query or k-distance join
which retrieves the k most similar pairs. In this paper, we propose
an important, third similarity join operation called k-nearest
neighbor join which combines each point of one point set with its k
nearest neighbors in the other set. We discover that many standard
algorithms of Knowledge Discovery in Databases (KDD) such as
k-means and k-medoid clustering, nearest neighbor classification,
data cleansing, postprocessing of sampling-based data mining etc.
can be implemented on top of the k-nn join operation to achieve
performance improvements without affecting the quality of the re-
sult of these algorithms. We propose a new algorithm to compute
the k-nearest neighbor join using the multipage index (MuX), a
specialized index structure for the similarity join. To reduce both
CPU and I/O cost, we develop optimal loading and processing
Strategies.
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1. Introduction

Knowledge Discovery in Databases (KDD) is the non-trivial pro-
cess of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data (Fayyad et al. 1996). The KDD pro-
cess (Brachmann, Anand 1996) is an interactive and iterative pro-
cess, involving numerous steps including preprocessing of the data
(data cleansing) and postprocessing (evaluation of the results). The
core step of the KDD process is data mining, i.e. finding patterns of
interest such as clusters, outliers, classification rules or trees, asso-
ciation rules, and regressions. KDD algorithms in multidimensional
databases are often based on similarity queries which are performed
for a high number of objects. Recently, it has been recognized that
many algorithms of similarity search (Agrawal et al. 1995) and data
mining (B6hm et al. 2000) can be based on top of a single join query
instead of many similarity queries. Thus, a high number of single
similarity queries is replaced by a single run of a similarity join. The
most well-known form of the similarity join is the distance range
join RP><IS which is defined for two finite sets of vectors,
R={r,...r,} and §= {s,....5,,}, as the set of all pairs from R x §
having a distance of no more than &:

RDAS = {(rys) € RxS||lpi—q;ll < €}
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E.g. in (Bohm et al. 2000) , it has been shown that density based
clustering algorithms such as DBSCAN (Sander et al. 1998) or the
hierarchical cluster analysis method OPTICS (Ankerst et al. 1999)
can be accelerated by high factors of typically one or two orders of
magnitude by the range distance join. Due to its importance, a large
number of algorithms to compute the range distance join of two sets
have been proposed, e.g. (Shim et al. 1997, Koudas, Sevcik 1997,
Boéhm et al. 2001)

Another important similarity join operation which has been re-
cently proposed is the incremental distance join (Hjaltason, Samet
1998). This join operation orders the pairs from R x Sby increasing
distance and returns them to the user either on a give-me-more ba-
sis, or based on a user specified cardinality of & best pairs (which
corresponds to a k-closest pair operation in computational geome-
try, cf. (Preparata, Shamos 1985)). This operation can be success-
fully applied to implement data analysis tasks such as noise-robust
catalogue matching and noise-robust duplicate detection (B6hm
2001).

In this paper, we investigate a third kind of similarity join, the
k-nearest neighbor similarity join, short &-nn join. This operation is
motivated by the observation that many data analysis and data min-
ing algorithms is based on k-nearest neighbor queries which are is-
sued separately for a large set of query points R = {r,,...,r,} against
another large set of data points S = {s,...,s,,}. In contrast to the in-
cremental distance join and the k-distance join which choose the
best pairs from the complete pool of pairs R x S, the k-nn join com-
bines each of the points of R with its k nearest neighbors in S. The
differences between the three kinds of similarity join operations are
depicted in figure 1.

Applications of the £-nn join include but are not limited to the
following list: k-nearest neighbor classification, k-means and
k-medoid clustering, sample assessment and sample postprocess-
ing, missing value imputation, k-distance diagrams, etc. We discuss
how k-means clustering, nearest neighbor classification, and vari-
ous other algorithms can be transformed such that they operate ex-
clusively on top of the k-nearest neighbor join. This transformation
typically leads to performance gains up to a factor of 8.5.

Our list of applications covers all stages of the KDD process. In
the preprocessing step, data cleansing algorithms are typically
based on k-nearest neighbor queries for each of the points with
NULL values against the set of complete vectors. The missing val-
ues can be computed e.g. as the weighted means of the values of
the k nearest neighbors. A k-distance diagram can be used to deter-
mine suitable parameters for data mining. Additionally, in the core
step, i.e. data mining, many algorithms such as clustering and clas-
sification are based on k-nn queries. As such algorithms are often
time consuming and have at least a linear, often n log n or even qua-
dratic complexity they typically run on a sample set rather than the
complete data set. The k-nn-queries are used to assess the quality
of the sample set (preprocessing). After the run of the data mining
algorithm, it is necessary to relate the result to the complete set of
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Figure 1. Difference between similarity join operations

database points (Breunig et al 2001). The typical method for doing
that is again a k-nn-query for each of the database points with re-
spect to the set of classified sample points. In all these algorithms,
it is possible to replace a large number of &-nn queries which are
originally issued separately, by a single run of a k-nn join. There-
fore, the k-nn join gives powerful support for all stages of the KDD
process.

The remainder of this paper which is an extended version of
(Bohm, Krebs 2001) is organized as follows: In section 2, we give
a classification of the well-known similarity join operations and re-
view the related work. In section 3, we define the new operation,
the k-nearest neighbor join. Section 4 is dedicated to applications of
the k-nn join. We show exemplary, that typical data mining methods
can be easily implemented on top of the join. In section 5, we devel-
op an algorithm for the £-nn join which applies suitable loading and
processing strategies on top of the multipage index (Bohm, Kriegel
2001), an index structure which is particularly suited for high-di-
mensional similarity joins, in order to reduce both CPU and 1/O
cost and efficiently compute the k-nn join. The experimental eval-
uation of our approach is presented in section 6 and section 7 con-
cludes the paper.

2. Related work

In the relational data model a join means to combine the tuples of
two relations R and S into pairs if a join predicate is fulfilled. In
multidimensional databases, R and S contain points (feature vec-
tors) rather than ordinary tuples. In a similarity join, the join pred-
icate is similarity, e.g. the Euclidean distance between two feature
vectors.

2.1 Distance range based similarity join

The most prominent and most evaluated similarity join operation
is the distance range join. Therefore, the notions similarity join and
distance range join are often used interchangeably. Unless other-
wise specified, when speaking of the similarity join, often the dis-
tance range join is meant by default. For clarity in this paper, we
will not follow this convention and always use the more specific
notions. As depicted in figure 1a, the distance range join R ><] §
of two multidimensional or metric sets R and S is the set of pairs
where the distance of the objects does not exceed the given param-
etere:

Definition 1 Distance Range Join (e-Join)

The distance range join R ><| § of two finite multidimen-
sional or metric sets R and S is the set

R D §:={(rys) € Rx St |Ir;—sf| < e}

The distance range join can also be expressed in a SQL like fashion:
SELECT * FROM R, S WHERE ||R.obj — S.obj|| < &

In both cases, ||-|| denotes the distance metric which is assigned to
the multimedia objects. For multidimensional vector spaces, |||
usually corresponds to the Euclidean distance. The distance range
join can be applied in density based clustering algorithms which of-
ten define the local data density as the number of objects in the
e-neighborhood of some data object. This essentially corresponds
to a self-join using the distance range paradigm.

Like for plain range queries in multimedia databases, a general
problem of distance range joins from the users’ point of view is that
itis difficult to control the result cardinality of this operation. If ¢ is
chosen too small, no pairs are reported in the result set (or in case
of a self join: each point is only combined with itself). In contrast,
ifeis chosen too large, each point of R is combined with every point
in S which leads to a quadratic result size and thus to a time com-
plexity of any join algorithm which is at least quadratic; more ex-
actly o (JR|"|S]). The range of possible g-values where the result set
is non-trivial and the result set size is sensible is often quite narrow,
which is a consequence of the curse of dimensionality. Provided
that the parameter ¢ is chosen in a suitable range and also adapted
with an increasing number of objects such that the result set size
remains approximately constant, the typical complexity of ad-
vanced join algorithms is better than quadratic.

Most related work on join processing using multidimensional
index structures is based on the spatial join. We adapt the relevant
algorithms to allow distance based predicates for multidimensional
point databases instead of the intersection of polygons. The most
common technique is the R-tree Spatial Join (RSJ) (Brinkhoff et al
1993) which processes R-tree like index structures built on both re-
lations R and S. RSJ is based on the lower bounding property which
means that the distance between two points is never smaller than
the distance (the so-called mindist, cf. figure 2) between the re-
gions of the two pages in which the points are stored. The RS]J al-
gorithm traverses the indexes of R and S synchronously. When a
pair of directory pages (P, Pg) is under consideration, the algo-
rithm forms all pairs of the child pages of Py and Pg having distanc-
es of atmost €. For these pairs of child pages, the algorithm is called
recursively, i.e. the corresponding indexes are traversed in a
depth-first order. Various optimizations of RSJ have been pro-

(R.Ib, — S.ub))? if R.Ib; > S.ub;
mindist? = Z 0 otherwise
0<i<d | (S.Ib,— R.ub))? if S.Ib,> R.ub;

Figure 2. mindist for the similarity join on R-trees



posedsuch as the BFRJ-algorithm (Huang et al. 1997) which
traverses the indexes according to a breadth-first strategy.

Recently, index based similarity join methods have been ana-
lyzed from a theoretical point of view. (Bohm, Kriegel 2001) pro-
poses a cost model based on the concept of the Minkowski sum
(Berchtold et al. 1997) which can be used for optimizations such as
page size optimization. The analysis reveals a serious optimization
conflict between CPU and I/O time. While the CPU requires
fine-grained partitioning with page capacities of only a few points
per page, large block sizes of up to 1 MB are necessary for efficient
1/O operations. Optimizing for CPU deteriorates the I/O perfor-
mance and vice versa. The consequence is that an index architec-
ture is necessary which allows a separate optimization of CPU and
/O operations. Therefore, the authors propose the Multipage Index
(MuX), a complex index structure with large pages (optimized for
1/0) which accommodate a secondary search structure (optimized
for maximum CPU efficiency). It is shown that the resulting index
yields an I/O performance which is similar to the I/O optimized
R-tree similarity join and a CPU performance which is close to the
CPU optimized R-tree similarity join.

If no multidimensional index is available, it is possible to con-
struct the index on the fly before starting the join algorithm. Several
techniques for bulk-loading multidimensional index structures
have been proposed (Kamel, Faloutsos 1994, van den Bercken et
al. 1997). The seeded tree method (Lo, Ravishankar 1994) joins
two point sets provided that only one is supported by an R-tree. The
partitioning of this R-tree is used for a fast construction of the sec-
ond index on the fly. The spatial hash-join (Lo, Ravishankar 1994,
Patel, DeWitt 1996) decomposes the set R into a number of parti-
tions which is determined according to given system parameters.

A join algorithm particularly suited for similarity selfjoins is the
&-kdB-tree (Shim et al. 1997). The basic idea is to partition the data
set perpendicularly to one selected dimension into stripes of width
€ to restrict the join to pairs of subsequent stripes. To speed up the
CPU operations, for each stripe a main memory data structure, the
e-kdB-tree is constructed which also partitions the data set accord-
ing to the other dimensions until a defined node capacity is reached.
For each dimension, the data set is partitioned at most once into
stripes of width €. Finally, a tree matching algorithm is applied
which is restricted to neighboring stripes. Koudas and Sevcik have
proposed the Size Separation Spatial Join (Koudas, Svcik 1997)
and the Multidimensional Spatial Join (Koudas, Sevcik 1998)
which make use of space filling curves to order the points in a mul-
tidimensional space. An approach which explicitly deals with mas-
sive data sets and thereby avoids the scalability problems of exist-
ing similarity join techniques is the Epsilon Grid Order (EGO)
(Bohm et al 2001). It is based on a particular sort order of the data
points which is obtained by laying an equi-distant grid with cell
length € over the data space and then compares the grid cells lexi-
cographically.

2.2 Closest pair queries

It is possible to overcome the problems of controlling the selectiv-
ity by replacing the range query based join predicate using condi-
tions which specify the selectivity. In contrast to range queries
which retrieve potentially the whole database, the selectivity of a
(k-) closest pair query is (up to tie situations) clearly defined. This
operation retrieves the & pairs of R x S having minimum distance.
(cf. figure 1b) Closest pair queries do not only play an important
role in the database research but have also a long history in compu-

tational geometry (Preparata, Shamos 1985). In the database con-
text, the operation has been introduced by Hjaltason and Samet
(Hjaltason, Samet 1998) using the term (k-) distance join. The
(k-)closest pair query can be formally defined as follows:

Definition 2 (k) Closest Pair Query R P> S

R ?ﬂ S'is the smallest subset of R x § that contains at least &
pairs of points and for which the following condition holds:

Y (rs) e R ll?g S, V(r,s)eRxS\R [A>§S [|r=s|| < [|r’=s’|] (1)

This definition directly corresponds to the definition of (k-) nearest
neighbor queries, where the single data object o is replaced by the
pair (1,5). Here, tie situations are broken by enlargement of the re-
sult set. It is also possible to change definition 2 such that the tie is
broken non-deterministically by a random selection. (Hjaltason,
Samet 1998) defines the closest pair query (non-deterministically)
by the following SQL statement:

SELECT * FROMR, S

ORDER BY ||R.obj — S.obj]|

STOP AFTER &

We give two more remarks regarding self joins Obviously, the
closest pairs of the selfjoin R <] R are the n pairs (7;,7;) which have
trivially the distance 0 (for any distance metrlc) where n = |R|isthe
cardinality of R. Usually, these trivial pairs are not needed, and,
therefore, they should be avoided in the WHERE clause. Like the
distance range selfjoin, the closest pair selfjoin is symmetric (un-
less nondeterminism applies). Applications of closest pair queries
(particularly self joins) include similarity queries like

+ find all stock quota in a database that are similar to each other

* find music scores which are similar to each other

* noise-robust duplicate elimination in multimedia applications

 match two collections of arbitrary multimedia objects
Hjaltason and Samet (Hjaltason, Samet 1998) also define the dis-
tance semijoin which performs a GROUP BY operation on the re-
sult of the distance join. All join operations, k-distance join, incre-
mental distance join and the distance semijoin are evaluated using
apqueue data structure where node-pairs are ordered by increasing
distance.

The most interesting challenge in algorithms for the distance
join is the strategy to access pages and to form page pairs. Analo-
gously to the various strategies for single nearest neighbor queries
such as (Roussopoulos et al. 1995) and (Hjaltason, Samet 1995),
Corral et al. propose 5 different strategies including recursive algo-
rithms and an algorithm based on a pqueue (Corral et al. 2000).
(Shin et al. 2000) proposed a plane sweep algorithm for the node
expansion for the above mentioned pqueue algorithm. In the same
paper, Shim et al. also propose the adaptive multi-stage algorithm
which employs aggressive pruning and compensation methods
based on statistical estimates of the expected distance values.

3. The k-nn-join

The range distance join has the disadvantage of a result set cardi-
nality which is difficult to control. This problem has been over-
come by the closest pair query where the result set size (up to the
rare tie effects) is given by the query parameter k. However, there
are only few applications which require the consideration of the &
best pairs of two sets. Much more prevalent are applications such
as classification or clustering where each point of one set must be
combined with its k closest partners in the other set, which is exact-



ly the operation that corresponds to our new k-nearest neighbor
similarity join (cf. figure 1¢). Formally, we define the &-nn join as
follows:

Definition 3 k-nn Join R D< S

R D< S is the smallest subset of R x S that contains for each
pomt of R at least & points of S and for which the following
condition holds:

YV (rs) €R % S, V(rs)eRxS\R % St |r=s|| <|l=s’]  (2)
In contrast to the closest pair query, here it is guaranteed that each
point of R appears in the result set exactly & times. Points of S may
appear once, more than once (if a point is among the k-nearest
neighbors of several points in R) or not at all (if a point does not
belong to the k-nearest neighbors of any point in R). Our k-nn join
can be expressed in an extended SQL notation:

SELECT * FROMR,

( SELECT *FROM S

ORDER BY ||R.obj — S.obj]|

STOP AFTER k)
The closest pair query applies the principle of the nearest neighbor
search (finding & best things) on the basis of the pairs. Conceptual-
ly, first all pairs are formed, and then, the best k are selected. In con-
trast, the k-nn join applies this principle on a basis “per point of the
first set”. For each of the points of R, the & best join partners are
searched. This is an essential difference of concepts.

Again, tie situations can be broken deterministically by enlarg-
ing the result set as in this definition or by random selection. For
the selfjoin, we have again the situation that each point is combined
with itself which can be avoided using the WHERE clause. Unlike
the e-join and the A-closest pair query, the k-nn selfjoin is not sym-
metric as the nearest neighbor relation is not symmetric. Equiva-
lently, the join R >< S which retrieves the k nearest neighbors for
each point of R is essentlally different from S < R which retrieves
the nearest neighbors of each S-point. This 1 1s symbohzed in our
symbolic notation which uses an asymmetric symbol for the k-nn
join in contrast to the other similarity join operations.

4. Applications

4.1 k-Means and k-Medoid Clustering

The k-means method (cf. Han, Kamber 2000) is the most important
and most widespread approach to clustering. For k-means cluster-
ing the number & of clusters to be searched must be previously
known. The method determines % cluster centers such that each da-
tabase point can be assigned to one of the centers to minimize the
overall distance of the database points to their associated center
points.

The basic algorithm for k~-means clustering works as follows: In
the initialization, k database points are randomly selected as tenta-
tive cluster centers. Then, each database point is associated to its
closest center point and, thus, a tentative cluster is formed. Next,
the cluster centers are redetermined as the means point of all points
of the center, simply by forming the vector sum of all points of a
(tentative) cluster. The two steps (1) point association and (2) clus-
ter center redetermination are repeated until convergence (no more
considerable change). It has been shown that (under several restric-
tions) the algorithm always converges. The cluster centers which
are generated in step (2) are artificial points rather than database

points. This is often not desired, and therefore, the ~-medoid algo-
rithm always selects a database point as a cluster center.

The k-means algorithm is visualized in figure 3 using k = 3. At
the left side (a) k=3 points (white symbols < 2 ) are randomly
selected as initial cluster centers. Then in figure 3(b) the remaining
data points are assigned to the closest center which is depicted by
the corresponding symbols (¢ a m). The cluster centers are rede-
termined (moving arrows). The same two operations are repeated
in figure 3(c). If the points are finally assigned to their closest cen-
ter, no assignment changes, and, therefore, the algorithm termi-
nates clearly having separated the three visible clusters. In contrast
to density-based approaches, k-means only separates compact
clusters, and the number of actual clusters must be previously
known.

It has not yet been recognized in the data mining community
that the point association step which is performed in each iteration
of the algorithm corresponds to a (k= 1) nearest neighbor join be-
tween the set of center points (at the right side) and the set of data-
base points (at the left side of the join symbol) because each data-
base point is associated with its nearest neighbor among the center
points:

database-point-set P center-point-set

During the iteration over the cursor of the join, it is also possible
to keep track of changes and to redetermine the cluster center for
the next iteration. The corresponding pseudocode is depicted in the
following:

repeat

change = false ;

foreach (dp,cp) € database-point-set % center-point-set do
if dp.center # cp.id then change := true ;
dp.center ;= cp.id ;
cp.newsum := cp.newsum + dp.point ;
cp.count ;= cp.count + 1 ;

foreach cp e center-point-set do
cp.point := cp.newsum / cp.count ;

until — change ;

4.2 k-Nearest Neighbor Classification

Another very important data mining task is classification. Classifi-
cation is somewhat similar to clustering (which is often called un-
supervised classification). In classification, a part of the database
objects is assigned to class labels (for our example of astronomy
databases we have different classes of stars, galaxies, planets etc.).
For classification, also a set of objects without class label (newly
detected objects) is given. The task is to determine the class labels
for each of the unclassified objects by taking the properties of the
classified objects into account. A widespread approach is to build
up tree like structures from the classified objects where the nodes

(a) Initialization (b) First Iteration (c) Convergence
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Figure 3. k-Means Clustering
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Figure 4. k-Nearest Neighbor Classification

correspond to ranges of attribute values and the leaves indicate the
class labels (called classification trees (cf. Han, Kamber 2000)).
Another important approach is k-nearest neighbor classification
(Hattori, Torii 1993). Here, for each unclassified object, a k-nearest
neighbor query on the set of classified objects is evaluated (k is a
parameter of the algorithm). The object is e.g. assigned to the class
label of the majority of the resulting objects of the query. This prin-
ciple is visualized in figure 4. As for each unclassified object a
k-nn-query on the set of classified objects is evaluated, this corre-
sponds again to a k-nearest neighbor join:

unclassified-point-set < classified-point-set

4.3 Sampling Based Data Mining

Data mining methods which are based on sampling often require a
k-nearest neighbor join between the set of sample points and the
complete set of original database points. Such a join is necessary,
for instance, to assess the quality of a sample. The k-nearest neigh-
bor join can give hints whether the sample rate is too small. Another
application is the transfer of the data mining result onto the original
data set after the actual run of the data mining algorithm (Breunig
et al. 2001). For instance, if a clustering algorithm has detected a
set of clusters in the sample set, it is often necessary to associate
each of the database points to the cluster to which it belongs. This
can be done by a k-nn join with £ = 1 between the point set and the
set of sample points:

sample-set < point-set

The same is possible after sample based classification, trend detec-
tion etc.

4.4 k-Distance Diagrams

The most important limitation of the DBSCAN algorithm is the dif-
ficult determination of the query radius €. In (Sander et al. 1998) a
method called 4-distance diagram is proposed to determine a suit-
able radius €. For this purpose, a number of objects (typically 5-20
percent of the database) is randomly selected. For these objects, a
k-nearest neighbor query is evaluated where k corresponds to the
parameter MIN_PTS which will be used during the run of DB-

Figure 5. k-Distance Diagram

page directory

hosting
& —irectory page

accommodated
directory buckets

| page directory | | page directory | hosting

[PI || [P [T
y—yy| |y data buckets
NN N I O I

Figure 6. Index architecture of the multipage index

SCAN. The resulting distances between the query points and the
k-th nearest neighbor of each are then sorted and depicted in a dia-
gram (cf. figure 5). Vertical gaps in that plot indicate distances that
clearly separate different clusters, because there exist larger k-near-
est neighbor distances (inter-cluster distances, noise points) and
smaller ones (intra-cluster distance). As for each sample point a
k-nearest neighbor query is evaluated on the original point set, this
corresponds to a k-nn-join between the sample set and the original
set:

sample-set < point-set

If the complete data set is taken instead of the sample, we have a
k-nn self join:

point-set [>< point-set

5. Fast index scans for the £-nn join

In this section we develop an algorithm for the £-nn join which ap-
plies suitable loading and processing strategies on top of a multidi-
mensional index structure, the multipage index (Bohm, Kriegel
2001), to efficiently compute the k-nn join. We have shown for the
distance range join that it is necessary to optimize index parameters
such as the page capacity separately for CPU and I/O performance.
We have proposed a new index architecture (Multipage Index,
MuX) depicted in figure 6 which allows such a separate optimiza-
tion. The index consists of large pages which are optimized for I[/O
efficiency. These pages accommodate a secondary R-tree like main
memory search structure with a page directory (storing pairs of
MBR and a corresponding pointer) and data buckets which are
containers for the actual data points. The capacity of the accommo-
dated buckets is much smaller than the capacity of the hosting page.
It is optimized for CPU performance. We have shown that the dis-
tance range join on the Multipage Index has an I/O performance
similar to an R-tree which is purely I/O optimized and has a CPU
performance like an R-tree which is purely CPU optimized. Al-
though this issue is up to future work, we assume that also the £-nn
join clearly benefits from the separate optimization (because opti-
mization trade-offs are very similar).

In the following description, we assume for simplicity that the
hosting pages of our Multipage Index only consist of one directory
level and one data level. Ifthere are more directory levels, these lev-
els are processed in a breadth first approach according to some sim-
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Figure 7. The fast index scan for single range queries (l.) and for single nearest neighbor queries (r.)

ple strategy, because most cost arise in the data level. Therefore, our
strategies focus on the last level.

5.1 The fast index scan

In our previous work (Berchtold et al. 2000) we have already in-
vestigated fast index scans, however not in the context of a join op-
eration but in the context of single similarity queries (range queries
and nearest neighbor queries) which are evaluated on top of an
R-tree like index structure, our IQ tree. The idea is to chain I/O op-
erations for subsequent pages on disk. This is relatively simple for
range queries: If the index is traversed breadth-first, then the com-
plete set of required pages at the next level is exactly known in ad-
vance. Therefore, pages which have adjacent positions on disk can
be immediately grouped together into a single I/O request (cf. fig-
ure 7, left side). But also pages which are not direct neighbors but
only close together can be read without disk head movement. So
the only task is to sort the page requests by (ascending) disk ad-
dresses before actually performing them. For nearest neighbor que-
ries the trade-off is more complex: These are usually evaluated by
the HS-algorithm (Hjaltason, Samet 1995) which has been proven
to be optimal, w.r.t. the number of accessed pages. Although the al-
gorithm loses its optimality by I/O chaining of page requests, it
pays off to chain pages together which have a low probability of
being pruned before their actual request is due. We have proposed
a stochastical model to estimate the probability of a page to be re-
quired for a given nearest neighbor query. Based on this model we
can estimate the cost for various chained and unchained 1/O re-
quests and thus optimize the I/O operations (cf. figure 7, right side).

Take a closer look at the trade-off which is exploited in our opti-
mization: If we apply no I/O chaining or overcautious I/O chaining,
then the number of processed pages is optimal or close to optimal but
due to heavy disk head movements these accesses are very expen-
sive. If considerable parts of the data set are needed to answer the
query, the index can be outperformed by the sequential scan. In con-
trast, if too many pages are chained together, many pages are pro-
cessed unnecessarily before the nearest neighbor is found. If only a
few pages are needed to answer a query, I/O chaining should be care-
fully applied, and the index should be traversed in the classical way
of the HS algorithm. Our probability estimation grasps this rule of
thumb with many gradations between the two extremes.

5.2 Optimization goals of the nearest neighbor join

Shortly speaking, the trade-off of the nearest neighbor search is be-
tween (1) getting the nearest neighbor early and (2) limiting the
cost for the single I/O operations. In this section, we will describe
a similar trade-off in the k-nearest neighbor join. One important
goal of the algorithm is to get a good approximation of the nearest
neighbor (i.e. a point which is not necessarily the nearest neighbor
but a point which is not much worse than the nearest neighbor) for
each of these active queries as early as possible. With a good con-
servative approximation of the nearest neighbor distance, we can
even abstain from our probability model of the previous paragraph

and handle nearest neighbor queries furtheron like range queries.
Only few pages are processed too much.

In contrast to single similarity queries, the seek cost do not play
an important role in our join algorithm because our special index
structure, MuX,, is optimized for disk I/O. Our second aspect, how-
ever, is the CPU performance which is negligible for single simi-
larity queries but not for join queries. From the CPU point of view,
it is not a good strategy to load a page and immediately process it
(i.e. join it with all pages which are already in main memory, which
is usually done for join queries with a range query predicate). In-
stead, the page should be paired only with those pages for which
one of the following conditions holds:

« [t is probable that this pair leads to a considerable reduction
of some nearest neighbor distance
* Itis improbable that the corresponding mate page will receive
any improvements of its nearest neighbor distance in future
While the first condition seems to be obvious, the second condition
is also important because it ensures that unavoidable workloads are
done before other workloads which are avoidable. The cache is pri-
marily loaded with those pages of which it is most unclear whether
or not they will be needed in future.

5.3 Basic algorithm

For the &-nn join R [>< S, we denote the data set R for each point of
which the nearest neighbors are searched as the outer point set.
Consequently, S'is the inner point set. As in (Bohm, Kriegel 2001)
we process the hosting pages of R and S in two nested loops (obvi-
ously, this is not a nested loop join). Each hosting page of the outer
set Ris accessed exactly once. The principle of the nearest neighbor
join is illustrated in figure 8. A hosting page PR, of the outer set
with 4 accommodated buckets is depicted in the middle. For each
point stored in this page, a data structure for the k nearest neighbors
is allocated. Candidate points are maintained in these data struc-
tures until they are either discarded and replaced by new (better)
candidate points or until they are confirmed to be the actual nearest
neighbors of the corresponding point. When a candidate is con-
firmed, it is guaranteed that the database cannot contain any closer
points, and the pair can be written to the output. The distance of the
last (i.e. k-th or worst) candidate point of each R-point is the pruning
distance: Points, accommodated buckets and hosting pages beyond
that pruning distance need not to be considered. The pruning dis-
tance of a bucket is the maximum pruning distance of all points
stored in this bucket, i.e. all S-buckets which have a distance from
a given R-bucket that exceeds the pruning distance of the R-bucket,
can be safely neglected as join-partners of that R-bucket. Similarly,
the pruning distance of a page is the maximum pruning distance of
all accommodated buckets.

In contrast to conventional join methods we reserve only one
cache page for the outer set R which is read exactly once. The re-
maining cache pages are used for the inner set S. For other join
predicates (e.g. relational predicates or a distance range predicate),
a strategy which caches more pages of the outer set is beneficial for



I/O processing (the inner set is scanned fewer times) while the CPU
performance is not affected by the caching strategy. For the k-nn
join predicate, the cache strategy affects both I/0 and CPU perfor-
mance. It is important that for each considered point of R good can-
didates (i.e. near neighbors, not necessarily the nearest neighbors)
are found as early as possible. This is more likely when reserving
more cache for the inner set S. The basic algorithm for the 4-nn join
is given below.

1 foreach PR of R do

2 cand : PQUEUE [|PR|, k] of point := {1, L,....1};

3 foreach PS of S do PS.done := false ;

4 while 3 i such that cand [i] is not confirmed do

5 while 3 empty cache frame A

6 3 PS with (—PS.done A — IsPruned(PS)) do
7 apply loading strategy if more than 1 PS exist
8

9

load PS to cache ;

PS.done :=true ;
10 apply processing strategy to select a bucket pair ;
11 process bucket pair ;

A short explanation: (1) Iterates over all hosting pages PR of the
outer point set R which are accessed in an arbitrary order. For each
point in PR, an array for the £ nearest neighbors (and the corre-
sponding candidates) is allocated and initialized with empty point-
ers in line (2). In this array, the algorithm stores candidates which
may be replaced by other candidates until the candidates are con-
firmed. A candidate is confirmed if no unprocessed hosting page or
accommodated bucket exists which is closer to the corresponding
R-point than the candidate. Consequently, the loop (4) iterates until
all candidates are confirmed. In lines 5-9, empty cache pages are
filled with hosting pages from S whenever this is possible. This
happens at the beginning of processing and whenever pages are
discarded because they are either processed or pruned for all
R-points. The decision which hosting page to load next is imple-
mented in the so-called loading strategy which is described in sec-
tion 5.4. Note that the actual page access can also be done asynchro-
nously in a multithreaded environment. After that, we have the
accommodated buckets of one hosting R-page and of several host-
ing S-pages in the main memory. In lines 10-11, one pair of such
buckets is chosen and processed. For choosing, our algorithm ap-
plies a so-called processing strategy which is described in
section 5.5. During processing, the algorithm tests whether points
of'the current S-bucket are closer to any point of the current R-buck-
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Figure 8. k-nn join on the multipage index (here k=1)

et than the corresponding candidates are. If so, the candidate array
is updated (not depicted in our algorithm) and the pruning distances
are also changed. Therefore, the current R-bucket can safely prune
some of the S-buckets that formerly were considered join partners.

5.4 Loading strategy

In conventional similarity search where the nearest neighbor is
searched only for one query point, it can be proven that the optimal
strategy is to access the pages in the order of increasing distance
from the query point (Berchtold et al. 1997). For our k-nn join, we
are simultaneously processing nearest neighbor queries for all
points stored in a hosting page. To exclude as many hosting pages
and accommodated buckets of S from being join partners of one of
these simultaneous queries, it is necessary to decrease all pruning
distances as early as possible. The problem we are addressing now
is, what page should be accessed next in lines 5-9 to achieve this
goal.

Obviously, if we consider the complete set of points in the cur-
rent hosting page PR to assess the quality of an unloaded hosting
page PS, the effort for the optimization of the loading strategy
would be too high. Therefore, we do not use the complete set of
points but rather the accommodated buckets: the pruning distances
of the accommodated buckets have to decrease as fast as possible.

In order for a page PSto be good, this page must have the power
of considerably improving the pruning distance of at least one of
the buckets BR of the current page PR. Basically there can be two
obstacles that can prevent a pair of such a page PS and a bucket BR
from having a high improvement power: (1) the distance (mindist)
between this page-bucket pair is large, and (2) the bucket BR has
already a small pruning distance. Condition (1) corresponds to the
well-known strategy of accessing pages in the order of increasing
distance to the query point. Condition (2), however, intends to
avoid that the same bucket BR is repeatedly processed before an-
other bucket BR’ has reached a reasonable pruning distance (hav-
ing such buckets BR’ in the system causes much avoidable effort).

Therefore, the quality Q(PS) of a hosting page PS of the inner
set S is not only measured in terms of the distance to the current
buckets but the distances are also related to the current pruning dis-
tance of the buckets:

_ prunedist(BR)
QPS) = max, {mindist(PS, BR) @)

Our loading strategy applied in line (7) is to access the hosting pag-
es PS in the order of decreasing quality Q(PS), i.e. we always ac-
cess the unprocessed page with the highest quality.

5.5 Processing strategy

The processing strategy is applied in line (10). It addresses the
question in what order the accommodated buckets of R and S that
have been loaded into the cache should be processed (joined by an
in-memory join algorithm). The typical situation found at line (10)
is that we have the accommodated buckets of one hosting page of
R and the accommodated buckets of several hosting pages of S in
the cache. Our algorithm has to select a pair of such buckets
(BR,BS) which has a high quality, i.e. a high potential of improving
the pruning distance of BR. Similarly to the quality Q(PS) of a page
developed in section 5.4, the quality Q(BR, BS) of a bucket pair re-
wards a small distance and punishes a small pruning distance:
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We process the bucket pairs in the order of decreasing quality. Note
that we do not have to redetermine the quality of every bucket pair
each time our algorithm runs into line (10) which would be prohib-
itively costly. To avoid this problem, we organize our current buck-
et pairs in a tailor-made data structure, a fractionated pqueue (half
sorted tree). By fractionated we mean a pqueue of pqueues, as de-
picted in figure 9. Note that this tailor-cut structure allows efficient-
ly (1) to determine the pair with maximum quality, (2) to insert a
new pair, and in particular (3) to update the prunedist of BR; which
affects the quality of a large number of pairs.

Processing bucket pairs with a high quality is highly important
at an early stage of processing until all R-buckets have a sufficient
pruning distance. Later, the improvement power of the pairs does
not differ very much and a new aspect comes into operation: The
pairs should be processed such that one of the hosting S pages in
the cache can be replaced as soon as possible by a new page. There-
fore, our processing strategy switches into a new mode if the last ¢
(given parameter) processing steps did not lead to a considerable
improvement of any pruning distance. The new mode is to select
one hosting S-page PS in the cache and to process all pairs where
one of the buckets BS accommodated by PSappears. We select that
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Figure 10. Varying k for 8-dimensional uniform data

hosting page PS with the fewest active pairs (i.e. the hosting page
that causes least effort).

6. Experimental evaluation

6.1 Join algorithm and strategies

We implemented the k-nearest neighbor join algorithm, as de-
scribed in the previous section, based on the original source code
of the Multipage Index Join (B6hm, Kriegel 2001) and performed
an experimental evaluation using artificial and real data sets of
varying size and dimension. We compared the performance of our
technique with the nested block loop join (which basically is a se-
quential scan optimized for the £-nn case) and the A-nn algorithm
by Hjaltason and Samet (1995) as a conventional, non-join tech-
nique.

All our experiments were carried out under Windows NT4.0
SP6 on Fujitsu-Siemens Celsius 400 machines equipped with a
Pentium III 700 MHz processor and at least 128 MB main mem-
ory. The installed disk device was a Seagate ST310212A witha
sustained transfer rate of about 9 MB/s and an average read ac-
cess time of 8.9 ms with an average latency time of 5.6 ms.

We used synthetic as well as real data. The synthetic data sets
consisted of 4, 6 and 8 dimensions and contained from 10,000
to 160,000 uniformly distributed points in the unit hypercube.
Our real-world data sets are a CAD database with 16-dimen-
sional feature vectors extracted from CAD parts and a 9-dimen-
sional set of weather data. We allowed about 20% of the data-
base size as cache resp. buffer for either technique and included
the index creation time for our k-nn join and the hs-algorithm,
while the nested block loop join (nblj) does not need any pre-
constructed index.

The Euclidean distance was used to determine the k-nearest
neighbor distance. In order to show the effects of varying the
neighboring parameter k we include figure 10 with varying k
(from 4-nn to 10-nn) while all other charts show results for the
case of the 4-nearest neighbors. In figure 10 we can see, that ex-
cept for the nested block loop join all techniques perform better
for a smaller number of nearest neighbors and the hs-algorithm
starts to perform worse than the nblj if more than 4 nearest
neighbors are requested. This is a well known fact for high di-
mensional data as the pruning power of the directory pages de-
teriotates quickly with increasing dimension and parameter k.
This is also true, but far less dramatic for the k-nn join because
of the use of much smaller buckets which still perserve pruning
power for higher dimensions and parameters k. The size of the
database used for these experiments was 80,000 points.

The three charts in figure 11 show the results (from left to
right) for the hs-algorithm, our 4-nn join and the nblj for the
8-dimensional uniform data set for varying size of the database.
The total elapsed time consists of the CPU-time and the
I/O-time. We can observe that the hs-algorithm (despite using
large block sizes for optimization) is clearly I/O bound while the
nested block loop join is clearly CPU bound. Our &-nn join has a
somewhat higher CPU cost than the hs-algorithm, but significantly
less than the nblj while it produces almost as little I/O as nblj and
as a result clearly outperforms both, the hs-algorithm and the nbl;.
This balance between CPU and I/O cost follows the idea of MuX
to optimize CPU and I/O cost independently. For our artificial data
the speed-up factor of the £-nn join over the hs-algorithm is 37.5
for the small point set (10,000 points) and 9.8 for the large point set



(160,000 points), while compared to the nblj the speed-up factor in-
creases from 7.1 to 19.4. We can also see, that the simple, but opti-
mized nested block loop join outperforms the hs-algorithm for
smaller database sizes because of its high I/O cost.

One interesting effect is, that our MUX-algorithm for 4-nn joins
is able to prune more and more bucket pairs with increasing size of
the database i.e. the percentage of bucket pairs that can be excluded
during processing increases with increasing database size.We can
see this effect in figure 12. Obviously, the £-nn join scales much
better with increasing size of the database than the other two tech-
niques.
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Figure 12. Pruning of bucket pairs for the k-nn join
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Figure 13 shows the results for the 9-dimensional weather data.
The maximum speed-up of the k-nn join compared to the hs-algo-
rithm is 28 and the maximum speed-up compared to the nested
block loop join is 17. For small database sizes, the nested block
loop join outperforms the hs-algorithm which might be due to the
cache/buffer and I/O configuration used. Again, as with the artifi-
cial data, the k-nn join clearly outperforms the other techniques and
scales well with the size of the database.

Figure 14 shows the results for the 16-dimensional CAD data.
Even for this high dimension of the data space and the poor clus-
tering property of the CAD data set, the k-nn join still reaches a
speed-up factor of 1.3 for the 80,000 point set (with increasing ten-
dency for growing database sizes) compared to the nested block
loop join (which basically is a sequential scan optimized for the
k-nn case). The speed-up factor of the &-nn join over the hs-algo-
rithm is greater than 3.

6.2 Integration into KDD methods

We implemented a k-Means clustering algorithm and a k-Nearest
Neighbor classification algorithm in both versions traditionally
with single similarity queries (nearest neighbor queries) as well as
on top of our new database primitive, the similarity join. The com-
petitive technique, the evaluation on top of single similarity que-
ries, was also supported by the same index structure which is tra-
versed using a variation of the nearest neighbor algorithm by
(Hjaltason, Samet 1995) which has been shown in (Berchtold et al.
1997) to yield an optimal number of page accesses.
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Figure 11. Total time, CPU-time and 1/O-time for hs, k-nn join and nblj for varying size of the database
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We allowed about 20% of the database size as cache or buffer
for either technique and included the index creation time for our
k-nn join and the hs-algorithm. We used large data sets from
various application domains, in particular:

* 5-dimensional feature vectors from earth observation. These
data sets have been generated from the well known SE-
QUOIA benchmark

* 9-dimensional feature vectors from a meteorology applica-
tion as in section 6.1

* 16-dimensional feature vectors from a similarity search sys-
tem for CAD parts as in section 6.1

* 20-dimensional data from astronomy observations

* 64-dimensional feature vectors from a color image database
(color histograms)

In our first set of experiments, we tested the k-nearest neighbor
classification method where we varied the number of training
objects (cf. figure 15) as well as the number of objects which
have to be classified (cf. figure 16). The superiority of our new
method becomes immediately clear from both experiments.
The improvement factor over the simple &-NN approach is high
over all measured scales. It even improves for an increasing
number of training objects or classified objects, respectively,
and reaches a final factor of 9.1 in figure 15 (factor 2.0 in
figure 16).

Figure 17 varies over our various data sets and shows that the
improvement factor also grows with increasing data space dimen-
sion. Our new database primitive outperforms the well-known ap-
proach by factors starting with 1.8 at the 5-dimensional space up to
3.2 at the 64-dimensional space.

In our last experiment, depicted in figure 18, we tested the
k-nearest neighbor clustering method. In the depicted experiment,
we varied the number of clusters to be searched. Again, the im-
provement factor grows from 1.4 for the smallest number of clus-
ters to 5.1 for our largest number of clusters.
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7. Conclusions

In this paper, we have proposed an algorithm to efficiently compute
the k-nearest neighbor join, anew kind of similarity join. In contrast
to other types of similarity joins such as the distance range join, the
k-distance join (k-closest pair query) and the incremental distance
join, our new k-nn join combines each point of a point set R with its
k nearest neighbors in another point set S. We have seen that the
k-nn join can be a powerful database primitive which allows the ef-
ficient implementation of numerous methods of knowledge dis-
covery and data mining such as classification, clustering, data
cleansing, and postprocessing. Our algorithm for the efficient com-
putation of the k-nn join uses the Multipage Index (MuX), a spe-
cialized index structure for similarity join processing and applies
matching loading and processing strategies in order to reduce both
CPU and I/O cost. Our experimental evaluation proves high per-
formance gains compared to conventional methods.
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