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ABSTRACT
Social media such as Twitter or weblogs are a popular source
for live textual data. Much of this popularity is due to the
fast rate at which this data arrives, and there are a number
of global events – such as the Arab Spring – where Twitter
is reported to have had a major influence. However, existing
methods for emerging topic detection are often only able to
detect events of a global magnitude such as natural disasters
or celebrity deaths, and can monitor user-selected keywords
or operate on a curated set of hashtags only. Interesting
emerging topics may, however, be of much smaller magni-
tude and may involve the combination of two or more words
that themselves are not unusually hot at that time. Our
contributions to the detection of emerging trends are three-
fold: first of all, we propose a significance measure that can
be used to detect emerging topics early, long before they
become “hot tags”, by drawing upon experience from outlier
detection. Secondly, by using hash tables in a heavy-hitters
type algorithm for establishing a noise baseline, we show how
to track even all keyword pairs using only a fixed amount of
memory. Finally, we aggregate the detected co-trends into
larger topics using clustering approaches, as often as a single
event will cause multiple word combinations to trend at the
same time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.5.m [Pattern Recognition]: Miscellaneous—
Emerging Topic Detection
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1. INTRODUCTION
Social networks and microblogging services like Facebook

and Twitter are known for the large amount of data pub-
lished every second by their users. But also news agencies
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like Reuters and Bloomberg publish thousands of articles
daily covering a wide range of topics. The information ex-
plosion calls for new tools and approaches to process this
amount of data, as a single user can no longer read all the
information available. Instead, automatic filters are used ev-
erywhere: email servers reject two thirds of our email traffic
deemed as spam; the Facebook news feed is also heavily fil-
tered: Facebook reported that the average user would have
1500 potential stories each day, out of which around 300 are
automatically prioritized and shown by Facebook; yet most
users even only read about half of these on average. In ad-
dition, some hard coded filters are used to e.g. merge all
birthday wishes into a single story to reduce clutter.

Traditional text mining techniques such as clustering and
topic modeling cannot be used trivially when processing a
live stream of data. They can provide meaningful insight to
refine e.g. a search query or to analyze a static text corpus,
but are not applicable to fast-flowing, ever changing data
streams. To cope with this flow of data, emerging topic de-
tection is a useful tool, yet itself an emerging area. The goal
of emerging topic detection is to identify new trends early,
to notify the user of the evolving story. Intuitively the goal
is to have an automated “breaking news” detection. When
the user is able to customize and prioritize the data sources,
this will ultimately allow personalized breaking news and
trend detection, and corporations could use the additional
knowledge to quickly react to future market needs and thus
increase their profit. But the detection of trends in such
fast-flowing data remains challenging because most docu-
ments contain raw unstructured natural language text; often
abbreviated such that the interpretation is hard for both hu-
mans and computers. Ambiguity, homonyms and synonyms
further add to these challenges. Even if some semantic an-
notations like tags are available, these are not necessarily
helpful for the problem at hand, as they may be ambiguous
as well and not all of them have an actual meaning [24].
Due to these problems, the resulting analysis quality still
does often not meet the expectations in practise.

Scalability of textual analysis continues to be a problem.
Many approaches are based on simple preprocessing such as
stopword removal and stemming, and then use distributed
algorithms to simply count and track word occurrences over
time; very few methods seem to be able to extract meaning
from sentences, correlate words and model complex informa-
tion in near real time on high volume data [13]. This may
explain why text analytics seems to take off very slowly.1 As

1http://www.kdnuggets.com/2014/02/poll-results-te\
xt-analytics-use-shows-no-significant-change.html
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marketing professor Hausman recently noted (commerical)
sentiment analysis software often is less accurate than a coin
toss [20], it may be necessary to first reduce the amount of
data, then analyze this part thoroughly but manually.

In this article, we propose a statistics-based score for eval-
uating trends as well as scalability improvements to allow
tracking arbitrary word pairs. The detected trends are then
aggregated into a cluster to be further analyzed by the user.

2. RELATED WORK
The field of emerging topics detection receives much at-

tention, as the daily flood of information available in social
media and news agencies is impossible to overlook – in fact,
the media are reporting on the increasing volume of data
every day. To know what topics are currently “hot” could be
an enormous advantage both for private uses and businesses.
To solve these demands, commercial systems like Dataminr,
Sysomos, Brandwatch, MediaMiser, and Topsy have been
established. There are also a number of non-commercial
systems like the CMU system [37], the UMass system [4],
Meme-Detection System [26] or Blogscope [8]. Most of the
published research focusses on Twitter as primary source
of information inter alia due to its public streaming API2

for accessing random samples of all public statuses and the
contained hashtags, which help to reduce the dimensional-
ity of the incoming text and could provide some additional
semantic information.

First Story Detection (FSD) is a closely related task to
emerging topic detection, with the subtle difference that the
focus is to identify the actual first report of an event, not
necessarily a topic gaining substantially in popularity. The
CMU system [37] attempts to cluster continuously arriving
news streams into groups that share the same event. They
present an on-line method to accumulate events for a retro-
spective event detection. The UMass system [4] represents
documents in a vector space such as a term frequency vector.
Incoming documents are first compared to the database of
previous documents using a nearest-neighbor search, then
added to the corpus. Documents that differ enough from
the most similar earlier document are considered to be first
stories. This approach however does not scale well to large
data sets such as Twitter due to the need to maintain the
database corpus [29]. To scale this nearest-neighbor ap-
proach to Twitter streams, the use of locality sensitive hash-
ing (LSH [21]) was proposed [29]. To limit database size,
buckets are limited in size and the oldest document is re-
moved from the bucket when the bucket would overflow.

Kleinberg [23] uses an infinite state automaton to model
frequency bursts of incoming documents such as emails. Dif-
ferent states of the automaton correspond to different mes-
sage frequencies, and a hierarchy is extracted from the state
transitions. In Blogosphere [30], Kleinberg’s approach was
applied to the titles of blog posts. To improve performance,
they had to omit keywords cooccurring with other keywords
in the same title. In a post-processing stage they enrich
bursty keywords with semantically correlated terms by look-
ing at the five nearest neighbours using an Euclidean-based
distance metric on the automatons’ state series. Kleinberg’s
burst modeling was also used in [33], where it was applied
to topics estimated by a dynamic topic model (DTM).

Cataldi et al. [12] proposed a method that extracts terms

2https://dev.twitter.com/docs/streaming-apis

from tweets to model a life cycle inspired by biological pro-
cesses. They define a term as emerging, if it is now frequent
but was rare in the past. To improve results, they also con-
sider social relationships (like the followers count) to deter-
mine the user authority. Although they do a post-processing
step to enrich detected trending terms with semantically re-
lated keywords, they cannot detect when two keywords that
have already been frequent before now are frequently co-
mentioned such as when obama and merkel meet.

TwitterMonitor [27] first identifies bursty keywords that
have a higher absolute frequency than usual and uses them
as a seed to explore them further. Keywords that cooccur in
the same tweets (within a small history window) are grouped
together. For each such keyword set a singular value decom-
position (SVD, [16]) is applied on all tweets containing them.
The extracted terms are used to build a better description
for each bursty keyword set.

EDCoW [35] applies a wavelet analysis on words to model
their frequencies. Trivial words are identified with their
cross correlation value. In Hip and Trendy [28], the focus
lies on building a taxonomy from trends for a specific ge-
ographic area and to categorise them, rather than finding
cooccurence trends. Similarly CiteSpace II [14] has a strong
focus on visualizing emerging trends.

Density estimation on data streams as performed in stream
clustering approaches such as CluStream [3] is also related
to our approach. However these algorithms assume you have
a stream of coordinates, and want to estimate the resulting
coordinate-based density. Such vector data arises for ex-
ample in sensor networks, where the need of compressing
historical information [17] can be satisfied using wavelets,
discrete cosine or histograms. Temporal velocity profiles [2]
are then applicable to such data, and can be used to pre-
dict the positions of dense regions of moving objects. In our
approach, we will be estimating a density on the temporal
domain only, as if we would split the input stream into sep-
arate streams for each word and process them separately.
These techniques therefore do not apply here.

The problem of top-k monitoring [7] is related, but it
does not take relative significance into account. These ap-
proaches, often aimed at detecting denial-of-service (DOS)
attacks in network flows, are interested in the most fre-
quently occurring patterns only. In the context of monitor-
ing textual streams, these approaches would likely monitor
popular terms such as justin and bieber.

Exponential histograms [15] have been proposed for prob-
abilistic counting as well as for weakly additive functions.
This was then extended to continuously monitor variance
over data streams [6] similar to our approach. However, we
use a simpler yet effective approach: their techniques are de-
signed with the requirement to take exactly the previous N
observations into account. Our approach uses exponential
weighting, which will never fully forget data, but aggregates
historical values into a single figure, in which old results will
eventually have a weight of effectively zero.

A rather similar approach to our system is enBlogue [5]:
Like our approach, they are also interested in the cooccur-
rence of words, instead of relying on single terms. The cen-
tral measure of their approach is Jaccard similarity [22] of
two words in relation to their overall popularity. Like most
other approaches processing Twitter data, they first pre-
process the data, in order to extract hashtags and named
entities as tokens. In order to find cooccurrences, they start

https://dev.twitter.com/docs/streaming-apis


with a reduced seed list of frequent tokens; then track all
token combinations that contain at least one of these seeds.
For each token pair, a short history of ρ recent occurrence
counts and popularities is kept; token pairs not seen during
the last ρ epochs are discarded. Similar to our method, ex-
ponential smoothing is applied to predict future values from
history. The score is computed based on the relative devia-
tion from the estimate, weighted by logarithmic popularity:

score(t) =

(
x(t)− E[x]

)/
x(t)

|log (popularity(t))|
A key limitation of enBlogue is the need for controlling the

memory usage. A number of mechanisms are employed to
reduce the data volume: only hashtags and named entities
are used for the analysis. Then seed tags are chosen based
on a minimum occurrence threshold as well as a top-k filter.
However, the experiments indicate that the accurracy drops
linearly with the seed tags parameter, so these thresholds
do not appear to be beneficial. Last but not least, since
enBlogue keeps a history of 2ρ historical values for any pair
of tags tracked, it scales badly with respect to memory usage.
In our experiments, we observed as much as 700 million word
and word pairs (see Table 1). While not all of them will be
kept in memory at the same time, this requires a substantial
amount of memory and update cost.

The method we propose improves over enBlogue in mul-
tiple ways. Instead of keeping a history, we only need two
floating point values per record. Secondly, by storing this
data only approximately in a hash table, we are not as much
affected by the large number of potential word pairs. As we
cleverly exploit hash collissions, we only need the hash table
to be large enough to store all frequent word pairs, which
due to the long-tailedness of the distribution is a substan-
tially smaller number (as seen from the quantiles in Table 2).
Petrović et al. [29] proposed a method for first story detec-
tion based on locality sensitive hashing. While our approach
borrows on ideas from LSH and MinHash, we do not use this
for nearest neighbor search, and do not need to store the in-
dividual documents for similarity search.

3. SIGNIFICANT TREND DETECTION
In information retrieval and text mining, a popular simi-

larity measure for text is cosine similarity on the term fre-
quency (TF) vectors, weighted by the inverse document fre-
quency (IDF). This model is commonly referred to as TF-
IDF vector model. Depending on the definitions used, term
frequency can either be the absolute counts of each term,
or the relative frequency. In the context of trend detec-
tion, such similarity measures are difficult to use: they are
designed to quantify the similarity of two documents, but
trending topics may span many documents, and documents
will often cover more than one topic. In particular, top-
ics may have subtopics; and within a larger topic (such as
pop music) a subtopic (such as a particular artist) may be
trending, even when the larger topic is not.

A näıve approach to perform topic detection would be
the use of cluster analysis. However, cluster analysis on
streaming data is far from a solved problem. Often, these
clustering algorithms are unable to recognize hierarchies of
clusters, and may need parameter fine tuning. Because of
these limitations, the algorithms are mainly useful to clus-
ter the result set of an information retrieval task for user
presentation. Another similarly näıve approach maintains

a database of recent documents, and searches the nearest
neighbor (i.e. the most similar earlier document) for each
new document. While this works reasonably well in a con-
trolled corpus, it will fail on many noisy real data sets: while
a low nearest-neighbor distance is indicative that the doc-
ument is a near duplicate, the contrary does not hold: not
every document will be the start of an interesting emerging
topic, but it may also be just noise. In fact, nearest-neighbor
distances are a popular measure of outlierness [31].

When detecting emerging topics in data streams, we can-
not assume that we already have a cluster for the topic. In
fact, it is desired to detect the topic as soon as possible. Yet
at the same time, we are only interested in topics that both
have a minimum size, but also show an “unusual” growth
rate. When looking for trending subtopics, this becomes
even more challenging – here, we may not be interested in
the main topic, but only in the restriction to a subdomain.

In the following subsections, we will discuss some impor-
tant aspects for emerging trend detection. First of all, we
discuss how to measure significance of trends, as opposed
to just some deviation score. Secondly, we will elaborate
briefly on the relationship to outlier detection. Then we will
discuss the importance of word cooccurrences for detecting
trends that may be masked otherwise and additional chal-
lenges for early detection when using the suggested statistics.
Finally, we will discuss hashing approaches for scalability to
monitoring all pairwise cooccurrences.

3.1 Emerging and Trending Topics
When users see “trending topics”, they usually assume

that these are simply the most popular terms. However,
users do not only want popularity, but they also expect nov-
elty. Therefore, we must not simply look at the most popu-
lar tags, but we must take this popularity into its historical
context. Furthermore, the absolute popularity is subject
to seasonal trends. Depending on the data source, working
hours and weekdays result in “seasonal” patterns that need
to be accounted for. Relative popularity – normalized by
the total number of documents for the day – proved much
more robust in our experiments.

To evaluate the significance of a trend, we suggest to make
use of statistical best practice such as the z-score (formally,
the z-score assumes a normal distribution; while this will
likely not hold, it nevertheless can serve as a reasonable
heuristic for our purposes):

z(x) :=(x− µ)
/
σ

To use this on data streams, we need a moving average
and moving standard deviation such as the exponentially
weighted average (EWMA) and the associated standard de-
viation or variance (EWMVar):

sig(x) :=
x− EWMA√

EWMVar
(1)

in order to increase stability (the variance could be 0) as well
as to account for non-interesting fluctuations of rare terms,
we will ensure a minimum average and minimum standard
deviation of β, which we call the bias term:

sigβ(x) :=
x−max {EWMA, β}√

EWMVar + β
(2)

This bias term β not only avoids a division by 0, but also
serves as a noise filter. For low volume data EWMA < β



with a small value of β we cannot statistically argue about
trends. Intuitively, we should set β to the expected back-
ground noise level, i.e. how often rare terms occur naturally
in the data stream, without trending. This bias term also
takes into account that our input data is discrete – there are
no “half occurrences” of words.

In order to estimate the average EWMA and the variance
EWMVar for a data stream and a learning rate α, we can
rely on earlier work by Welford [34] and West [36] on in-
cremental mean and variance. The update equations given
by Finch [18] for the exponentially weighted variants allow
these values to be efficiently maintained on a data stream:

∆← x− EWMA

EWMA← EWMA + α ·∆ (3)

EWMVar← (1− α) · (EWMVar + α ·∆2) (4)

The learning rate α can be set using the half-life time t1/2;
a parameter a domain expert will be able to choose easily
based on his experience and needs:

αhalf-life = 1− exp
(
log
(
1
2

)
/t1/2

)
(5)

This update equation is best used with a fixed update cy-
cle. While we could adjust the update cycle dynamically by
adjusting α or t1/2 accordingly, there are good reasons not to
update too often: first of all, a fixed recomputation interval
gives better performance guarantees, and secondly we have
more control over the statistical validity of our estimates.
We cannot use above equations to update the statistics on
every arriving record, but we must perform some aggrega-
tion to estimate the popularity x reliably. When using a too
high update rate, we will have more variance in our estima-
tion of x, which will in turn harm the estimation of EWMA
and EWMVar. When using a data source with a natural
cycle, such as a news ticker having a daily pattern, we can
expect best results aligning our updates with this cycle.

Note that we avoid the popular equation E(X2)−E(X)2

for estimating the variance, because this equation is prone to
numerical instability due to catastrophic cancellation with
floating point arithmetic. This instability may be the reason
why variance on data streams seems to be rarely used yet.
Equation 4 is numerically stable [18], and thus preferable.

3.2 Emerging Topics are Outliers
Emerging topics, when defined as “a set of documents

which grows faster than expected from comparable other
document sets”, essentially are a specific kind of outliers.
Schubert et al. [32] discuss a generalized local outlier de-
tection model, and demonstrate its applicability to video
streams. A similar interpretation for outlier detection is pos-
sible for our approach: for each topic (approximated as word
or word pair), we compute a reference model consisting of
an average frequency and variance based on an exponentially
weighted temporal neighborhood set. We then compare the
current frequency to this reference, and measure the trend
by the deviation from this model.

The relationship to outlier detection not only exists on a
formal level, but we are also seeing many problems typical to
this domain [38]: we do not know beforehand what data we
are searching for, and we do not have labeled training data so
popular machine learning approaches such as random forests
cannot be trained for this problem. Instead, we have to fight
the problems of masking and swamping [9, 19], where for

example a continuously popular word such as obama may
prevent the detection of related trends, or a single strong
trend may mask other trends in the data set.

3.3 Trend Detection on Cooccurrences
Equation 3 and Equation 4 can be applied to any numer-

ical variable X. In order to apply this approach to trend
detection in textual data, we need to represent the incom-
ing data stream appropriately. We will not only build one
variable for each word, but also for each word coocurrence.
The reason is that we may be unable to reliably detect or
analyze some trends on single words only. In Figure 1 we vi-
sualize the Boston Marathon bombing on news data. In
Figure 1a the raw word occurrences are presented. The
word boston shows a comparable peak three days before the
Marathon. Figure 1b visualizes the EWMA moving average.
In this figure, it becomes evident that boston is (unsurpris-
ingly) frequently mentioned, but even explosion (as e.g. “the
explosion of mobile traffic”, “stock explosion” and “Dream-
liner battery explosion”) is occurring quite often. The exact
combination however of these three words first occurs on
April 15. Using the proposed significance measure, as visu-
alized in Figure 1d, shows a 48σ event for this combination.
For other related words, this event of global media interest
also shows a peak, but not quite as strong. On April 19, we
observe a similar peak for the combination boston, suspect ;
on this day the suspects were identified and the manhunt
began. This example demonstrates the benefits of tracking
word cooccurrences instead of single words.

3.4 Early Detection of Trends
Equation 3 and Equation 4 are not designed for contin-

uous updating of the EWMA and EWMVar estimates, but
we first need to have a robust estimate of the value of x.
While we can easily adjust αhalf-life to dynamic time win-
dows, the value of x will become noisy and exhibit a too
high variance to be useful for trend detection. A simple but
reliable approach estimating x is to use temporal slicing on
natural cycles and volume of the data source (which may
be a day for a news feed, or an hour for Twitter). Even
when not updating EWMA continuously, we can still per-
form an online detection of trends. In order to evaluate the
significance of a trend, it is even desirable to compare the
current estimate of x with estimations based on delayed data
only, i.e. we want to compare the observed value x with the
predicted value EWMA based on the previous day, and not
including the latest data in the prediction yet. By solving
Equation 1 for x, we can obtain an alerting threshold τ if
we fix a desired significance niveau s.

x >EWMA + s · EWMVar =: τ (6)

Intuitively, when x > τ , we are observing an s · σ signifi-
cant increasing trend in the data. We do however need to
acknowledge that this is not based on proper statistical hy-
pothesis testing, so we cannot assume that 3σ events are
rare: the 66 − 95 − 99.7% rule (the three sigma rule) does
not apply here, as we will be monitoring thousands of trends
in parallel and have some margin of error; on the other hand
we are interested in seeing multiple event every day, and not
just the most significant events of the year. This approach
can be seen as a variant of Bollinger Bands as used in stock
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Figure 1: Visualization of selected word occurrences for the Boston Marathon bombing on news data

market analysis, except that our data sources do not exhibit
the fast negative feedback loop driving the stock market.3

The main difficulty with this approach is getting a robust
estimate of x while the epoch is not yet complete. On the
news data set, for example, it is common not to see any news
posted before 6am in the morning. The first news item each
day will naturally produce terms with a näıve document fre-
quency of 1; yet they do not constitute a reliable trend so
far. However, we also do not know how many news will
be posted during the day in total. Therefore, in order to
estimate x, we need to learn to predict the number of docu-
ments to be posted during the epoch; we can then compare
the absolute number of occurrences, the number of docu-
ments seen so far, and the number of documents expected
to obtain a better estimate of x.

3.5 Scalability by Hashing
Although Equation 3 and Equation 4 are efficient to com-

pute, we would still need to perform this for any word pair.
As seen in Table 1, this is not scalable. Instead of restricting
the set of candidates to monitor beforehand, we propose to
use a probabilistic approach based on hash tables. The pop-

3It is therefore unlikely that the proposed method is bene-
ficial for stock market analysis.

ularity of words follows a long-tailed distribution: the ma-
jority of words has a low occurrence rate in the data. This
property can be exploited using clever hashing techniques.
Our approach is related to heavy-hitters algorithms such as
Bloom filter [10] and MinHash [11]. Instead of probabilis-
tic set membership testing, our hashing scheme is designed
for providing an upper bound of the EWMA and EWM-
Var values. We use 2` buckets (each storing an EWMA and
EWMVar value), and k hash functions, so that each word is
mapped to at most k buckets. When updating the EWMA
hash tables – when transitioning from one epoch to the next
– we first hash each word (with a frequency larger than β)
into its k buckets. For each bucket we track the maximum
popularity x observed in the current epoch. Next, we update
the EWMA and EWMVar values in the hash table with the
maximum x observed for all words in this bucket only. When
computing the alerting threshold τ for an observed word w,
we again inspect the k buckets given by the hash functions.
The threshold is then obtained by taking the minimum alert-
ing threshold of all buckets (Equation 6). Assuming there
exists at least one hash bucket where the candidate word w
has the maximum popularity xw of all words in this bucket,
then the EWMA value stored in this bucket will not be over-
written by a different word w′; and at the same time none
of the k buckets was last updated with a lower popularity



than xw. Otherwise, i.e. if in each of the k buckets there
was a hash collission with a more popular word w′, we will
overestimate the EWMA and EWMVar values, and we may
miss an emerging trend. To avoid this, we need to choose
` large enough, such that the majority of bins are not filled
with frequent keywords.

Using this hashing strategy, we can control the amount
of memory and computation needed for maintaining the
trend statistics very well. In fact, this allows us to scale
our approach beyond tracking single word (or hashtag) oc-
currences to monitoring even word-pair occurrences in large
data streams. Word-pair occurrences prove very effective in
our experiments at detecting subtopics. For example when
Edward Snowden traveled from Hong Kong to Moscow, all of
the individual words {edward, snowden, hong, kong, moscow}
themselves have not been trending (events surrounding Ed-
ward Snowden have continuously been in the media at that
time), but various combinations of these words such as snow-
den and moscow exhibit a significant peak.

The use of hashing yields a number of benefits. First of
all, updating the statistics becomes a vectorized bulk opera-
tion. Secondly, the memory usage is constant, and the data
can easily be serialized either for transmission to a different
system, but also for checkpointing and crash recovery. After
loading the last checkpoint, either a replay of the latest data
can be used to restore the exact state, or the system can even
decide to only process new data, and rely on the statistics
to recover (it may then be desirable to disable alerting for
this epoch).

3.6 Trend Redundancy and Refinement
A secondary challenge is the redundancy of trends. As-

suming that a word such as snowden is trending, then we
will likely see other related words such as edward also trend
at the same time. But we may also see uninteresting combi-
nations such as {snowden, the} trend significantly compared
to previous usage of this word combination. Probably the
most important step here is to perform stopword removal:
by not including known stopwords in the trend analysis, we
both have to analyze much less pairs, but we will also re-
move a large share of uninteresting co-trends. In addition
to a language-specific set of stopwords, it is also beneficial
to include domain specific stopwords, such as follow, tweet,
retweet (rt), lol and twitter for Twitter.

In the refinement phase, we can use an inverted index to
both verify observed trends (as the hash table may have had
a collission), but also compute the overlap between any two
words involved in the detected trends. For this we employed
the clustering toolkit ELKI [1], and used hierarchical clus-
tering with Ward linkage. Similarity is measured by how
significant the two words trend together. We cannot assume
that related words form a clique: consider for example fis-
cal, cliff, barack and obama. The last two will usually not
qualify as a trending topic, but the names are in fact one of
the most mentioned words in news on any day; however all
four together form a known topic.

Alternatives at this stage – which we plan to investigate
in future work – include finding maximum-weight cliques (as
used in [25]) and topic modeling techniques such as pLSI and
LDA. However, topic modeling is not guaranteed to produce
a more meaningful output either [13].

In Algorithm 1 we give a pseudocode for the overall detec-
tion process, but we have to omit some details for brevity.

Algorithm 1: Document Processing

Data: epoch Epoch identifier
Data: EWMA[c] Averages hash table
Data: EWMVar[c] Variance hash table
Data: hi Hash functions
Input: s Threshold for refinement / alerting

open index[epoch] shard for writing
initialize frequency map
initialize stats map
/* Index a new document */

foreach doc in current epoch do
foreach unique word and word-pair in doc do

add doc.id to index[epoch][word]
increment frequency[word]
/* Get word statistics from hash table */

if not stats[word] then
(µ, σ)← (∞,∞)
foreach hash function hi do

c← hi(word)
if EWMA[c] < µ then

µ← EWMA[c]

σ ←
√

EWMVar[c]

stats[word]← (µ, σ)

(µ, σ)← stats[word]
/* Test for significance threshold */

x← estimate frequency of word
if (x−max(β, µ))/(σ + β) > s then

send to refinement for early alerting

/* Perform end-of-day analysis */

initialize trending topics list
foreach unique word and word-pair in frequency do

(µ, σ)← stats[word]
/* Test for significance threshold */

x← frequency[word]/|documents|
if (x−max(β, µ))/(σ + β) > s then

add word to trending topics

close index[epoch] shard for writing
Refine trending topics
Cluster trending topics
Produce end-of-day report

/* Update the statistics table for next epoch */

/* Aggregate into maximum for each bucket */

initialize update-table
foreach word and word-pair in frequency do

frequency← frequency of word
foreach hash function hi do

c← hi(word)
if frequency > update-table[c] then

update-table[c]← frequency

/* Update statistics table */

foreach hash code c do
freq← update-table[c]/number of documents
∆← freq− EWMA[c]
EWMA[c]← EWMA[c] + α ·∆
EWMVar[c]← (1− α) · (EWMVar[c] + α ·∆2)

/* End epoch */



4. EXPERIMENTS
We demonstrate the scalability of our system as well as its

ability to detect statistically significant trends in real data
sets, without the need to reduce the candidate set as required
in related work such as enBlogue [5]. For all data sets, we
employed best practises for text mining such as language-
specific stemming using the Xapian search engine library.4

We also removed a standard set of English stopwords as well
as domain specific stopwords (e.g. retweet for Twitter).

The implementation of the main analysis (not including
the web spider and preprocessing) was done in Java using
a single thread and Apache Lucene5 as backing index. To
save disk space and comply with copyright requirements, we
did not store complete documents for the news data set, but
only inverted lists, the URL and the headline.

4.1 Data Sets
For our experiments we focused on three data sets that

exhibit very different charactersistics, as it can be seen from
Table 1 and Table 2. The first data set, consisting of news
articles, contains much fewer documents, but the documents
obviously are much longer than those of the Twitter data
set. The longer paragraphs of the news articles then yield
even more word pairs than the Twitter data. But there is
also a more subtle difference than the size. Where Twitter
contained 25 million unique tokens, 99% of these occurred
less than 14 times in the data set. In the news data, the
vocabulary was much more evenly used, with the top 1% of
words occurring 3476 times or more.

4.1.1 News Articles
We used a web spider to index news articles from popular

news agencies such as Reuters and Bloomberg as our first
data source. We limited the index process to the year 2013
plus a window of 10 days. As these news contents have
restrictive copyright requirements, we must not store the full
documents, but only use the data to perform trend detection
and construct a search index for refinement; but the original
article can be accessed on the publisher’s website.

Nevertheless, the news article corpus is very interesting,
because it is editorially managed, and of a different nature
than Twitter: where Twitter users tend to re-share the ex-
act same text to their followers, news agencies try to avoid
duplication. For some trending topics, we do however see
“update” documents in this data source. For the use case
of a corporate user interested e.g. in financial trends, news
agencies may be the more interesting data source than Twit-
ter. Methods such as enBlogue [5] cannot be applied on this
data set without modifications, as it relies on hashtags to
seed its search process. Our method does not have such
restrictions, but monitors all frequent word pairs.

4.1.2 Twitter
Because of the low latency and high volume, Twitter has

become one of the most popular data sources for trend de-
tection on the Internet. Events such as the Arab Spring led
to a wide acceptance of Twitter as a medium capable of real-
time monitoring. As such, this data source is an interesting
complement to the news organization data sources we used
for most of our experiments: Twitter data is even noisier and

4Open-Source, http://xapian.org/
5Open-Source, https://lucene.apache.org/

larger in volume, but it is also prone to bias due to its non-
representative user base. We used Twitter’s public stream-
ing API at the “Spritzer” sampling rate (approximately 1%
of tweets) to process about 279 million tweets over a period
of 114 days. For analysis purposes we only used English lan-
guage tweets, removed all retweets (about 10%) and used a
simple near-duplicate detector to remove obvious spam and
bulk (about 1.5%), which yields 94 million tweets to analyze.
When including #hashtags and @usermentions as tokens,
the results were dominated by teen idols, which are mas-
sively “spammed” by their fans. But as these tweets include
few other words (except stopwords such as ilysim) they be-
come essentially empty when skipping these tags. Without
#hashtags and @usermentions, the analysis become more
focused on the textual content, and thus the results became
much more interesting (as seen in Table 4).

4.1.3 Stack Overflow
Stack Overflow is a Q&A website, which publishes its data

under a creative commons license.6 We analyzed the con-
tents of the main website, years 2010 to 2013, totaling to
5.9 million questions. There were few significant trends in
this data set, corresponding to important software releases
(OS X Mavericks, OS X Mountain Lion, iOS6, iOS7, Type-
Script), the facebook.stackoverflow.com launch and holi-
days (new years, christmas), so we omit details for brevity
(included in the online demonstration).

4.2 Manual Analysis of Real World Trends
Table 3 examines the top 50 most significant trends in the

news data set for the year 2013. For brevity, we omitted eco-
nomic and sport news outside the top 10. Finance and sports
dominate the results due to their extensive coverage in these
data sources. In particular, “game days” of sports leagues
trend every week due to some new word pair combinations.
This may require future work to automatically classify the
detected trends into categories such as sports. Nevertheless,
a number of events also made it into the top 40, such as the
Boston Marathon bombing discussed before, the algeria gas
plant attack and Syrias use of chemical weapons.

In Table 4 we also discuss the top 40 trends in Twitter de-
tected. All of these are easily verifiable with Internet search.
Detected trends consist of single words, up to almost com-
plete sentences by Twitter standards. Despite not using
retweets, many topics such as the Oscar selfie (the most
retweeted tweet so far) still surfaced, because a substantial
amount of users add a reply text to their tweet.

4.3 Scalability
Due to the use of hash tables, we were able to run the

experiments on a single i7-3770 CPU core without the need
to use distributed computation or multiple threads. For the
news data set, the preprocessed data volume was 1.1 GB
(2.6 MB per day on average). Analyzing a year of data
took 18 minutes, i.e. 2.5-3 seconds on average per day. The
refinement index only stores the headlines, for which we need
only 745 KB per day, and 305 MB total for a whole year.

The raw 1% Twitter input data was 228 GB compressed,
after filtering retweets and non-English tweets, and pre-
processing, 6.7 GB remained. Processing Twitter took 1.5
hours; 46 seconds on average per day. The actual analysis

6https://archive.org/details/stackexchange

http://xapian.org/
https://lucene.apache.org/
https://archive.org/details/stackexchange


Table 1: Data set statistics (after stopword removal)

Data set Documents Paragraphs Unique Words Total Words Unique Pairs Total Pairs
News 424,704 5,867,457 300,141 56,661,782 71,289,359 660,430,059
Twitter 94,127,149 94,127,149 25,581,022 245,140,695 179,105,233 473,871,456
StackOverflow 5,932,320 30,423,831 2,040,932 138,205,636 91,460,397 545,570,530

Table 2: Vocabulary statistics (after stopword removal)

Word Frequency Pair Frequency
Data set Median 90% Quantile 99% Quantile Median 90% Quantile 99% Quantile
News 3 81 3476 2 18 124
Twitter 1 at 92.9: 2 14 1 at 91.3: 4 29
StackOverflow 1 at 90.1: 7 185 1 at 90.9: 5 73
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Figure 2: Performance with varying hash table size `, k = 4

ran in 48 minutes; 25 seconds per day. The inverted index for
Twitter occupied 18 GB of disk space, storing about 160 MB
per day of Twitter data. Therefore, this approach should be
scalable to the full Twitter “firehose” stream. In particu-
lar, there are a number of easy ways for distributing the
load: for example, building the backing index, maintaining
the hash tables, and refining the detected events can easily
be distributed on separate systems. As the backing indexes
are sharded already, the shards can also be distributed onto
different machines trivially. In fact, we were able to pro-
cess the news data sets on a Raspberry Pi (700 MHz ARM
CPU, 512 MB RAM) at a processing speed of 104.1 seconds
on average per day.

4.4 Hash Table Size
For the hash table sizes, we expect a saturation effect to

happen. Too small hash tables will lead to masking and
swamping [9, 19]; but once the hash table has become big
enough to not have collissions, the EWMA estimates are ex-
pected to be good. To verify this, we used semi-synthetically
data sets derived from the news data sets. Into these, we
injected artificial words following a narrow Poisson distribu-
tion with λ = 2 . . . 9 weakened by a constant factor of α.
After then random onset of the artificial trend, we modified
each document with a probability of

α · pmfPoisson(λ, k) = α
λk

k!
e−λ

Due to the randomization of λ, some trends will be easier
to spot, others will be harder. Furthermore, both the ex-
isting natural trends in the data and injected trends may
mask the injected trends. The maximum value of the prob-
ability mass function is 0.27, so for α = 0.15 about 4% of
documents were modified to include the artificial keyword.
For α = 0.01, the chance of trend injection drops to 0.27%.
Figure 2 summarizes the results on the injected trends data

using k = 4 hash functions. As you can see, at α > 0.05
the artificial trends are detected reliably, and the hash ta-
bles show a typical saturation effect, where the performance
no longer increases once we have reached a reasonable size.
A hash table of 20 bits requires just 225 bytes of memory
(32 Megabytes).

4.5 Online Demonstration
The results of our trend detection system are available at

http://signi-trend.appspot.com/ for exploration.

5. CONCLUSIONS
In this article, we first discussed the use of exponentially

weighted floating averages and variance to score a trend-
ing topic with respect to its recent occurrences in the data
stream. The proposed statistic needs litte memory – two
floating point values only – and can be efficiently updated
using an incremental equation. The numerical properties of
this equation are well understood, and it was shown to be
more stable than the näıve equation of the variance involv-
ing a difference of squares. This improved scoring function
is able to capture the background noise as well as general
trends in the data, and by measuring variability it can pro-
duce a much more meaningful significance score than e.g.
nearest-neighbor distances that were used in state-of-the-art
prior work to measure emerging topics.

Secondly, we showed how to scale our statistical approach
to monitoring every word and word pair of a data stream
with limited memory, by using hashing techniques and ex-
ploiting that the majority of words and word pairs occurrs
only rarely in the stream. By resolving hash collissions in
favor of the more common word or word pair, we will usu-
ally have an exact statistic for these words and only occur
information loss on rarely seen words – which then by defi-
nition are not trending yet. Scalability of this approach was
demonstrated by analyzing state-of-the-art data sets faster
than real time on a single CPU.

Third, we suggested and demonstrated the use of clus-
tering techniques to aggregate the observed trends – which
usually only affect a small subset of the vocabulary, for which
the results can be refined from an inverted index – into larger
trends. This has become more important than in previous
work, as we monitor a much larger set of candidates; and in
particular cooccurrences tend to overlap and form clusters.

To the best of our knowledge, this is the first system that
can monitor all word pair cooccurrences on a large data
stream without the need for parallelization, whereas previ-
ous work can only monitor a filtered set of terms or word
pairs, based on a seed set. Such a restriction is no longer
necessary with the memory reduction obtained via hashing.

http://signi-trend.appspot.com/


Table 3: Excerpt of top 50 trends on news data set 2013 (dominated by economy, sports and politics)

Score Date Stemmed Keywords (excerpt, edited for readability) Explanation
58 11-18 thomson text summary 3000xtra alert outperform eikon Reuters artifact – 233 research alerts
13 10-09 janet yellen ben bernank vice barack obama nomin Obama nominates Yellen as U.S. Fed Chief
10 02-14 heinz buffett gdp hj merger shrank berkshir hathaway warren Berkshire Hathaway, 3G Capital buy Heinz
9.7 07-03 turmoil armi unrest egyptian lisbon egypt mursi portug bailout Yen rises because of turmoil in Egypt, Portugal
9.4 04-19 boston search bomb suspect marathon manhunt Boston Marathon suspect manhunt
9.3 04-15 boston explos marathon Boston Marathon bombing
9.3 01-28 durabl caterpillar pend Four-month high oil, strong durable goods
8.8 09-19 inning era Baseball end of season reports
8.8 02-26 ben bernank testimoni defend deadlock stalem Bernanke defends bond-buying, Italian stalemate
8.6 07-11 ben bernank minut accommod forese dovish Bernanke reassures euro bonds markets

Economical, financial and sports news largely omitted outside the top 10 for brevity
8.6 04-16 finish sharp metal boston marathon rebound terror bomb explos injur Boston Marathon attack details
8.6 03-25 rescu cyprus bailout eurogroup guarante relief dutch jeroen dijsselbloem EU cyprus bailout
8.5 01-17 hostag desert milit algeria algerian Algerian gas plant attack
8.5 09-03 finnish wireless handset nokia smartphon microsoft Microsoft buys Nokia’s handset business
8.3 01-23 davo forum switzerland cameron referendum Cameron promises referendum to leave EU
7.8 11-24 atom reactor iranian geneva enrich breakthrough lift uranium Breakthrough on Iran nuclear activity
7.8 08-26 chemic weapon secretari holiday durabl Kerry comments on Syria over chemical weapons
7.7 05-21 oklahoma moor tornado Moore, Oklahoma hit by deadly tornados
7.6 09-23 merkel angela coalit victori william dudley shutdown German elections succes for Angela Merkel
7.3 10-01 deadlock shutdown midnight began trillion unpaid barack obama U.S. government partial shutdown
7.2 08-27 syrian chemic weapon strike assad tension kerri secretari Escalations in Syria
6.9 04-20 dzhokhar tamerlan tsarnaev brother suspect captur dead watertown injur Boston Marathon suspects captured
6.8 07-24 appl iphon smartphon markit flash beat faster Surge in iPhone sales
6.8 12-06 nelson mandela die apartheid african africa Nelson Mandela died
6.7 02-15 moscow communiqu G20 finance ministers in Moscow
6.7 04-08 thatcher iron margaret Margaret Thatcher died
6.6 07-12 airport dreamlin ethiopian heathrow boe Boeing Dreamliner catches fire
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Table 4: Top 40 trends on Twitter data (dominated by celebrities and teen idols)

Score Date Keywords Explanation
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127 05-12 elev jayz attack jay solang beyonc Solange, Jay Z and Beyonce elevator incident
98 03-03 ellen degener host selfi pizza Ellen’s Oscar Selfie and Pizza
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73 05-24 ronaldo bale gareth Champions league final
63 04-07 geldof dead rip peach Peaches Geldof died of heroin
61 04-15 moon eclips lunar blood Blood moon (lunar eclipse)
60 05-05 shovel Snow in May + “shovel girl fight” viral video
51 05-24 ramo sergio Champions league final
51 04-14 zac efron Zac Efron shirtless at the MTV movie awards
50 03-17 punch pinch green St. Patricks Day
50 05-06 mimi Mimi Faust and Nikko announce private video
49 03-17 lizzi Lizzie in the series The Walking Dead
48 02-19 angela Talking Angela hoax
47 04-29 ban silver adam clipper donald sterl nba owner Donald Sterling banned for life from NBA
46 05-15 sm exo kris Rumor of Kris (of Exo-M) parting
43 05-10 austria Austria wins the Eurovision song contest
43 03-03 arm bradley longer cooper Oscar selfie: “If only Bradley’s arm was longer. Best photo ever”
43 02-24 rip harold ghostbust rami Actor Harold Ramis died
42 04-10 sibl nation National siblings day
42 03-09 arsenal wigan Arsenal vs. Wigan Athletic in FA cup
41 04-13 million matt Matthew Espinosa follow spree (#mattTo1Mil)
41 03-17 earthquak 4.4 earthquake strongly felt in Los Angeles
41 05-09 billionair dre dr beat billion appl Apple buys Dr. Dre
40 05-10 eurovis Eurovision Song Contest
38 05-06 bambi Love & Hip Hop Atlanta Premiere with Bambi
38 03-19 ezra dead Ezra gets shot in series “Pretty little liars”
38 04-16 bale gareth goal Winning goal in Copa del Rey final
38 03-03 actor oscar mcconaughey matthew leo leonardo dicaprio No Oscar for Leonardo di Caprio, again
37 05-06 scrappi Love & Hip Hop Atlanta Premiere with Scrappy
36 05-09 cleveland johnni manziel dalla footbal draft brown Johnny Manziel draft in NFL
35 04-30 rip bob actor hoskin Actor Bob Hoskins died
35 04-26 racist donald clipper sterl owner Donald Sterlin accused of racism (see above!)
35 03-18 allison Allison in TV series “teen wolf”
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