
Angle-Based Outlier Detection in High-dimensional Data

Hans-Peter Kriegel Matthias Schubert Arthur Zimek
Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 München, Germany
http://www.dbs.ifi.lmu.de

{kriegel,schubert,zimek}@dbs.ifi.lmu.de

ABSTRACT
Detecting outliers in a large set of data objects is a ma-
jor data mining task aiming at finding different mechanisms
responsible for different groups of objects in a data set.
All existing approaches, however, are based on an assess-
ment of distances (sometimes indirectly by assuming certain
distributions) in the full-dimensional Euclidean data space.
In high-dimensional data, these approaches are bound to
deteriorate due to the notorious “curse of dimensionality”.
In this paper, we propose a novel approach named ABOD
(Angle-Based Outlier Detection) and some variants assess-
ing the variance in the angles between the difference vectors
of a point to the other points. This way, the effects of the
“curse of dimensionality” are alleviated compared to purely
distance-based approaches. A main advantage of our new
approach is that our method does not rely on any parame-
ter selection influencing the quality of the achieved ranking.
In a thorough experimental evaluation, we compare ABOD
to the well-established distance-based method LOF for var-
ious artificial and a real world data set and show ABOD to
perform especially well on high-dimensional data.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—Data mining

General Terms: Algorithms

Keywords: outlier detection, high-dimensional, angle-based

1. INTRODUCTION
The general idea of outlier detection is to identify data

objects that do not fit well in the general data distributions.
This is a major data mining task and an important applica-
tion in many fields such as detection of credit card abuse in
financial transactions data, or the identification of measure-
ment errors in scientific data. The reasoning is that data
objects (observations) are generated by certain mechanisms
or statistical processes. Distinct deviations from the main
distributions then are supposed to originate from a different
mechanism. Such a different mechanism may be a fraud, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

disturbance impairing the sensors, or simply incorrect read-
ing of the measurement equipment. But it could also be
an unexpected and therefore interesting behavior requiring
an adaptation of the theory underlying to the experiment
in question. This ambivalence in the meaning of outliers
is expressed in the frequently cited sentence “one person’s
noise is another person’s signal”. Thus, a well known char-
acterization of an outlier is given by Hawkins as being “an
observation which deviates so much from other observations
as to arouse suspicions that it was generated by a different
mechanism” [12]. This general idea has been addressed by
very diverse approaches pursuing very different intuitions
and sometimes also different notions of what exactly con-
stitutes an outlier. We will discuss different approaches in
more detail in Section 2. Some approaches are, due to their
computational complexity, simply not applicable to high-
dimensional data. However, all known methods that are,
at least theoretically, applicable to high-dimensional data
are based on the evaluation of ε-range queries or k-nearest
neighborhoods for local methods, or, in general, assessments
of differences in distances between objects (e.g. in comput-
ing data distributions). This makes all approaches known
so far more or less unsuitable for high-dimensional data due
to the notorious “curse of dimensionality”. One of the most
thoroughly discussed effects of this malediction of mining
high-dimensional data is that concepts like proximity, dis-
tance, or nearest neighbor become less meaningful with in-
creasing dimensionality of data sets [7, 13, 1]. Roughly, the
results in these studies state that the relative contrast of
the farthest point and the nearest point converges to 0 for
increasing dimensionality d:

lim
d→∞

distmax − distmin

distmin
→ 0

This means, the discrimination between the nearest and the
farthest neighbor becomes rather poor in high dimensional
space. These observations are valid for a broad range of
data distributions and occur simply based on the mere num-
ber of dimensions even if all attributes are relevant. Inde-
pendently, the problem worsens with irrelevant attributes
which are likely to emerge in high-dimensional data. Such
attributes are related to as “noise”. However, global feature
reduction methods may be inadequate to get rid of noise at-
tributes because, often, there is no global noise, but certain
attributes are noisy only w.r.t. certain sets of objects. All
these effects are far more fundamental problems then mere
complexity issues and trigger the exploration of data min-
ing methods that are less dependent on the mere distances
between objects. In this paper, we propose a new method

of outlier detection that still takes distances into account,
but only as a secondary measure to normalize the results.
The main contribution to detecting outliers is in considering
the variances of the angles between the difference vectors of
data objects. This measure appears to be far less sensitive
to an increasing dimensionality of a data set than distance
based criteria.

In the remainder of this paper, we will first discuss differ-
ent approaches to outlier detection in more detail in Section
2. In Section 3, we introduce our new approach and discuss
its properties. We evaluate the proposed method in Section
4. In Section 5, we conclude the paper.

2. RELATED WORK
The general problem of identifying outliers has been ad-

dressed by very different approaches that can be roughly
classified as global versus local outlier models. A global out-
lier model leads to a binary decision of whether or not a given
object is an outlier. A local outlier approach rather assigns
a degree of outlierness to each object. Such an “outlier fac-
tor” is a value characterizing each object in “how much” this
object is an outlier. In those applications where it is inter-
esting to rank the outliers in the database and to retrieve the
top-n outliers, a local outlier approach is obviously prefer-
able. A different classification of outlier approaches discerns
between supervised and unsupervised approaches. A super-
vised approach is based on a set of observations where the
status of being an outlier or not is known and the differences
between those different types of observations is learned. An
example for this type of approaches is [33]. Usually, su-
pervised approaches are also global approaches and can be
considered as very unbalanced classification problems (since
the class of outliers has inherently relatively few members
only). However, in most cases outlier detection is encoun-
tered as an unsupervised problem since one does not have
enough previous knowledge for supervised learning. Statis-
tical approaches to the identification of outliers are based
on presumed distributions of objects. The classical text-
book of Barnett and Lewis [5] discusses numerous tests for
different distributions. The tests are optimized for each dis-
tribution dependent on the specific parameters of the corre-
sponding distribution, the number of expected outliers, and
the space where to expect an outlier. Problems of these
classical approaches are obviously the required assumption
of a specific distribution in order to apply a specific test.
Furthermore, all tests are univariate and examine a single
attribute to determine an outlier. Related approaches com-
bine given models and supervised learning methods but still
assume the distribution of objects to be known in advance
[31, 32]. Sometimes, the data are assumed to consist of k
Gaussian distributions and the means and standard devia-
tions are computed data driven. However, these methods
are not really robust, since mean and standard deviation
are rather sensitive to outliers and the potential outliers are
still considered for the computation step. In [25], a more
robust estimation of the mean and the standard deviation
is proposed in order to tackle this problem. Depth based
approaches organize data objects in convex hull layers ex-
pecting outliers from data objects with shallow depth values
only [30, 26, 16]. These approaches from computer graph-
ics are infeasible for data spaces of high dimensionality due
to the inherent exponential complexity of computing con-
vex hulls. Deviation-based outlier detection groups objects

and considers those objects as outliers that deviate consid-
erably from the general characteristics of the groups. This
approach has been pursued e.g. in [4, 27]. The forming of
groups at random is rather arbitrary and so are the results
depending on the selected groups. Forming groups at ran-
dom, however, is inevitable in order to avoid exponential
complexity. The distance based notion of outliers unifies
distribution based approaches [17, 18]. An object x ∈ D is
an outlier if at least a fraction p of all data objects in D
has a distance above D from x. Variants of the distance
based notion of outliers are [24], [20], and [6]. In [24], the
distances to the k nearest neighbors are used and the objects
are ranked according to their distances to their k-th near-
est neighbor. A partition-based algorithm is then used to
efficiently mine top-n outliers. An approximation solution
to enable scalability with increasing data dimensionality is
proposed in [3]. However, as adaptation to high-dimensional
data, only the time-complexity issue is tackled. The inher-
ent problems of high-dimensional data are not addressed by
this or any other approach. On the contrary, the problems
are even aggravated since the approximation is based on
space filling curves. Another approximation based on ref-
erence points is proposed in [23]. This approximation, too,
is only on low-dimensional data shown to be valuable. The
idea of using the k nearest neighbors already resembles den-
sity based approaches that consider ratios between the local
density around an object and the local density around its
neighboring objects. These approaches therefore introduce
the notion of local outliers. The basic idea is to assign a
density-based local outlier factor (LOF) to each object of
the database denoting a degree of outlierness [8]. The LOF
compares the density of each object o of a database D with
the density of the k nearest neighbors of o. A LOF value
of approximately 1 indicates that the corresponding object
is located within a region of homogeneous density (i.e. a
cluster). If the difference between the density in the lo-
cal neighborhood of o and the density around the k nearest
neighbors of o is higher, o gets assigned a higher LOF value.
The higher the LOF value of an object o is, the more dis-
tinctly is o considered an outlier. Several extensions and
refinements of the basic LOF model have been proposed,
e.g. a connectivity-based outlier factor (COF) [29] or a spa-
tial local outlier measure (SLOM) [28]. Using the concept
of micro-clusters to efficiently mine the top-n density-based
local outliers in large databases (i.e., those n objects having
the highest LOF value) is proposed in [14]. A similar algo-
rithm is presented in [15] for an extension of the LOF model
using also the reverse nearest neighbors additionally to the
nearest neighbors and considering a symmetric relationship
between both values as a measure of outlierness. In [22],
the authors propose another local outlier detection schema
named Local Outlier Integral (LOCI) based on the concept
of a multi-granularity deviation factor (MDEF). The main
difference between the LOF and the LOCI outlier model is
that the MDEF of LOCI uses ε-neighborhoods rather than
k nearest neighbors. The authors propose an approximative
algorithm computing the LOCI values of each database ob-
ject for any ε value. The results are displayed as a rather
intuitive outlier plot. This way, the approach becomes much
less sensitive to input parameters. Furthermore, an exact
algorithm is introduced for outlier detection based on the
LOCI model. The resolution-based outlier factor (ROF) [9]
is a mix of the local and the global outlier paradigm. The

outlier schema is based on the idea of a change of resolution.
Roughly, the “resolution” specifies the number of objects
considered to be neighbors of a given data object and, thus,
is a data driven concept based on distances rather than on
concepts like the k nearest neighbors or an ε-neighborhood
that rely on user-specified parametrization. An approach
claimed to be suitable for high dimensional data is proposed
in [2]. The idea resembles a grid-based subspace clustering
approach where not dense but sparse grid cells are sought to
report objects within sparse grid cells as outliers. Since this
is exponential in the data dimensionality, an evolutionary al-
gorithm is proposed to search heuristically for sparse cells.As
an extension of the distance based outlier detection, some
algorithms for finding an explanation for the outlierness of a
point are proposed in [19]. The idea is to navigate through
the lattice of combinations of attributes and to find the most
significant combination of attributes where the point is an
outlier. This is an interesting feature because an explicit
and concise explanation why a certain point is considered to
be an outlier (so that a user could conveniently gain some
insights in the nature of the data) has not been provided by
any other outlier detection model so far. In summary, we
find all outlier models proposed so far inherently unsuitable
for the requirements met in mining high-dimensional data
since they rely implicitly or explicitly on distances. Aim-
ing to explain why a point is an outlier, we found only one
other approach proposed in the literature deriving subsets
of attributes where an object is an outlier most significantly,
based on a global outlier model. In the classification of out-
lier models, our new approach is unsupervised and can be
regarded as a local approach. Generally, local outlier detec-
tion models have shown better accuracy than global outlier
detection models. Therefore, as one of the most prominent
local methods, LOF will be used as competitor in compari-
son to our new approach.

3. ANGLE-BASED OUTLIER DETECTION

3.1 General Idea
As elaborated above (see Section 1), comparing distances

becomes more and more meaningless with increasing data di-
mensionality. Thus, mining high-dimensional data requires
different approaches to the quest for patterns. Here, we pro-
pose not only to use the distance between points in a vec-
tor space but primarily the directions of distance vectors.
Comparing the angles between pairs of distance vectors to
other points helps to discern between points similar to other
points and outliers. This idea is motivated by the follow-
ing intuition. Consider a simple data set as illustrated in
Figure 1. For a point within a cluster, the angles between
difference vectors to pairs of other points differ widely. The
variance of the angles will become smaller for points at the
border of a cluster. However, even here the variance is still
relatively high compared to the variance of angles for real
outliers. Here, the angles to most pairs of points will be
small since most points are clustered in some directions.
The corresponding spectra for these three types of points
are illustrated for a sample data set in Figure 2. As the
graph shows, the spectrum of angles to pairs of points re-
mains rather small for an outlier whereas the variance of
angles is higher for border points of a cluster and very high
for inner points of a cluster. As a result of these considera-
tions, an angle-based outlier factor (ABOF) can describe the

66

67

68

69

70

71

72

73

31 32 33 34 35 36 37 38 39 40 41

α
β

γ

Figure 1: Intuition of angle-based outlier detection.

-1.5

-1

-0.5

0

0.5

1

1 211

inner point border point outlier

Figure 2: Spectra of angles for different types of
points.

divergence in directions of objects relatively to one another.
If the spectrum of observed angles for a point is broad, the
point will be surrounded by other points in all possible di-
rections meaning the point is positioned inside a cluster. If
the spectrum of observed angles for a point is rather small,
other points will be positioned only in certain directions.
This means, the point is positioned outside of some sets of
points that are grouped together. Thus, rather small angles
for a point ~P that are rather similar to one another imply
that ~P is an outlier.

3.2 Angle-based Outlier Detection (ABOD)
As an approach to assign the ABOF value to any object

in the database D, we compute the scalar product of the
difference vectors of any triple of points (i.e. a query point
~A ∈ D and all pairs (~B, ~C) of all remaining points in D \
{ ~A}) normalized by the quadratic product of the length of
the difference vectors, i.e. the angle is weighted less if the
corresponding points are far from the query point. By this
weighting factor, the distance influences the value after all,
but only to a minor part. Nevertheless, this weighting of
the variance is important since the angle to a pair of points
varies naturally stronger for a bigger distance. The variance
of this value over all pairs for the query point ~A constitutes
the angle-based outlier factor (ABOF) of ~A. Formally:

Definition 1 (ABOF).

Given a database D ⊆ Rd, a point ~A ∈ D, and a norm
‖.‖ : Rd → R

+
0 . The scalar product is denoted by 〈., .〉 :

R
d × Rd → R. For two points ~B, ~C ∈ D, BC denotes the

difference vector ~C − ~B.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

66.0

67.0

68.0

69.0

70.0

71.0

72.0

73.0

31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0

Figure 3: Ranking of points in the sample data set
according to ABOF.

The angle-based outlier factor ABOF(~A) is the variance

over the angles between the difference vectors of ~A to all
pairs of points in D weighted by the distance of the points:

ABOF(~A) = VAR ~B,~C∈D

(
〈AB,AC〉

‖AB‖2 · ‖AC‖2

)

=

∑
~B∈D

∑
~C∈D

1

‖AB‖·‖AC‖ ·
(

〈AB,AC〉
‖AB‖2·‖AC‖2

)2
∑
~B∈D

∑
~C∈D

1

‖AB‖·‖AC‖

−


∑
~B∈D

∑
~C∈D

1

‖AB‖·‖AC‖ ·
〈AB,AC〉

‖AB‖2·‖AC‖2∑
~B∈D

∑
~C∈D

1

‖AB‖·‖AC‖


2

Note that for each triple of points in question, (~A, ~B, ~C),
the three points are mutual different. This means, instead
of ~B ∈ D and ~C ∈ D, the definition more exactly reads as
~B ∈ D \ { ~A} and ~C ∈ D \ { ~A, ~B}, respectively. We spared
this in favor of readability in this definition as well as in the
following ones.

The algorithm ABOD assigns the angle-based outlier fac-
tor ABOF to each point in the database and returns as a
result the list of points sorted according to their ABOF. Con-
sider again the sample data set in Figure 1. The ranking of
these points as provided by ABOD is denoted in Figure 3. In
this toy-example, the top-ranked point (rank 1) is clearly the
utmost outlier. The next ranks are taken by border points of
the cluster. The lowest ranks are assigned to the inner points
of the cluster. Since the distance is accounted for only as a
weight for the main criterion, the variance of angles, ABOD
is able to concisely detect outliers even in high-dimensional
data where LOF and other purely distance-based approaches
deteriorate in accuracy. Furthermore, as illustrated above,
ABOD allows also a different ranking of border points ver-
sus inner points of a cluster. This is not possible for most
of the other outlier models.

Most outlier detection models require the user to specify
parameters that are crucial to the outcome of the approach.
For unsupervised approaches, such requirements are always
a drawback. Thus, a big advantage of ABOD is being com-
pletely free of parameters. On the fly, ABOD retrieves an
explanation why the point is considered to be an outlier.
The difference vector to the most similar object in the near-
est group of points provides the divergence quantitatively
for each attribute and, thus, explains why (i.e., in which
attributes by how much) the point is an outlier. For the

66

67

68

69

70

71

72

73

31 32 33 34 35 36 37 38 39 40 41

Explanation: If x-value would be larger by 5
 P would not be an outlier.

P

Figure 4: Explanation for an outlier as provided by
ABOD.

running example, the explanation for the top-ranked out-
lier is that it deviates from the nearest point of the nearest
cluster by the difference vector as illustrated in Figure 4.

3.3 Speed-up by Approximation (FastABOD)
A problem of the basic approach ABOD is obvious: since

for each point all pairs of points must be considered, the
time-complexity is in O(n3) which is not attractive com-
pared e.g. to LOF which is in O(n2 · k). In this section,
we therefore discuss also an approximation algorithm. This
approximation algorithm, FastABOD, approximates ABOF
based on a sample of the database. We propose to use the
pairs of points with the strongest weight in the variance,
e.g. pairs between the k nearest neighbors. Let us note that
a random set of k arbitrary data points could be used as
well for this approximation. However, the nearest neighbors
have the largest weights in the ABOF. Thus, employing the
nearest neighbors might result in a better approximation,
especially in data sets of low dimensionality where the dis-
tance is more meaningful.

The ABOF relaxes to an approximate ABOF as follows:

Definition 2 (Approximate ABOF).

Given a database D ⊆ Rd, a point ~A ∈ D, and a norm
‖.‖ : Rd → R

+
0 . The scalar product is denoted by 〈., .〉 :

R
d × Rd → R. For two points ~B, ~C ∈ D, BC denotes

the difference vector ~C − ~B. Nk(~A) ⊆ D denotes the set

of the k nearest neighbors of ~A. The approximate angle-
based outlier factor approxABOFk(~A) is the variance over

the angles between the difference vectors of ~A to all pairs of
points in Nk(~A) weighted by the distance of the points:

approxABOFk(~A) = VAR ~B,~C∈Nk(~A)

(
〈AB,AC〉

‖AB‖2 · ‖AC‖2

)

=

∑
~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖·‖AC‖ ·
(

〈AB,AC〉
‖AB‖2·‖AC‖2

)2
∑

~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖·‖AC‖

−


∑

~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖·‖AC‖ ·
〈AB,AC〉

‖AB‖2·‖AC‖2∑
~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖·‖AC‖


2

This approximation results in an acceleration of one or-
der of magnitude. The resulting algorithm FastABOD is in
O(n2 +n ·k2). This makes FastABOD suitable for data sets

consisting of many points. However, the quality of the ap-
proximation depends on the number k of nearest neighbors
and the quality of the selection of nearest neighbors. This
quality usually deteriorates with increasing data dimension-
ality, as discussed above. Indeed, our experiments show that
the quality of the approximation and therefore the ranking
of outliers becomes worse for higher dimensional data (see
Section 4).

3.4 Approximation as Filter-Refinement Ap-
proach (LB-ABOD)

We have seen that the approximation FastABOD is not
suitable directly for high-dimensional data. Nevertheless,
the outliers are usually still on a high rank, albeit occa-
sionally not at the top rank. This observation motivates fi-
nally another approximation which is also suitable as a lower
bound for ABOF. Having a lower bound approximation for
the exact ABOF allows us to retrieve the best outliers more
efficiently. In other words, we select candidates for the top
l outliers w.r.t. the lower-bound and afterwards refine the
candidates until none of the remaining candidates can have
a lower ABOF the largest of the best already examined data
objects.

To gain a lower bound based on the FastABOD approach,
we estimate approxABOF conservatively as follows:

Definition 3 (LB-ABOF).

Given a database D ⊆ Rd, a point ~A ∈ D, and a norm
‖.‖ : Rd → R

+
0 . The scalar product is denoted by 〈., .〉 :

R
d × Rd → R. For two points ~B, ~C ∈ D, BC denotes the

difference vector ~C − ~B. Nk(~A) ⊆ D denotes the set of the

k nearest neighbors of ~A.
The lower-bound for the angle-based outlier factor

LB-ABOFk(~A) is the conservatively approximated variance

over the angles between the difference vectors of ~A to all
pairs of points in D weighted by the distance of the points:

LB-ABOFk(~A) =∑
~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖·‖AC‖ ·
(

〈AB,AC〉
‖AB‖2·‖AC‖2

)2
+ R1∑

~B∈D

∑
~C∈D

1

‖AB‖·‖AC‖

−


∑

~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖·‖AC‖ ·
〈AB,AC〉

‖AB‖2·‖AC‖2 + R2∑
~B∈D

∑
~C∈D

1

‖AB‖·‖AC‖


2

In Definition 3, the remainders R1 and R2 are responsible
for the difference between the approximation based on the
sample of the k nearest neighbors and the complete ABOF.
Note that this approximation is normalized by the sum of
the inverse norms of the difference vectors of all pairs of the
complete database, not only all pairs of the set of k nearest
neighbors as in the approximate ABOF. However, the sum
and squared sum necessary for calculating the variance are
approximated only over the k nearest neighbors. Thus, a
difference remains to the complete ABOF. We have to make
sure that ABOF (~A) − LB-ABOFk(~A) ≥ 0. Furthermore,
this conservative approximation must be computable much
more efficiently than calculating the ABOF. This way, LB-
ABOF can serve as a lower bound for a filter-refinement
approach.

Since the normalization factor is built by summing up the
weights for each angle being observed at ~A, a straight for-
ward calculation would have a quadratic complexity. Thus,
a first step to efficiently calculating LB-ABOF is to find a
linear method to compute the normalization factor. This is
possible because of the following observation:∑

~B∈D

∑
~C∈D

1

‖AB‖ · ‖AC‖
=
∑
~B∈D

1

‖AB‖
·
∑
~C∈D

1

‖AC‖

Thus, we can calculate the sum of the inverse distances over
all objects first, and afterwards, we add up the products of
the inverse distance vectors of each object ~B with this sum.

To guarantee that LB-ABOF is a conservative approxima-
tion of ABOF, we have to find conservative estimates for the
remainders R1 and R2. R1 is the remainder of the squared
sum. This means, the larger R1 is the larger is the complete
variance. Thus, R1 has to be selected as small as possible.
Since R1 is a sum of weighted angles, R1 has to be approx-
imated by 0 which would be the case if all of the observed
missing angles would be orthogonal. The second remainder
R2 increases the weighted sum over all angles being squared
and subtracted from the square sum. Thus, in order to find
a conservative approximation of the ABOF, R2 has to be
as large as possible. To find the largest possible value of
R2, we start by assuming the maximum value of the angle,
which is 1, for each addend. However, we have a weighted
sum and thus, R2 is given by the sum of weights for all
unknown angles. To efficiently compute R2, we calculate
the complete sum over all possible pairs of objects which
can be done in linear time, as shown above. By subtracting
the already observed factors from this sum, we can find a
maximum approximation of R2:∑
~B∈D

∑
~C∈D

1

‖AB‖2 · ‖AC‖2
−

∑
~B∈Nk(~A)

∑
~C∈Nk(~A)

1

‖AB‖2 · ‖AC‖2
.

Based on the conservative approximation LB-ABOF, we
propose the following procedure LB-ABOD as efficient algo-
rithm to find the top l outliers w.r.t. to the ABOF :

1. For each point ~A ∈ D, derive the k points of highest
impact (i.e., the k nearest neighbors).

2. Compute LB-ABOF for each point ~A ∈ D.

3. Organize the database objects in a candidate list or-
dered ascendingly w.r.t. their assigned LB-ABOF.

4. Determine the exact ABOF for the first l objects in
the candidate list, remove them from the candidate
list and insert them into the current result list.

5. Remove and examine the next best candidate ~C from
the candidate list and determine the exact ABOF. If
the ABOF of ~C is smaller than the largest ABOF of
an object ~A in the result list, remove ~A from the result
list and insert ~C into the result list.

6. If the largest ABOF in the result list is smaller than
the smallest approximated ABOF in the candidate list,
terminate. Else, proceed with step 5.

This procedure combines the gains of FastABOD in terms
of scalability with the size of the data set with the robustness
of ABOD w.r.t. the dimensionality of the data set. The time

complexity of the filter step is in O(n2 + n · k2) (equal to
FastABOD). The refinement for r objects to be refined is
in O(r · n2). Thus, the eventual acceleration w.r.t. ABOD
depends on the quality of the lower bound and the resulting
number r of objects to refine. We show in Section 4 that the
lower bound indeed allows for a considerable speed-up.

3.5 Generalization for Arbitrary Data Types:
Kernel-based ABOF

An advantage of distance based approaches to outlier de-
tection is that they are often not restricted to vector spaces.
As long as there is a suitable distance function for comparing
two objects, it is usually possible to apply these methods.
For ABOD, on the other hand, it is necessary to provide a
scalar product for comparing the data objects which seems
to be more restricting than providing a distance measure.
However, due to the recent interest in maximum margin
learners and kernel methods in machine learning, a wide va-
riety of meaningful kernel functions for varying types of data
has been proposed [11]. Since a kernel function is basically a
scalar product in a kernel space, it is possible to find outliers
in a wide variety of applications whenever a suitable kernel
function is available.

4. EVALUATION
We implemented our new algorithms in Java 1.5. As

the most established example for distance based local out-
lier ranking, we additionally implemented LOF [8] into our
framework. All experiments were run on a Dell Precision 690
workstation with 2 XEON 3.0 Ghz CPUs and 16Gb main
memory.

4.1 Artificial Data
A large problem when evaluating outlier detection meth-

ods is that there are very few real world data sets where it
is exactly known which objects are really behaving differ-
ently due to belonging to a different mechanism. Though
there exist multiple case studies on outlier detection, the
question whether an object is an outlier or not is often de-
pending on the point of view. Another problem is that the
list of possible outliers is often incomplete making it hard
to evaluate whether the algorithm ranked all outliers in the
database properly. Therefore, we decided to evaluate our
methods on artificially generated data. Thus, we can gen-
erate outliers and ordinary data points with respect to the
initial definition, i.e. an outlier is a point being generated by
a different mechanism than the majority of data objects. To
exactly evaluate the behavior of our new method for different
dimensionalities and database sizes, we generated multiple
data sets having 25, 50 and 100 dimensions. As database
sizes (dbsize) we selected 500, 1,000, 5,000 and 10,000 data
objects.

In order to find data sets having well-defined but not ob-
vious outliers, we proceeded as follows. First of all, we ran-
domly generated a Gaussian mixture model consisting of
five equally weighted processes having random mean and
variance values. This mixture model now describes the or-
dinary data points, i.e. the none-outlier data points. To
build the outliers corresponding to another mechanism that
does not assign all the outliers to an additional cluster, we
employed a uniform distribution on the complete data space.
This way we generated 10 outliers for each data set which
are totally independent on the mixture model describing the

general data distribution. Let us note that it is possible that
some outliers might be generated in an area being populated
by none-outlier objects drawn from the Gaussian mixture
model. Thus, even if an outlier detection mechanism works
well, it does not necessarily have to rank all outliers into top
positions.

4.2 Effectiveness
In this set of experiments, we compared the quality of

the ranking provided by our new algorithms to each other
and to LOF. To measure the capability of each algorithm to
retrieve the most likely outliers first, we used precision and
recall graphs. In other words, we successively retrieve the
most likely outlier until all ten outliers are retrieved. For
each result set, we measured precision and recall. Since the
recall is the percentage of all outliers in the data set which
were already retrieved, we can observe a new recall level
for each additional outlier being found. For each of these
recall levels, we now measure the precision, i.e. how many
objects in the current result set are indeed outliers. In our
experiments, we compared FastABOD, ABOD and LOF for
multiple database sizes and dimensionalities. For LOF, we
varied the parameter MinPts from 10 to 25. The sample
size of FastABOD was determined by 0.1 · dbsize.

Figure 5 displays the observed precision recall graphs for
two different database sizes, 1000 and 5000 data points. For
each size, we compare three different dimensionalities: 25, 50
and 100. Starting with the comparably low dimensionality
of 25 (cf. Figure 5(a) and Figure 5(d)), it can be observed
that all methods had difficulties in both data sets with de-
tecting all ten outliers. In Figure 5(a), ABOD clearly offered
the best ranking while both other methods FastABOD and
LOF did not perform very well for the larger recall levels.
In Figure 5(d), all three methods offered comparable results.
To conclude the advantage of angle based outlier detection
are not very evident on this comparably low dimensional
data set. The next two data sets contain 50 dimensional
feature points (cf. Figure 5(b) and Figure 5(e)). In this
medium dimensionality, ABOD starts to display its advan-
tages for high-dimensional data. While LOF performs very
bad on both data sets, FastABOD still can compete with
ABOD for small recall levels. However, while ABOD per-
forms almost perfect on the smaller data set (cf. Figure
5(b)) by ranking all ten outliers between the top 11 ob-
jects, FastABOD only retrieves two outliers before retriev-
ing a none-outlier object. In the larger data set (cf. Figure
5(e)), ABOD achieves a perfect performance for the first five
recall levels. However, for the remaining 5 objects the rank-
ing of ABOD contains some none-outliers before retrieving
all outliers. Nevertheless, ABOD provides the best outlier
ranking for the 50 dimensional data sets.

Finally, we tested the methods on a high dimensional data
set of about 100 dimensions. In both data sets, ABOD
ranked all ten outliers first, i.e. ABOD achieved the maxi-
mum possible performance. For the smaller data set, FastA-
BOD performed rather bad, being even overtaken by LOF
for the larger recall values. For the large data set, FastA-
BOD performed almost perfect with only one non-outlier ob-
ject at the tenth position of the ranking before retrieving all
ten outliers. As expected LOF performed significantly worse
on the high dimensional data. Let us note that it is not fea-
sible to compare the performance of the methods between
the different plots because the test data set were generated

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec

al
l

ABOF
FastABOF
LOF

(a) 25 dimensions and 1000 data points.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec

al
l

ABOF
FastABOF
LOF

(b) 50 dimensions and 1000 data
points.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec

al
l

ABOF
FastABOF
LOF

(c) 100 dimensions and 1000 data
points.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec
al
l

ABOF
FastABOF
LOF

(d) 25 dimensions and 5000 data
points.

0

0.2

0.4

0.6

0.8

1

1.2

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision

R
ec
al
l

ABOF
FastABOF
LOF

(e) 50 dimensions and 5000 data points.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec

al
l

ABOF
FastABOF
LOF

(f) 100 dimensions and 5000 data
points.

Figure 5: Precision-Recall graphs on artificial data sets for 25, 50 and 100 dimensions. The upper row
describes the behavior on 1000 data points and the lower row the behavior on 5000 data points

independently. Thus, it is possible that LOF performs bet-
ter on the larger 100 dimensional data set compared to some
lower dimensional data sets. The reason for this effect is that
the generated outliers sometimes might be more difficult to
detect. In other words, the difficulty of the problem is ran-
domly determined for each data set and cannot easily be
adjusted to be comparable between data sets. The strongly
varying performance of FastABOD can be explained by the
fact that FastABOD is strongly dependent on a suitable se-
lection of the sample size which will be discussed more deeply
in a later experiment. In contrast, ABOD is not dependent
on finding a suitable parametrization. Therefore, it is more
suitable for applications where it is not obvious whether the
given object is an outlier or not. To conclude, ABOD pro-
vided a better ranking w.r.t. the precision of the top ranked
objects. As can be seen in our experiments the performance
of ABOD is constantly good even for large dimensionalities
where LOF and the partly distance-based FastABOD ap-
proach do not provide top quality outlier rankings.

4.3 Efficiency
In this section, we compare the cpu time of each algorithm

for selecting the n best outliers. Therefore, we perform ex-
periments on four different database sizes: 500, 1000, 5000
and 10000. For this experiment, we compared ABOD, with
and without the filter refinement approach LB-ABOD, to
FastABOD and LOF on a data set of 25 dimensions. The
sample size for FastABOD as well as the sample size for
LB-ABOD were selected to be 0.1 · dbsize.

The results are illustrated in Figure 6. Let us note that
we used a logarithmic time scale in this figure because even
the fastest method in the experiment, LOF, has a quadratic
and therefore, super linear time complexity. As can be seen
LOF ran significantly faster on all four data sets as expected.
However, we can also observe that both accelerated angle

cpu time for outlier detection on different database sizes

1

10

100

1000

10000

100000

1000000

10000000

LOF LB-ABOF FastABOF ABOF

method

cp
u

tim
e

in
 m

s
(l

og
ar

ith
m

ic
 ti

m
e

sc
al

e
) 500

1000
5000
10000

Figure 6: Comparison of CPU times of LOF,
LB-ABOD, FastABOD and ABOD for 4 sizes of
databases.

based methods, FastABOD and LB-ABOD, have a compa-
rable increase in runtime between the data sets. This un-
derlines that both methods have also a quadratic runtime
complexity. Due to the refinement step in LB-ABOD and
the usually larger sample set in FastABOD, both methods
need additional time to find a ranking.

Considering the runtime of an naive application of ABOD,
we observe that the cubic runtime is a large restriction when
directly applying ABOD to larger data sets. For example,
the straight forward calculation of ABOD on a data set of
5000 data objects takes more than eight hours. Let us note
that the reason for the missing value for ABOD on the data
set containing 10,000 objects is that the algorithm did not
finish its computations after 24 hours and, thus, we cannot
name a valid runtime. Therefore, to use ABOD with data
sets having larger cardinalities, it is mandatory to employ

Speed up of LB-ABOD compared to ABOD

0

20

40

60

80

100

120

140

500 1000 5000
data set size

sp
ee

d
up

 fa
ct

or

Figure 7: Speed-up factor of LB-ABOD compared
to straight forward computation (ABOD).

influence of sample size to LB-ABOD

0

500

1000

1500

2000

2500

3000

404 202 134 80

sample size

cp
u

tim
e

(n
s)

/ r
ef

in
em

en
ts

refinements
runtime in ns

Figure 8: Influence of the sample size to runtime
and number of refinements for LB-ABOD.

LB-ABOD. To further underline the increased efficiency in
calculating the ABOF using LB-ABOD, Figure 7 displays
the speed-up factor of LB-ABOD compared to a straight
forward computation. For the data set containing 5000 data
points, LB-ABOD computed the ranking of the top 100 out-
liers up to 120 times faster than ABOD. Let us note again
that the only difference in the result is that LB-ABOD only
provides the l top ranked results instead of ordering the
complete data set with respect to the ABOF.

Our next experiment examines the influence of the sam-
ple size being considered in the filter step of LB-ABOD.
Therefore, we compared the runtime and the number of re-
fined candidates for 4 different sample sizes on the 50 di-
mensional data set containing 1000 data points. The results
can be seen in Figure 8 displaying the complete cpu time
for finding the top 100 outliers. Additionally, the number of
refined candidates is shown for each sample size. The results
indicate that if the size of the sample is selected too small (
in this case 80) the number of refined candidates comprises
the complete data set leading to a cubic runtime. On the
other hand, selecting the size of the sample set too large
might cause only a small reduction of candidates but also
increases the computation time of the filter step. Having a
properly selected sample size, the filter step efficiently ranks
candidates and the refinement step has to examine only a
small portion of the data set. In the majority of our experi-
ments, we usually selected the sample size to be 0.1 · dbsize

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec

al
l

sample:400 time:18.0 ms

sample:200 time:7.2 ms

sample:100 time:2.0 ms

Figure 9: Influence of the sample size to runtime,
precision and recall of FastABOD.

which led to the already displayed speed-up factors. Let
us note that for larger data sets smaller sample sizes often
offered a comparable performance.

In a final experiment on artificial data sets, we demon-
strate the effect of the sample size on the simple approxima-
tion method FastABOD. We ran FastABOD with 3 different
sample sizes, 100, 200 and 400 data points, on the 50 dimen-
sional data set containing 1000 data points. Figure 9 dis-
plays 3 curves. Each curve is labeled by the used sample size
and the cpu time in ms that was measured for FastABOD
in this experiment. As expected there is a clear dependency
between the sample size and the quality of the results; the
larger the sample is the better is usually the ranking. Fur-
thermore, we can additionally see that the size of the sam-
ple significantly increases the runtime. Thus, FastABOD
runs 9 times faster, i.e. 2 ms instead of 18 ms, when hav-
ing only 100 sample points instead of 400. To conclude, for
high dimensional data FastABOD seems to be rather unsuit-
able due to its dependency on the distance based concept of
nearest neighbors. Additionally, the quality of the outlier
ranking provided by FastABOD is strongly dependent on
a large enough sample size because unlike LB-ABOD the
method does not correct its approximative ranking in a re-
finement step. Furthermore, a too large sample size leads
to a strong increase of the computation time. However, for
smaller dimensionalities FastABOD offers a simple way to
efficient angle based outlier detection.

Let us finally remark that the effect of the dimensionality
to the runtime of all four algorithms is negligible because all
of the compared methods need to store distances or scalar
product values, respectively, in order to assure a fast com-
putation.

4.4 Real World Data
In this section, we provide experiments on real world data

in order to demonstrate that there is some semantic mean-
ing behind the proposed outlier ranking. In our first exper-
iment, we employ the caltech 101 data set [10]. The data
set consists of 101 classes comprising 8674 images. For each
image the object of interest is annotated by a polygon com-
prising its borders. Based on these outline, we built a 200
dimensional 2D shape descriptor describing the border of
each object. Thus, in our experiments, we want to extract
the 10 most uncommon 2D shapes in the data set. We again
compare the result of ABOD to LOF to have a reference
outlier ranking. Figure 10 contains the top 5 ranked out-

LOF

ABOD

Figure 10: Top 5 ranked outliers by LOF and ABOD
on the Caltech 101 image data set and a 2D shape
representation.

liers by each method. Both methods decided that the top 3
outlier shapes in the data set belong to the same images of
menorahs. However, while ABOD consistently ranked fur-
ther menorah images as outliers with respect to their very
special 2D shape, LOF started to rank much more com-
mon forms of dollar bills or sun flowers before ranking other
menorahs.

In a final experiment, we tested the explanation compo-
nent of ABOD on the zoo data set from the UCI machine
learning repository [21] and received the following outliers
for which we derived the following explanations by building
the difference vector to the most similar other data object.
RANK1: Scorpion. Its most similar animal in the data set
is the termite. Thus, the scorpion is an outlier because it
has 8 instead of 6 legs, it is venomous and does have a tail.
RANK2: Octopus. The most similar animal is the cancer.
However, the octopus has 2 more legs and is cat sized.

5. CONCLUSION
In this paper, we introduced a novel, parameter-free ap-

proach to outlier detection based on the variance of angles
between pairs of data points. This idea alleviates the effects
of the “curse of dimensionality” on mining high-dimensional
data where distance-based approaches often fail to offer high
quality results. In addition to the basic approach ABOD, we
proposed two variants: FastABOD as an acceleration suit-
able for low-dimensional but big data sets, and LB-ABOD,
a filter-refinement approach as an acceleration suitable also
for high-dimensional data. In a thorough evaluation, we
demonstrate the ability of our new approach to rank the
best candidates for being an outlier with high precision and
recall. Furthermore, the evaluation discusses efficiency is-
sues and explains the influence of the sample size to the
runtime of the introduced methods.

6. REFERENCES
[1] C. C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising

behavior of distance metrics in high dimensional space. In
Proc. ICDT, 2001.

[2] C. C. Aggarwal and P. S. Yu. Outlier detection for high
dimensional data. In Proc. SIGMOD, 2001.

[3] F. Angiulli and C. Pizzuti. Fast outlier detection in high
dimensional spaces. In Proc. PKDD, 2002.

[4] A. Arning, R. Agrawal, and P. Raghavan. A linear method for
deviation detection in large databases. In Proc. KDD, 1996.

[5] V. Barnett and T. Lewis. Outliers in Statistical Data. John
Wiley&Sons, 3rd edition, 1994.

[6] S. Bay and M. Schwabacher. Mining distance-based outliers in
near linear time with randomization and a simple pruning rule.
In Proc. KDD, 2003.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When
is “nearest neighbor” meaningful? In Proc. ICDT, 1999.

[8] M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF:
Identifying density-based local outliers. In Proc. SIGMOD,
2000.

[9] H. Fan, O. R. Zäıane, A. Foss, and J. Wu. A nonparametric
outlier detection for efficiently discovering top-N outliers from
engineering data. In Proc. PAKDD, 2006.

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual
models from few training examples: an incremental bayesian
approach tested on 101 object categories. In IEEE. CVPR
2004, Workshop on Generative-Model Based Vision, 2004.

[11] T. G. Gärtner. A survey of kernels for structured data.
SIGKDD Explor. Newsl., 5(1):49–58, 2003.

[12] D. Hawkins. Identification of Outliers. Chapman and Hall,
London, 1980.

[13] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the
nearest neighbor in high dimensional spaces? In Proc. VLDB,
2000.

[14] W. Jin, A. Tung, and J. Han. Mining top-n local outliers in
large databases. In Proc. KDD, 2001.

[15] W. Jin, A. K. H. Tung, J. Han, and W. Wang. Ranking
outliers using symmetric neighborhood relationship. In Proc.
PAKDD, 2006.

[16] T. Johnson, I. Kwok, and R. Ng. Fast computation of
2-dimensional depth contours. In Proc. KDD, 1998.

[17] E. M. Knorr and R. T. Ng. A unified approach for mining
outliers. In Proc. CASCON, 1997.

[18] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. In Proc. VLDB, 1998.

[19] E. M. Knorr and R. T. Ng. Finding intensional knowledge of
distance-based outliers. In Proc. VLDB, 1999.

[20] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchthold.
Efficient biased sampling for approximate clustering and
outlier detection in large datasets. IEEE TKDE,
15(5):1170–1187, 2003.

[21] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository
of machine learning databases, 1998.

[22] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos.
LOCI: Fast outlier detection using the local correlation
integral. In Proc. ICDE, 2003.

[23] Y. Pei, O. Zäıane, and Y. Gao. An efficient reference-based
approach to outlier detection in large datasets. In Proc.
ICDM, 2006.

[24] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms
for mining outliers from large data sets. In Proc. SIGMOD,
2000.

[25] P. Rousseeuw and K. Van Driessen. A fast algorithm for the
minimum covariance determinant estimator. Technometrics,
41:212–223, 1999.

[26] I. Ruts and P. J. Rousseeuw. Computing depth contours of
bivariate point clouds. Computational Statistics and Data
Analysis, 23:153–168, 1996.

[27] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of OLAP data cubes. In Proc. EDBT, 1998.

[28] P. Sun and S. Chawla. On local spatial outliers. In Proc.
ICDM, 2004.

[29] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. Enhancing
effectiveness of outlier detections for low density patterns. In
Proc. PAKDD, 2002.

[30] J. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[31] G. Williams, K. Yamanishi, and J. Takeuchi. Online
unsupervised outlier detection using finite mixtures with
discounting learning algorithms. In Proc. KDD, 2000.

[32] K. Yamanishi and J. Takeuchi. Discovering outlier filtering
rules from unlabeled data: combining a supervised learner with
an unsupervised learner. In Proc. KDD, 2001.

[33] C. Zhu, H. Kitagawa, and C. Faloutsos. Example-based robust
outlier detection in high dimensional datasets. In Proc. ICDM,
2005.

