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ABSTRACT

In many different application areas, e.g. sensor databases, location
based services or face recognition systems, distances between ob-
Jects have to be computed based on vague and uncertain data. Com-
monly, the distances between these uncertain object descriptions
are expressed by one numerical distance value. Based on such sin-
gle-valued distance functions standard data mining algorithms can
work without any changes. In this paper, we propose to express the
similarity between two fuzzy objects by distance probability func-
tions. These fuzzy distance functions assign a probability value to
each possible distance value. By integrating these fuzzy distance
functions directly into data mining algorithms, the full information
provided by these functions is exploited. In order to demonstrate the
benefits of this general approach, we enhance the density-based
clustering algorithm DBSCAN so that it can work directly on these
fuzzy distance functions. In a detailed experimental evaluation
based on artificial and real-world data sets, we show the character-
istics and benefits of our new approach.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Probabilistic algorithms (including
Monte Carlo).

General Terms
Algorithms

Keywords

density-based clustering, uncertain data, fuzzy distance functions.

1. INTRODUCTION

In many modern application ranges, e.g. the clustering of moving
objects [12] or sensor databases [2], only uncertain data is available.
For instance, in the area of mobile services, the objects continuously
change their positions so that exact positional information is often
not available. In other application areas such as the clustering of
distributed feature vectors [6, 9], due to security aspects or to limit-
ed bandwidth, only approximated information is transmitted to a
central server site.
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In order to extract knowledge from these fuzzy object descriptions
by means of standard data mining algorithms, the similarity be-
tween the objects has to be measured by one numerical value, i.e.
the complete fuzzy distance information is aggregated by only one
distance value. Obviously, aggregation goes hand in hand with in-
formation loss. For instance, we have no information about the de-
gree of uncertainty of such a single distance value. Even if we had
one, it would be of no use because traditional data mining algo-
rithms, e.g. clustering algorithms, cannot handle this additional in-
formation.

In this paper, we propose to use fuzzy distance functions to measure
the similarity between fuzzy objects. Contrary to the traditional ap-
proaches, we do not extract aggregated values from the fuzzy dis-
tance functions but propose to enhance the data mining algorithms
so that they can exploit the full information provided by these func-
tions. As for many important application ranges where fuzzy dis-
tance functions naturally occur, e.g. the clustering of moving ob-
jects, density-based clustering algorithms seem to be the method of
choice [13], we demonstrate in this paper how fuzzy distance func-
tions can be integrated into the density-based clustering algorithm
DBSCAN [3]. We call the resulting clustering algorithms
FDBSCAN indicating that it is applicable to cluster fuzzy objects.

The remainder of this paper is organized as follows. In Section 2, we
present the related work in the area of density-based clustering of
uncertain data. In Section 3, we introduce fuzzy distance functions.
In Section 4, we show how we can integrate these functions into the
density-based clustering algorithm DBSCAN. In Section 5, we will
experimentally show the benefit of our new fuzzy clustering algo-
rithm FDBSCAN. We will close this paper, in Section 6, with a
short summary and a few remarks on future work.

2. RELATED WORK

Given a set of objects with a distance function on them, an interest-
ing data mining question is, whether these objects naturally form
groups (called clusters) and what these groups look like. Data min-
ing algorithms that try to answer this question are called clustering
algorithms. In Section 2.1, we shortly classify clustering algorithms
according to different categorization schemes. Then, in Section 2.2,
we present the basic concepts of fuzzy clustering algorithms, and
describe how the approach of this paper differs from the fuzzy clus-
tering approaches presented in the literature. In Section 2.3, we
present the density-based clustering algorithm DBSCAN in a level
of detail which is indispensable to understand the remainder of this
paper. As fuzzy objects can also be regarded as multi-represented
objects, we will finally present a density-based clustering approach
which is suitable for clustering multi-represented objects.



2.1 Clustering Algorithms

Clustering algorithms can be classified along different, independent
dimensions. One well-known dimension categorizes clustering
methods according to the result they produce. Here, we can distin-
guish between hierarchical and partitioning clustering algorithms
[7]. Partitioning algorithms construct a flat (single level) partition of
adatabase D of n objects into a set of & clusters such that the objects
in a cluster are more similar to each other than to objects in different
clusters. Another dimension according to which we can classify
clustering algorithms is from an algorithmic point of view. Here we
can distinguish between optimization-based or distance-based algo-
rithms and density-based algorithms. Density-based algorithms ap-
ply a local cluster criterion. Clusters are regarded as regions in the
data space in which the objects are dense, and which are separated
by regions of low object density (noise). In this paper, we will
present an extension for the partitioning density-based clustering
algorithm DBSCAN [3]. For a more detailed general overview on
clustering algorithms, we refer the interested reader to [7].

2.2 Fuzzy Clustering

In real applications there is very often no sharp boundary between
clusters so that fuzzy clustering is often better suited for the data.
Membership degrees between zero and one are used in fuzzy clus-
tering instead of crisp assignments of the data to clusters. In contrast
to fuzzy clustering algorithms where objects are assigned to differ-
ent clusters, in this paper, we cluster fuzzy object representations
and assign each fuzzy object to exactly one cluster. For more details
about fuzzy clustering algorithms, we refer the reader to [5].

2.3 Density-based Clustering

The key idea of density-based clustering is that for each object of a
cluster the neighborhood of a given radius € has to contain at least a
minimum number of 1 objects, i.e. the cardinality of the neighbor-
hood has to exceed a given threshold. In the following, we will
present the basic definitions of density-based clustering.

Definition 1 Core Object

Object o is called a core object w.r.t. € and p in a set of objects D, if
|Ng(0)| = 1, where Ng(0) denotes the subset of D contained in the
e-neighborhood of o.

Definition 2 Directly Density-Reachable

Object p is directly density-reachable from object o w.r.t. € and W in
a set of objects D, if o is a core object and p € Ng(0), where again
N¢(0) denotes the subset of D contained in the e-neighborhood of o.

Note that objects can be directly density-reachable only from core
objects.

Definition 3 Density-Reachable, Density-Connected

An object p is density-reachable from an object o w.r.t. € and L in the
set of objects D, if there is a chain of objects py, ..., p,, p1 =0, p, =
psuchthatp; € D and p;, is directly density-reachable from p; w.r.t.
€ and p. Object p is density-connected to object g w.r.t. € and p in the
set of objects D, if there is an object 0 € D such that both p and g are
density-reachable from o w.r.t. € and pin D.

Density-reachability is the transitive closure of direct density-
reachability and does not have to be symmetric. On the other hand,
density-connectivity is a symmetric relation.
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DBSCAN. A flat density-based cluster is defined as a set of densi-
ty-connected objects which is maximal w.r.t. density-reachability.
Then the noise is the set of objects not contained in any cluster. Thus
a cluster contains not only core objects but also objects that do not
satisfy the core object condition. These border objects are directly
density-reachable from at least one core object of the cluster.

The algorithm DBSCAN [3], which discovers the clusters and the
noise in a database, is based on the fact that a cluster is equivalent to
the set of all objects in D which are density-reachable from an arbi-
trary core object in the cluster (cf. lemma 1 and 2 in [3]). The re-
trieval of density-reachable objects is performed by iteratively col-
lecting directly density-reachable objects. DBSCAN checks the
e-neighborhood of each point in the database. If the e-neighborhood
N¢(0) of a point o0 has more than . elements, o is a so-called core
point, and a new cluster C containing the objects in N¢(o) is created.
Then, the e-neighborhood of all points p in C which have not yet
been processed is checked. If N¢(p) contains more than p points, the
neighbors of p which are not already contained in C are added to the
cluster and their e-neighborhood is checked in the next step. This
procedure is repeated until no new point can be added to the current
cluster C. Then the algorithm continues with a point which has not
yet been processed trying to expand a new cluster.

2.4 Clustering of Multi-Represented Objects

In many different application ranges, several representations for
each object exist, e.g. molecules are characterized by an amino acid
sequence, a secondary structure and a 3D representation. Fuzzy ob-
jects (cf. Definition 4) can also be regarded as multi-represented
objects. In [10] a density-based approach for clustering such
multi-represented objects was proposed which is based on DB-
SCAN. To determine a clustering which takes all representations
into account, the basic definitions of DBSCAN, i.e. the core object
definition and the reachability definition, are extended. Thereby, the
e-neighborhoods of each representation are combined to a global
neighborhood. For sparse data sets, the union method was proposed
which assumes that an object is a core object. if i objects are found
within the union of all e-neighborhoods of all representations. Fur-
thermore, the intersection method was introduced where an object is
a core object, if at least p objects are within the intersection of all
e-neighborhoods of all representations. In our experimental evalua-
tion, we will use the approach presented in [10] as comparison part-
ner. As a side effect of this paper, it becomes clear that a slight adap-
tion of the FDBSCAN algorithm would be much more suitable for
clustering multi-represented objects than the approaches introduced
in [10].

3. FUZZY OBJECT SIMILARITY

In this section, we introduce the concept of fuzzy object representa-
tions along with suitable similarity measures, i.e. distance func-
tions, between these vague object representations. Based on these
distance functions, we present in the following section the cluster-
ing algorithm FDBSCAN.

3.1 Fuzzy Object Representations

In many different application areas, e.g. the clustering of moving
objects [12] or distributed clustering [6], an object is described not
only by one single feature vector, but by a region in which all points
within the region equally likely represent the object. In [12], for in-
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stance, an object is located somewhere within a moving micro-clus-
ter represented by a rectangle, and in [6] an object is located some-
where in a hyper-sphere. In [2] 1-dimensional probability density
functions (pdf) are used to describe attributes of uncertain sensor
data. We extend this approach and propose to describe an object no
longer by one single feature vector, but by a probability density
function indicating the likelihood that an object is located at a cer-
tain position.

Definition 4 Fuzzy Object Representation

Let o € D < IR? be an object from a database. A fizzy object
representation is a function og,..: IR~ IR*O U o ,for which the
following condition holds:

[ Ofuzzy)av = 1
IR’

3.2 Distance Functions between Fuzzy Objects

Traditional data mining algorithms require distance functions which
express the similarity between two objects by exactly one numerical
value. In this section, we introduce distance functions which do not
express the similarity between two objects by a single numerical
value. Instead, we propose to use fuzzy distance functions, where the
similarity between two fuzzy objects is expressed by means of a
probability function which assigns a numerical value to each dis-
tance value. Two fuzzy distance functions are the distance density
function and the distance distribution function.

Definition 5 Distance Density Function

Let d@ DxD— IR*0 be a distance function, and let
P(a<d(o,0") <£b) denote the probability that d(o,0°) is between a
and b. Then a probability density function p;: D x D— (IRB -
IRB U w ) is called a distance density function if the following
condition holds:

P(a<d(0,0)<b) = [ p 0, 0)(x)ax

If the distance t = d(0,0 ) between two objects can exactly be deter-
mined, the probability density function pis equal to the dirac-delta
function 3§, i.e. p 0, 0’)(x) =6(x-t). For arbitrary functions f, e.g.
Alx) =1, the dirac-delta function has the following important prop-
erty:

,ifla<1t<b)

b
[0)8 (e —t)ax = f;(” , (1]
ps , otherwise

Similar to distance density functions, we can define distance distri-
bution functions.

Definition 6 Distance Distribution Function

Letd:DxD — IRB be a distance function, and let P(d(o, 0') < b)
denote the probability that d(o, o) is smaller than 5. Then a proba-
bility distribution function P;: O x O — (IRB — [0..1]) is called a
distance distribution function if the following condition holds:

P 0,0")(b) = P(d(0,0")<b)

Let us note that P (o, 0')(b) = Iprd(o, 0")(x)ax holds, and that
therefore p; and P, contain basically the same information.

As already mentioned, traditional algorithms can only handle dis-
tance functions which yield a unique distance value. In order to
make our fuzzy distance functions useful for standard (clustering)
algorithms, we could extract an aggregated value of them. For in-
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stance, we could use the distance expectation value E; O x O —
lRar which can be regarded as the average distance between the
fuzzy objects, i.e. E (0,0") = fwx -p(0,0")(x)dx . Note that
clustering based on the distance expectation values E;seems to be
more appropriate than using the centroids of the fuzzy object repre-
sentations for clustering [9]. For instance, think of situations where
the centroids are close to each other, but due to a rather high fuzzi-
ness of the objects, the distance expectation values indicate a rather
high distance between the objects. In this case, where it is not very
likely that the objects form a cluster, the centroid approach would
wrongly detect clusters and the expectation approach would cor-
rectly detect no clusters.

4. TDBSCAN

In this section, we will describe our extended clustering algorithm
FDBSCAN which does not rely on lossy aggregated information
but exploits the complete information provided by the fuzzy dis-
tance functions. We first present the formal definitions underlying
the FDBSCAN algorithm (cf. Section 4.1) before we look at com-
putational aspects (cf. Section 4.2).

4.1 Theoretical Foundations

The algorithm FDBSCAN is based on an enhanced version of the
core object definition (cf. Definition 1). The core object probability
of an object o indicates the likelihood that o is a core object.

Definition 7 Core Object Probability

Let D be a database, and let Pz D x D — (IRB — [0..1]) be a
distance distribution function. Then, the core object probability of
an object o is defined as:

core

Ps, H, d,D(O) =
Y [1Pap-0)® [0 =Pup, o))
AcD peAd peD\4
l4] > p

Lemma 1. The core object probability P /% p(0) is equal to the

probability value P(|N¢(0)| > p) indicating the likelihood that o is a
core object.

Proof. In Definition 7, we determine for each subset 4 of D having
a cardinality higher than p the probability that only the points of 4
are within an e-range of o but no points of D\A4. The sum of all these

probability values indicates the probability that o is a core object,
H core
ie.

e d, 0(0) = P(INe(0) 2 ). O

Note that the traditional definition of a core object can also be re-
garded as a function which assigns to each object o a value equal to
1 iff o is a core object, and 0 otherwise. If the distance distribution
function P, yields only values 0 and 1 at position €, the traditional
and the probability definition of a core object coincide.

Figure 1 shows how our probability definition of a core object dif-
fers from the “traditional” approach where the similarity between
fuzzy objects is measured by their distance expectation values. Al-
though, the object o in Figure 1a does not seem to be located in a
very dense area it is a core object according to the traditional ap-
proach as the distance expectation value between o and | = 4 other
objects is smaller than €. On the other hand, it is very unlikely that
all p objects are indeed located in Ng(0). Therefore, the probability
that o is a core object is very small. In Figure 1b the reverse situation



no core object according to
the traditional approach
based on the distance
expectation values Eg.

very likely a core object
according to the probability
approach of Definition 7.

» coreobject accordingtothe
traditional approach based
on the distance expectation
values Eg.

* very unlikely a core object
according to the probability
approach of Definition 7.

Figure 1: Determination of core-point property (1L = 4).

is sketched. Object o is located in a very dense area but there do not
exist  objects p for which E (o, p) < u holds. Therefore, o is no
core object according to the traditional approach, although it is very
likely that there exist p elements p for which d(o, p) <e holds'.

Based on the core object probability definition, we can define how
likely it is that an object p is directly density reachable from an
object o. In the traditional approach, two conditions have to hold.
First, o has to be a core object, and, second, the distance between p
and o has to be smaller than €. In the context of this paper, both of
these conditions are fuzzy holding only with a certain probability.

Definition 8 Reachability Probability

Let D be a database, and let P;: D x D — (IRB — [0..1]) be a
distance distribution function. Then, the reachability probability of
p w.rt. o is defined as follows:

h
P D, 0) = P 4 piipy(0) - Py(p, 0)(e)
reach

Lemma 2. P wd, p(p, 0) reflects the probability that p is
directly density-reachable from o.

Proof. According to Lemma 1, the probability that at least p-1 ob-
jects from D\p are located in Ny(0) is equal to P2 4 pigpy(0) -
Second, the probability that the distance between p and o is smaller
than € is equal to P 4(p, 0)(g) . As these two conditions are indepen-
dent from each other, their product corresponds to the probability
that at least L objects from D are located in Ng(0) and that p is one of
them. Note that this value reflects the probability that p is directly
density-reachable from 0. O

Definition 8 can be regarded as an extension of the traditional ap-
proach. It coincides with the traditional approach, if we assume that
the core object probability is always 0 or 1, and the distance distri-
bution function P, yields only values 0 and 1 at position €.

4.2 Computational Aspects

The traditional DBSCAN algorithm clusters a data set by always
adding objects to the current cluster which are directly density

! Note that clustering on the centroids of the fuzzy object represen-
tations, would suffer from the same drawbacks as the approach
based on the distance expectation values.
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reachable from the current query object o. The fuzzy version FDB-
SCAN works very similar to the traditional approach. An object p is
added to the current cluster, if the value ngf{fa};’, p(p, 0) exceeds 0.5
where o is the current query object. Note that if P£51% 1 4 pi(p;(0)
< 0.5 holds, for no object p the value ngﬁ‘” p(p, 0) can exceed
0.5. Therefore, p will not be added to the current cluster. Again, this

is a generalization of the traditional approach.

The remaining question is how to compute the values
Pgefff p(p, 0) efficiently. Although there might exist situations

where we can compute these values directly based on the fuzzy ob-
ject representations (cf. Definition 4), in this paper, we propose a
generally applicable approach based on monte-carlo sampling. In
many applications the fuzzy objects might already be described by
a discrete probability density function, i.e. we have the sample set
already. If the fuzzy object is described by a continuos probability
density function, we can easily sample according to this function
and derive thus a sequence of samples. In the following, we assume
that each object x is represented by a sequence of s sample points,
i.e. x is represented by s different representations <xj, ..., x2>.

Based on the sample sequences, we could now compute discrete
distance density functions consisting of § many discrete distance
values. Based on these functions we could then compute the reach-
ability probabilities according to Definition 8. The big problem is
that we have to compute for each query object o, O(|DB|) many dif-
ferent core-object versions leaving out always one element from the
database. Furthermore, the computation of each of these core-object
values has to consider (in |DB]|) exponentially many sets 4 < DB
(cf. Definition 7). Obviously, this is impracticable.

The idea of our approach is to determine the core-object probabili-
ties based on 52 meaningful samples. Then, we compute the reach-
ability values according to Definition 8.

We first compute for all objects x the minimum bounding rectangle
MBR(x) of the sample points <xj, ..., x,> (cf. Figure 2). If we now
carry out a range query around o, we create a sample matrix M(0)
which contains for each object instance o; s different values
m; - =|Ng D, (0;) |, where D; denotes the jth database instance
{x \ (xl, o X s Xg) € D/\xj;toj} VUo; and Ng’Dj(oi) de-
notes the set {x;|d(o;, xj) Senx; € Dj } (cf. Figure 2). We test for
each object x in the database whether there exist sample instances x;
for which d(o,, x; ) < ¢ holds. If this is true we increase the current
value of m; i Note that often we do not have to compute the 5
distances d(o,, xj) , but we can decide based on the boxes MBR(0)
and MBR(x) whether we have to increase all values of the sample
matrix M(o) or none of them. If for the maximum distance
(0,x) between the two boxes MBR(0o) and MBR(x)
d,, (0, x) <€ holds, we can increase all values of the sample ma-
trix M(0) by 1 (cf. object ¢ in Figure 2). If for the minimum distance
d, ;.(0,x) between the two boxes d, ;. (0, x) > € holds, we do not
have to increase any of these values (cf. object d in Figure 2). Only
if the value of € is somewhere in between the two values d, ;, (0, x)
and d,, ,.(0, x) , we have to compute the distances between the sam-
ples to decide which values m; ij of the sample matrix have to be
increased (cf. object a in Figure 2). Finally, we would like to men-
tion that we can compute this sample matrix by only one range scan.

max
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Figure 2: Computation of fuzzy reachability distances (s=3, nu=5).

After having computed the sample matrix M(0), we can easily de-
rive the reachability values for all objects x in the database D w.r.t.

o. Thereto, Pg’% | 4 pi(0) - Py(x, 0)(g) (cf. Definition 8) has to
be computed. The first part can be derived from the matrix M(o), if
we decrease the values m; ; by 1 for which d(o;, x; ) <¢ holds.

Then, we can count the number of elements in the sample matrix
M(o0) which contain values higher or equal to p-1. Normalizing this
number by s” yields the probability P, 4 pie(0) . The values
P (x,0)(e) can be computed by counting the number of events
d(o, x; ) < ¢, and by normalizing this number agam by s%. For the
computat10n of P4(x,0)(g), the distances (0,x) and
(0, x) can again be used for pruning.

max

mtn
If we assume 7 database objects which are not stored in any index
structure, and a sample rate of s, we can summarize the characteris-
tics of the FDBSCAN implementation as follows.

* Weneed O(n) range scans

* Werequirebetween O(n2) and 0(s2 . nz) many distancecom-

putations between d-dimensional feature vectors.

Note that especially in the important case where the fuzzy objects
are not too fuzzy, we only need around O(nz) many distance calcu-
lations. In this case, the introduced pruning distances d,,;,, and d,,, .
are very effective as they are rather close to each other. Therefore, it
is very unlikely that the e-value is in between them. Furthermore, in
this case it is beneficial to organize the minimum bounding rectan-
gles of the sample sets in R-tree [4] like index structures. As we can
typically use rather small e-values for DBSCAN, the number of dis-
tance computations can thus further be reduced to O(n - logn)
which corresponds to the time complexity of the original DBSCAN
algorithm based on index structures.

5. EXPERIMENTAL EVALUATION

In this section, we present the experimental results of the introduced
clustering algorithm FDBSCAN demonstrating the characteristics
and benefits of our approach.

5.1 Setup

Data Sets. All experiments were based on two different test data
sets, an artificial data set, and an engineering data set which are
normalized in a data space [0, l]d. For each data set, we have exact
object representations, i.e. an object is described by exactly one fea-
ture vector. Furthermore, each object is randomly surrounded by a
box having a side length of p <1 in each dimension. For our fuzzy
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clustering approaches, we assume that each position within the box
is equally likely.

The artificial data set (ART) consists of 1000 2-dimensional objects
which are normally distributed in [0, 1]%.

The engineering data set (PLANE) consists of 5000 3D CAD ob-
jects provided by our industrial partner, an American airplane man-
ufacturer. Each object is represented by a 42-dimensional feature
vector which is derived from the cover sequence model as described
in [8].

Implementation. For clustering the fuzzy object representations,
we have implemented the algorithm FDBSCAN as described in
Section 4.2. Furthermore, we implemented the two approaches
UNION and INTERSECTION as described in [10], and the stan-
dard DBSCAN approach which carries out the fuzzy clustering
based on the distance expectation values (referred to as EXPDB-
SCAN) and the clustering on the exact object representations.

All algorithms were implemented in Java 1.4. The experiments
were run on a Windows laptop with a 730 MHz processor and
512 MB main memory. If not otherwise stated, we used a sample
rate of s = 5.

Quality Measures. For comparing a given reference clustering to
the clusterings resulting from clustering the fuzzy object represen-
tations, we used the approximating quality measure introduced in
[11]. In [11] aquality measure for clusters based on the symmetric
set difference was introduced and based on this distance measure
between clusters a quality criteria for approximated partitioning
clusterings Qapc Was introduced. This quality measure is based on
the minimum weight perfect matching of sets.

Parameters. In all our tests, we set ;L = 5 and used an e-parameter
for the various DBSCAN implementations such that between 30
and 50 clusters and between 10% and 40% noise objects for the ref-
erence clustering were created.

5.2 Experimental Results

Efficiency. First, we investigate the runtimes of our fuzzy DB-

SCAN clustering approaches. The following table depicts the abso-

lute runtimes in seconds for the ART data set (p=0.01, s = 5).

EXPDBSCAN | UNION | INTERSECTION
27,38 7,44 7,14

FDBSCAN
3,78

The good performance of the FDBSCAN approach demonstrates
the suitability of the filters mtroduced in Section 4.2 resulting in
only O(n?) , and not 0(s2 n ) many distance computations. Fur-
thermore, we can see that all other fuzzy clustering approaches are
slower which can be explained by the higher number of distance
computations which have to be carried out, i.e. UNION and INTER-
SECTION require O(s - n?) many distance computations, and EX-
PDBSCAN requires O(s™ - n ) many distance computations.

In the following sections, we will show that from an effectivity point
of view our approaches also outperform the chosen comparison
partners by far.

Effectivity. In a first set of experiments, we investigated the quali-
ties of the different fuzzy clustering approaches w.r.t. a given refer-
ence clustering. Figure 3 shows for the ART and for the PLANE
data set that for all fuzzy clustering algorithms the quality decreases
with an increasing value of p, i.e. an increasing uncertainty area of
the objects. Furthermore, we can see that the FDBSCAN algorithm
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Figure 3: Quality of fuzzy DBSCAN clustering algorithms.

is for both data sets the most effective clustering algorithm over the
complete range of p. For the ART data set the EXPDBSCAN per-
forms also quite well but for higher dimensional data, e.g. for the
PLANE data set, its quality is much worse than the quality of the
FDBSCAN approach. On the other hand, the UNION approach
performs for sparse high dimensional data well but unfortunately
not for the low-dimensional ART data set.

An explanation for the superiority of the FDBSCAN algorithm can
be found in Figure 4. In this figure, we investigate the accuracy of
the core-point classification of the different algorithms'. For the
EXPDBSCAN approach, the precision of the detected core objects
is very high but unfortunately the recall is very low, i.e. the approach
fails to detect many core objects. Thus we have very often the situ-
ation depicted in Figure 1b. Similar observations but much more
pronounced can be made for the INTERSECTION approach. For
the UNION approach the opposite observation can be made. The
precision of this approach is very low, as the UNION approach clas-
sifies way to many objects as core objects which actually are no core
objects. Thus, we often have situations similar to the one depicted in
Figure la. On the other hand, for the FDBSCAN approach both
precision and recall are rather high.

Furthermore, we would like to mention that our FDBSCAN algo-
rithm outperforms the server-sided clustering approaches of
state-of-the-art density-based distributed clustering algorithms [6,
9]. The server-sided approach presented in [6] corresponds to an
FDBSCAN approach using a sample rate of 1. We noticed that if we
use a sample rate s around 5 instead of 1, we can increase the aver-
age quality values considerably, e.g. for p =0.01 on the PLANE
dataset, we can increase the quality from 0.67 (s =1) to 0.76 (s =5).
Furthermore, small sample rates always bear the risk of extreme
values, e.g. for p =0.01 on the PLANE dataset, we noticed quality
values less than 0.60 when using a sample rate of 1. As sample rates
higher than 5 do not much pay off, we suggest to use a sample rate
of 5 to get a good trade off between accuracy and efficiency. Fur-
thermore, the server-sided approach presented in [9] corresponds to
the EXPDBSCAN approach. Figure 3 and 4 show that the
FDBSCAN approach also clearly outperforms this comparison
partner.

6. CONCLUSION

In this paper, we demonstrated how density-based clustering can be
carried out based on vague and uncertain information which often
occurs in modern application ranges like sensor databases, spa-
tial-temporal applications, and biometric information systems. Be-

"'In the FDBSCAN approach, we classified an object o as
core object iff PG p(o) = 0.5 holds.
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sides lying the theoretical foundations for density-based clustering
of fuzzy data, we showed how to put these concepts into practice.
The resulting partitioning density-based algorithm FDBSCAN can
be used to cluster fuzzy data, e.g. moving objects, effectively and
efficiently. The algorithm follows the new paradigm of integrating
fuzzy distance functions directly into data mining algorithms in-
stead of working on lossy aggregated information. In our experi-
mental evaluation, we demonstrated that the newly introduced clus-
tering algorithm FDBSCAN achieves much more accurate results
than state-of-the-art comparison partners without sacrificing effi-
ciency.

In our future work, we will show that also other data mining algo-
rithms working on vague information can benefit from a direct inte-
gration of fuzzy distance functions.
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