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ABSTRACT
Probabilistic frequent itemset mining in uncertain trans-
action databases semantically and computationally differs
from traditional techniques applied to standard “certain”
transaction databases. The consideration of existential un-
certainty of item(sets), indicating the probability that an
item(set) occurs in a transaction, makes traditional tech-
niques inapplicable. In this paper, we introduce new prob-
abilistic formulations of frequent itemsets based on possible
world semantics. In this probabilistic context, an itemset
X is called frequent if the probability that X occurs in at
least minSup transactions is above a given threshold τ . To
the best of our knowledge, this is the first approach ad-
dressing this problem under possible worlds semantics. In
consideration of the probabilistic formulations, we present a
framework which is able to solve the Probabilistic Frequent
Itemset Mining (PFIM) problem efficiently. An extensive
experimental evaluation investigates the impact of our pro-
posed techniques and shows that our approach is orders of
magnitude faster than straight-forward approaches.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Theory

Keywords
Uncertain Databases, Frequent Itemset Mining, Probabilis-
tic Data, Probabilistic Frequent Itemsets

1. INTRODUCTION
Association rule analysis is one of the most important

fields in data mining. It is commonly applied to market-
basket databases for analysis of consumer purchasing be-
haviour. Such databases consist of a set of transactions,
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each containing the items a customer purchased. The most
important and computationally intensive step in the mining
process is the extraction of frequent itemsets – sets of items
that occur in at least minSup transactions.

It is generally assumed that the items occurring in a trans-
action are known for certain. However, this is not always the
case. For instance;

• In many applications the data is inherently noisy, such
as data collected by sensors or in satellite images.

• In privacy protection applications, artificial noise can
be added deliberately [16]. Finding patterns despite
this noise is a challenging problem.

• By aggregating transactions by customer, we can mine
patterns across customers instead of transactions. This
produces estimated purchase probabilities per item per
customer rather than certain items per transaction.

In such applications, the information captured in transac-
tions is uncertain since the existence of an item is associated
with a likelihood measure or existential probability. Given
an uncertain transaction database, it is not obvious how
to identify whether an item or itemset is frequent because
we generally cannot say for certain whether an itemset ap-
pears in a transaction. In a traditional (certain) transaction
database, we simply perform a database scan and count the
transactions that include the itemset. This does not work
in an uncertain transaction database.

Dealing with such databases is a difficult but interesting
problem. While a naive approach might transform uncer-
tain items into certain ones by thresholding the probabili-
ties, this loses useful information and leads to inaccuracies.
Existing approaches in the literature are based on expected
support, first introduced in [6]. Chui et. al. [5, 6] take
the uncertainty of items into account by computing the ex-
pected support of itemsets. Itemsets are considered frequent
if the expected support exceeds minSup. Effectively, this
approach returns an estimate of whether an object is fre-
quent or not with no indication of how good this estimate
is. Since uncertain transaction databases yield uncertainty
w.r.t. the support of an itemset, the probability distribution
of the support and, thus, information about the confidence
of the support of an itemset is very important. This in-
formation, while present in the database, is lost using the
expected support approach.

Example 1. Consider a department store. To maximize
sales, customers can be analysed to find sets of items that are
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Customer Item Prob.

A Game 1.0

A Music 0.2

B Video 0.4

B Music 0.7

ID Transaction

tA (Game, 1.0) ; (Music, 0.2)

tB (Video, 0.4) ; (Music, 0.7)

(a) Uncertain Trans-
action Database

World TransactionDB Prob.

1 {Game} ; {} 0.144

2 {Game, Music} ; {} 0.036

3 {Game} ; {Video} 0.096

4 {Game, Music} ; {Video} 0.024

5 {Game} ; {Music} 0.336

6 {Game, Music} ; {Music} 0.084

7 {Game} ; {Video, Music} 0.224

8 {Game, Music} ;
{Video, Music}

0.056

(b) Corresponding
possible worlds

Figure 1: Example application of an uncertain trans-
action database.

all purchased by a large group of customers. This informa-
tion can be used for advertising directed at this group. For
example, by providing special offers that include all of these
items along with new products, the store can encourage new
purchases. Figure 1(a) shows such customer information.
Here, customer A purchases games every time he visits the
store and music (CDs) 20% of the time. Customer B buys
music in 70% of her visits and videos (DVDs) in 40% of
them. The supermarket uses a database that represents each
customer as a single uncertain transaction, also shown in
Figure 1(a).

1.1 Uncertain Data Model
The uncertain data model applied in this paper is based

on the possible worlds semantic with existential uncertain
items.

Definition 2. An uncertain item is an item x ∈ I whose
presence in a transaction t ∈ T is defined by an existential
probability P (x ∈ t) ∈ (0, 1). A certain item is an item
where P (x ∈ t) ∈ {0, 1}. I is the set of all possible items.

Definition 3. An uncertain transaction t is a transac-
tion that contains uncertain items. A transaction database
T containing uncertain transactions is called an uncertain
transaction database.

An uncertain transaction t is represented in an uncertain
transaction database by the items x ∈ I associated with an
existential probability value1 P (x ∈ t) ∈ (0, 1]. Example
uncertain transaction databases are depicted in Figures 1
and 2. To interpret an uncertain transaction database we
apply the possible world model. An uncertain transaction
database generates possible worlds, where each world is de-
fined by a fixed set of (certain) transactions. A possible
world is instantiated by generating each transaction ti ∈ T
according to the occurrence probabilities P (x ∈ ti). Con-
sequently, each probability 0 < P (x ∈ ti) < 1 derives two
possible worlds per transaction: One possible world in which
x exists in ti, and one possible world where x does not exist
in ti. Thus, the number of possible worlds of a database
increases exponentially in both the number of transactions
and the number of uncertain items contained in it.

Each possible world w is associated with a probability
that that world exists, P (w). Figure 1(b) shows all possible

1If an item x has an existential probability of zero, it does
not appear in the transaction.

ID Transaction

t1 (A, 0.8) ; (B, 0.2) ; (D, 0.5) ; (F, 1.0)

t2 (B, 0.1) ; (C, 0.7) ; (D, 1.0) ; (E, 1.0) ; (G, 0.1)

t3 (A, 0.5) ; (D, 0.2) ; (F, 0.5) ; (G, 1.0)

t4 (D, 0.8) ; (E, 0.2) ; (G, 0.9)

t5 (C, 1.0) ; (D, 0.5) ; (F, 0.8) ; (G, 1.0)

t6 (A, 1.0) ; (B, 0.2) ; (C, 0.1)

Figure 2: Example of a larger uncertain transaction
database.

worlds derived from Figure 1(a). For example, in world 6
both customers bought music, customer B decided against
a new video and customer A bought a new game.

We assume that uncertain transactions are mutually inde-
pendent. Thus, the decision by customer A has no influence
on customer B. This assumption is reasonable in real world
applications. Additionally, independence between items is
often assumed in the literature [5, 6]. This can be justi-
fied by the assumption that the items are observed indepen-
dently. In this case, the probability of a world w is given
by:

P (w) =
∏
t∈I

(
∏
x∈t

P (x ∈ t) ∗
∏
x/∈t

(1− P (x ∈ t)))

For example, the probability of world 5 in Figure 1(b) is
P (Game ∈ tA) ∗ (1 − P (Music ∈ tA)) ∗ P (Music ∈ tB) ∗
(1− P (V ideo ∈ tB)) = 1.0 ∗ 0.8 ∗ 0.7 ∗ 0.6 = 0.336.

In the general case, the occurrence of items may be de-
pendent. For example, the decision to purchase a new music
video DVD may mean they are unlikely to purchase a mu-
sic CD by the same artist. Alternatively, some items must
be bought together. If these conditional probabilities are
known, they can be used in our methods. For example,
the probability that both a video and music are purchased
by customer B is P ({V ideo,Music} ∈ tB) = P (V ideo ∈
tB) ∗ P (Music ∈ tB |V ideo ∈ tB).

1.2 Problem Definition
An itemset is a frequent itemset if it occurs in at least

minSup transactions, where minSup is a user specified pa-
rameter. In uncertain transaction databases however, the
support of an itemset is uncertain; it is defined by a dis-
crete probability distribution function (p.d.f). Therefore,
each itemset has a frequentness probability2 – the probabil-
ity that it is frequent. In this paper, we focus on the problem
of efficiently calculating this p.d.f. and extracting all proba-
bilistic frequent itemsets;

Definition 4. A Probabilistic Frequent Itemset (PFI) is
an itemset with a frequentness probability of at least τ .

The parameter τ is the user specified minimum confidence
in the frequentness of an itemset.

We are now able to specify the Probabilistic Frequent Item-
set Mining (PFIM) problem as follows; Given an uncertain
transaction database T , a minimum support scalar minSup
and a frequentness probability threshold τ , find all proba-
bilistic frequent itemsets.

2Frequentness is the rarely used word describing the prop-
erty of being frequent.



1.3 Contributions
We make the following contributions:

• We propose a probabilistic framework for frequent item-
set mining in databases containing uncertain transac-
tions, based on the possible worlds model.

• We present a dynamic computation method for com-
puting the probability that an itemset is frequent, as
well as the entire probability distribution function of
the support of an itemset, in O(|T |) time3. Without
this technique, it would run in exponential time in the
number of transactions. Using our approach, our algo-
rithm has the same time complexity as methods based
on the expected support [5, 6, 11]. However, our ap-
proach yields much better effectiveness since it pro-
vides confidences for frequent itemsets.

• We propose an algorithm to mine all itemsets that are
frequent with a probability of at least τ . Furthermore,
we propose an additional algorithm that incrementally
outputs the uncertain itemsets in the order of their
frequentness probability. This ensures that itemsets
with the highest probability of being frequent are out-
put first. This has two additional advantages; First,
it makes the approach free of the parameter τ . Sec-
ondly, it solves the top k itemsets problem in uncertain
databases.

The remainder of this paper is organised as follows; Section
2 surveys related work. Section 3 presents our probabilistic
support framework. Section 4 shows how to compute the
frequentness probability in O(|T |) time. Section 5 presents
a probabilistic frequent itemset mining algorithm. Section 6
presents our incremental algorithm. We present our experi-
ments in Section 7 and conclude in Section 8.

2. RELATED WORK
There is a large body of research on Frequent Itemset Min-

ing (FIM) but very little work addresses FIM in uncertain
databases [5, 6, 11]. The approach proposed by Chui et.
al [6] computes the expected support of itemsets by sum-
ming all itemset probabilities in their U-Apriori algorithm.
Later, in [5], they additionally proposed a probabilistic fil-
ter in order to prune candidates early. In [11], the UF-
growth algorithm is proposed. Like U-Apriori, UF-growth
computes frequent itemsets by means of the expected sup-
port, but it uses the FP-tree [9] approach in order to avoid
expensive candidate generation. In contrast to our proba-
bilistic approach, itemsets are considered frequent if the ex-
pected support exceeds minSup. The main drawback of this
estimator is that information about the uncertainty of the
expected support is lost; [5, 6, 11] ignore the number of pos-
sible worlds in which an itemsets is frequent. [18] proposes
exact and sampling-based algorithms to find likely frequent
items in streaming probabilistic data. However, they do not
consider itemsets with more than one item. Finally, except
for [15], existing FIM algorithms assume binary valued items
which precludes simple adaptation to uncertain databases.
To the best of our knowledge, our approach is the first that
is able to find frequent itemsets in an uncertain transaction
database in a probabilistic way.

3Assuming minSup is a constant.

Existing approaches in the field of uncertain data man-
agement and mining can be categorized into a number of
research directions. Most related to our work are the two
categories “probabilistic databases” [4, 12, 13, 3] and “proba-
bilistic query processing” [7, 10, 17, 14].

The uncertainty model used in our approach is very close
to the model used for probabilistic databases. A probabilis-
tic database denotes a database composed of relations with
uncertain tuples [7], where each tuple is associated with a
probability denoting the likelihood that it exists in the rela-
tion. This model, called “tuple uncertainty”, adopts the pos-
sible worlds semantics [3]. A probabilistic database repre-
sents a set of possible “certain” database instances (worlds),
where a database instance corresponds to a subset of un-
certain tuples. Each instance (world) is associated with the
probability that the world is “true”. The probabilities re-
flect the probability distribution of all possible database in-
stances. In the general model description [13], the possible
worlds are constrained by rules that are defined on the tu-
ples in order to incorporate object (tuple) correlations. The
ULDB model proposed in [4], which is used in Trio[1], sup-
ports uncertain tuples with alternative instances which are
called x-tuples. Relations in ULDB are called x-relations
containing a set of x-tuples. Each x-tuple corresponds to
a set of tuple instances which are assumed to be mutually
exclusive, i.e. no more than one instance of an x-tuple can
appear in a possible world instance at the same time. Prob-
abilistic top-k query approaches [14, 17, 12] are usually asso-
ciated with uncertain databases using the tuple uncertainty
model. The approach proposed in [17] was the first approach
able to solve probabilistic queries efficiently under tuple in-
dependency by means of dynamic programming techniques.
In our paper, we adopt the dynamic programming technique
for the efficient computation of frequent itemsets in a prob-
abilistic way.

3. PROBABILISTIC FREQUENT ITEMSETS
Recall that previous work was based on the expected sup-

port [5, 6, 11].

Definition 5. Given an uncertain transaction database
T , the expected support E(X) of an itemset X is defined
as E(X)=

∑
t∈T P (X ⊆ t).

Considering an itemset frequent if its expected support is
above minSup has a major drawback. Uncertain transaction
databases naturally involve uncertainty concerning the sup-
port of an itemset. Considering this is important when eval-
uating whether an itemset is frequent or not. However, this
information is forfeited when using the expected support ap-
proach. Let us return to the example shown in Figure 2. The
expected support of the itemset {D} is E({D}) = 3.0. The
fact that {D} occurs for certain in one transaction, namely
in t2, and that there is at least one possible world where
X occurs in five transactions are totally ignored when using
the expected support in order to evaluate the frequency of
an itemset. Indeed, suppose minSup = 3; do we call {D}
frequent? And if so, how certain can we even be that {D} is
frequent? By comparison, consider itemset {G}. This also
has an expected support of 3, but its presence or absence
in transactions is more certain. It turns out that the prob-
ability that {D} is frequent is 0.7 and the probability that
G is frequent is 0.91. While both have the same expected
support, we can be quite confident that {G} is frequent, in



Notation Description

W , w Set of all possible worlds, Possible world
instance w ∈W

T , t Uncertain transaction database, transaction
t ∈ T

I Set of all items
X, x Itemset X ⊆ I, item x ∈ I

S(X, w) Support of X in world w
Pi(X) Probability that the support of X is i

P≥i(X) Probability that the support of X is at least i
Pi,j(X) Probability that i of the first j transactions

contain X
P≥i,j(X) Probability that at least i of the first j

transactions contain X

Figure 3: Summary of Notations

contrast to {D}. An expected support based technique does
not differentiate between the two.

The confidence with which an itemset is frequent is very
important for interpreting uncertain itemsets. We there-
fore require concepts that allow us to evaluate the uncertain
data in a probabilistic way. In this section, we formally in-
troduce the concept of probabilistic frequent itemsets.

3.1 Probabilistic Support
In uncertain transaction databases, the support of an item

or itemset cannot be represented by a unique value, but
rather, must be represented by a discrete probability distri-
bution.

Definition 6. Given an uncertain (transaction) database
T and the set W of possible worlds (instantiations) of T , the
support probability Pi(X) of an itemset X is the probability
that X has the support i. Formally,

Pi(X) =
∑

wj∈W,(S(X,wj)=i)

P (wj)

where S(X,wj) is the support of X in world wj.

Intuitively, Pi(X) denotes the probability that the support
of X is exactly i . The support probabilities associated with
an itemset X for different support values form the support
probability distribution of the support of X.

Definition 7. The probabilistic support of an itemset X
in an uncertain transaction database T is defined by the sup-
port probabilities of X (Pi(X)) for all possible support val-
ues i ∈ {0, ..., |T |}. This probability distribution is called
support probability distribution. The following statement
holds:

∑
0≤i≤|T | Pi(X) = 1.0.

Returning to our example of Figure 2, Figure 4(a) shows the
support probability distribution of itemset {D}.

The number of possible worlds |W | that need to be con-
sidered for the computation of Pi(X) is extremely large. In

fact, we have O(2|T |·|I|) possible worlds, where |I| denotes
the total number of items. In the following, we show how to
compute Pi(X) without materializing all possible worlds.

Lemma 8. For an uncertain transaction database T with
mutually independent transactions and any 0 ≤ i ≤ |T |, the
support probability Pi(X) can be computed as follows:

Pi(X) =
∑

S⊆T,|S|=i

(
∏
t∈S

P (X ⊆ t)·
∏

t∈T−S

(1−P (X ⊆ t))) (1)

0 35

0,4

0,45

Pi ({D})

0,2

0,25

0,3

0,35

0

0,05

0,1

0,15

support i

0

0 1 2 3 4 5 6

(a) Support proba-
bility distribution of
{D}

P
 minSup ({D})

1,2

0 6

0,8

1

0,2

0,4

0,6

minimum support (minSup)

0

0 1 2 3 4 5 6

(b) Frequentness
probabilities of {D}

Figure 4: Probabilistic support of itemset X = {D}
in the uncertain database of Figure 2.

Note that the transaction subset S ⊆ T contains exactly i
transactions.

Proof. The transaction subset S ⊆ T contains i transac-
tions. The probability of a world wj where all transactions
in S contain X and the remaining |T−S| transactions do not
contain X is P (wj) =

∏
t∈S P (X ⊆ t) ·

∏
t∈T−S(1− P (X ⊆

t)). The sum of the probabilities according to all possi-
ble worlds fulfilling the above conditions corresponds to the
equation given in Definition 6.

3.2 Frequentness Probability
Recall that we are interested in the probability that an

itemset is frequent, i.e. the probability that an itemset oc-
curs in at least minSup transactions.

Definition 9. Let T be an uncertain transaction database
and X be an itemset. P≥i(X) denotes the probability that the

support of X is at least i, i.e. P≥i(X) =
∑|T |

k=i Pk(X). For a
given minimal support minSup ∈ {0, . . . , |T |}, the probabil-
ity P≥minSup(X), which we call the frequentness probability
of X, denotes the probability that the support of X is at least
minSup.

Figure 4(b) shows the frequentness probabilities of {D}
for all possible minSup values in the database of Figure 2.
For example, the probability that {D} is frequent when
minSup = 3 is approximately 0.7, while its frequentness
probability when minSup = 4 is approximately 0.3.

The intuition behind P≥minSup(X) is to show how confi-
dent we are that an itemset is frequent. With this policy,
the frequentness of an itemset becomes subjective and the
decision about which candidates should be reported to the
user depends on the application. Hence, we use the mini-
mum frequentness probability τ as a user defined parameter.
Some applications may need a low τ , while in other applica-
tions only highly confident results should be reported (high
τ).

In the possible worlds model we know that P≥i(X) =∑
wj∈W :(S(X,wj)≥i) P (wj). This can be computed according

to Equation 1 by

P≥i(X) =
∑

S⊆T,|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1− P (X ⊆ t))).

(2)
Hence, the frequentness probability can be calculated by

enumerating all possible worlds satisfying the minSup condi-
tion through the direct application of Equation 2. This naive



approach is very inefficient however. We can speed this up
significantly. First, note that typically minSup << |T | and

the number of worlds with support i is at most

(
|T |
i

)
.

Hence, enumeration of all worlds w in which the support of
X is greater than minSup is much more expensive than enu-
merating those where the support is less than minSup. Using
the following easily verified Lemma, we can compute the fre-
quentness probability exponentially in minSup << |T |.

Lemma 10. P≥i(X) = 1 −
∑

S⊆T :|S|<i(
∏

t∈S P (X ⊆ t) ·∏
t∈T−S(1− P (X ⊆ t))).

Despite this improvement, the complexity of the above ap-
proach, called Basic in our experiments, is still exponential
w.r.t. the number of transactions. In Section 4 we describe
how we can reduce this to linear time.

4. EFFICIENT COMPUTATION OF PROB-
ABILISTIC FREQUENT ITEMSETS

This section presents our dynamic programming approach,
which avoids the enumeration of possible worlds in calculat-
ing the frequentness probability and the support distribu-
tion. We also present probabilistic filter and pruning strate-
gies which further improve the run time of our method.

4.1 Efficient Computation of Probabilistic Sup-
port

The key to our approach is to consider it in terms of sub-
problems. First, we need appropriate definitions;

Definition 11. The probability that i of j transactions
contain itemset X is

Pi,j(X) =
∑

S⊆Tj :|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S

(1− P (X ⊆ t)))

where Tj = {t1, ..., tj} ⊆ T is the set of the first j transac-
tions. Similarly, the probability that at least i of j transac-
tions contain itemset X is

P≥i,j(X) =
∑

S⊆Tj :|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S

(1−P (X ⊆ t)))

Note that P≥i,|T |(X) = P≥i(X), the probability that at
least i transactions in the entire database contain X. The
key idea in our approach is to split the problem of computing
P≥i,|T |(X) into smaller problems P≥i,j(X), j < |T |. This
can be achieved as follows. Given a set of j transactions
Tj = {t1, ..., tj} ⊆ T : If we assume that transaction tj con-
tains itemset X, then P≥i,j(X) is equal to the probability
that at least i − 1 transactions of Tj\{tj} contain X. Oth-
erwise, P≥i,j(X) is equal to the probability that at least i
transactions of Tj\{tj} contain X. By splitting the problem
in this way we can use the recursion in Lemma 12, which
tells us what these probabilities are, to compute P≥i,j(X)
by means of the paradigm of dynamic programming.

Lemma 12. P≥i,j(X) =

P≥i−1,j−1(X) · P (X ⊆ tj) + P≥i,j−1(X) · (1− Pj(X ⊆ tj))

where

P≥0,j = 1 ∀.0 ≤ j ≤ |T |, P≥i,j = 0 ∀.i > j

support i
PminSup,|T|(X)Pi,j(X) = 0 (i>j) PminSup,|T|!1(X)

minSup

0

0

0

0

PminSup!1,|T|!1(X)

# transactions j|T|

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
0

0

0

1

1 2 j| |

start computation with P1,1(X) P0,j (X)= 1

Figure 5: Dynamic Computation Scheme

The above dynamic programming scheme is an adaption of
a technique previously used in the context of probabilistic
top-k queries by Kollios et. al [17].

Proof. P≥i,j(X) =
∑j

k=i Pk,j(X)
[Kollios et al]

=∑j
k=i Pk−1,j−1(X) · P (X ⊆ tj)+

∑j
k=i Pk,j−1(X) · (1 −

P (X ⊆ tj))
[P≥i,j=0 ∀.i>j]

= P (X ⊆ tj) ·
∑j−1

k=i Pk−1,j−1(X) + ·
(1−P (X ⊆ tj))·

∑j−1
k=i Pk,j−1(X)= P (X ⊆ tj)·P≥i−1,j−1(X)+

(1− P (X ⊆ tj)) · P≥i,j−1(X).

Using this dynamic programming scheme, we can compute
the probability that at least minSup transactions contain
itemset X by calculating the cells depicted in Figure 5. In
the matrix, each cell relates to a probability P≥i,j , with i
marked on the x-axis, and j marked on the y-axis. Note
that according to Lemma 12, in order to compute a P≥i,j ,
we require the probabilities P≥i−1,j−1 and P≥i,j−1, that is,
the cell to the left and the cell to the lower left of P≥i,j .
Knowing that P≥0,0 = 1 and P≥1,0 = 0 by definition, we can
start by computing P≥1,1. The probability P≥1,j can then
be computed by using the previously computed P≥1,j−1 for
all j. P≥1,jcan, in turn, be used to compute P≥2,j . This
iteration continues until i reaches minSup, so that finally
we obtain P≥minSup,|T | – the frequentness probability (Def-
inition 9).

Note that in each line (i.e. for each i) of the matrix in
Figure 5, j only runs up to |T | −minSup+ i. Larger values
of j are not required for the computation of PminSup,|T |.

Lemma 13. The computation of the frequentness proba-
bility P≥minSup requires at most O(|T | ∗minSup) = O(|T |)
time and at most O(|T |) space.

Proof. Using the dynamic computation scheme as shown
in Figure 5, the number of computations is bounded by the
size of the depicted matrix. The matrix contains |T |∗minSup
cells. Each cell requires an iteration of the dynamic com-
putation (c.f. Corollary 12) which is performed in O(1)
time. Note that a matrix is used here for illustration purpose
only. The computation of each probability Pi,j(X) only re-
quires information stored in the current line and the previous
line to access the probabilities Pi−1,j−1(X) and Pi,j−i(X) .
Therefore, only these two lines (of length |T |) need to be
preserved requiring O(|T |) space. Additionally, the proba-
bilities P (X ⊆ tj) have to be stored, resulting in a total of
O(|T |) space.

Note that we can save computation time if an itemset is
certain in some transactions. If a transaction tj ∈ T contains
itemset X with a probability of zero, i.e. P (X ⊆ tj) = 0,



transaction tj can be ignored for the dynamic computation
because P≥i,j(X) = P≥i,j−1(X) holds (Lemma 12). If |T ′|
is less than minSup, then X can be pruned since, by defini-
tion, P≥minSup,T ′ = 0 if minSup > T ′. The dynamic compu-
tation scheme can also omit transactions Tj where the item
has a probability of 1, because P≥i,j(X) = P≥i−1,j−1(X)
due to P (X ⊆ tj) = 1. Thus, if a transaction tj contains
X with a probability of 1, then tj (i.e. the corresponding
column) can be omitted if minSup is reduced by one, to com-
pensate the missing transaction. The dynamic programming
scheme therefore only has to consider uncertain items. We
call this trick 0-1-optimization.

4.2 Probabilistic Filter Strategies
To further reduce the computational cost, we introduce

probabilistic filter strategies. These reduce the number of
probability computations in the dynamic algorithm. Our
probabilistic filter strategies exploit the following monotonic-
ity criteria;

4.2.1 Monotonicity Criteria
First, if we increase the minimal support i, then the fre-

quentness probability of an itemset decreases.

Lemma 14. P≥i,j(X) ≥ P≥i+1,j(X).

Proof. P≥i+1,j(X)
Definition 9

= P≥i,j(X) − Pi+1,j(X) ≤
P≥i,j(X)

Intuitively, this result is obvious since the predicate “the
support is at least i” implies “the support is at least i+ 1”.
The next criterion says that an extension of the uncertain
transaction database leads to an increase of the frequentness
probability of an itemset.

Lemma 15. P≥i,j(X) ≤ P≥i,j+1(X).

Proof. P≥i,j+1(X)
Lemma 12

= P≥i−1,j(X) ·P (X ⊆ tj+1)+

P≥i,j(X) · (1 − P (X ⊆ tj+1))
Lemma 14

≥ P≥i,j(X) · P (X ⊆
tj+1) + P≥i,j(X) · (1− P (X ⊆ tj+1)) = P≥i,j(X)

The intuition behind this lemma is that one more transac-
tion can increase the support of an itemset. Putting these
results together;

Lemma 16. P≥i,j(X) ≥ P≥i+1,j+1(X).

Proof. P≥i+1,j+1(X)
Corollary12

= P≥i,j(X)·P (X ⊆ tj+1)+

P≥i+1,j(X)(1 − P (X ⊆ tj+1))
Lemma14

≤ P≥i,j(X) · P (X ⊆
tj+1) + P≥i,j(X)(1− P (X ⊆ tj+1)) = P≥i,j .

Next, we describe how these monotonicity criteria can be
exploited to prune the dynamic computation.

4.2.2 Pruning Criterion
Lemma 16 can be used to quickly identify non-frequent

itemsets. Figure 6 shows the dynamic programming scheme
for an itemset X. Keep in mind that the goal is to com-
pute PminSup,|T |(X). Lemma 16 states that the probabilities
PminSup−k,|T |−k(X), 1 ≤ k ≤ minSup (highlighted in Figure
6), are conservative bounds of PminSup,|T |(X). Thus, if any
of the probabilities PminSup−k,|T |−k(X), 1 ≤ k ≤ minSup is
lower than the user specified parameter τ , then X can be
pruned.

support i
PminSup,|T|(X)

minSup

0

0

0

0
PminSup!d,T!d(X)" PminSup,T(X)

pruning criterion:

if P (X)<

# transactions j|T|

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
0

0

0

1

1 2

if PminSup!d,T!d(X)< 

then stop computation

j| |

Figure 6: Visualization of the Pruning Criterion

5. PROBABILISTIC FREQUENT ITEMSET
MINING (PFIM)

We now have the techniques required to efficiently identify
whether a given itemset X is a probabilistic frequent itemset
(PFI). In this section, we show how to find all probabilistic
frequent itemsets in an uncertain transaction database. Tra-
ditional frequent itemset mining is based on support prun-
ing by exploiting the anti-monotonic property of support:
S(X) ≤ S(Y ) where S(X) is the support of X and Y ⊆
X. In uncertain transaction databases however, recall that
support is defined by a probability distribution and that
we mine itemsets according to their frequentness probabil-
ity. It turns out that the frequentness probability is anti-
monotonic:

Lemma 17. ∀Y ⊆ X : P≥minSup(X) ≤ P≥minSup(Y ). In
other words, all subsets of a probabilistic frequent itemset
are also probabilistic frequent itemsets.

Proof. P≥i(X) = 1
|W |

∑|W |
i=1 P (wi)·IS(X,wi)≥minSup, since

the probability is defined over all possible worlds. Here, IZ

is an indicator variable that is 1 when z = true and 0 oth-
erwise. In other words, P≥i(X) is the relative number of
worlds in which S(X) ≥ minSup holds, where each occur-
rence is weighted by the probability of the world occurring.
Since world wi corresponds to a normal transaction database
with no uncertainty, S(X,wi) ≤ S(Y,wi)∀Y ⊆ X due to the
anti-monotonicity of support. Therefore, IS(X,wi)≥minSup ≤
IS(Y,Wi)≥minSup∀i ∈ |W |, ∀Y ⊆ X and, thus, P≥i(X) ≤
P≥i(Y ), ∀Y ⊆ X.

We can use the contra-positive of Lemma 17 to prune
the search space for probabilistic frequent itemsets. That
is, if an itemset Y is not a probabilistic frequent itemset,
i.e. P≥minSup(Y ) < τ , then all itemsets X ⊇ Y cannot be
probabilistic frequent itemsets either.

Our first algorithm is based on a “marriage” of traditional
frequent itemset mining methods and our uncertain item-
set identification algorithms. In particular, we propose a
probabilistic frequent itemset mining approach based on the
Apriori algorithm ([2]). Like Apriori, our method iteratively
generates the probabilistic frequent itemsets using a bottom-
up strategy. Each iteration is performed in two steps, a join
step for generating new candidates and a pruning step for
calculating the frequentness probabilities and extracting the
probabilistic frequent itemsets from the candidates. The
pruned candidates are, in turn, used to generate candidates
in the next iteration. Lemma 17 is exploited in the join step
to limit the candidates generated and in the pruning step to
remove itemsets that need not be expanded.



6. INCREMENTAL PROBABILISTIC FRE-
QUENT ITEMSET MINING (I-PFIM)

Our probabilistic frequent itemset mining approach allows
the user to control the confidence of the results using τ .
However, since the number of results depends on τ , it may
prove difficult for a user to correctly specify this parameter
without additional domain knowledge. Therefore, this Sec-
tion shows how to efficiently solve the following problems,
which do not require the specification of τ ;

• Top-k probabilistic frequent itemsets query: return the
k itemsets that have the highest frequentness proba-
bility, where k is specified by the user.

• Incremental ranking queries: successively return the
itemsets with the highest frequentness probability one
at a time.

6.1 Incremental Probabilistic Frequent Item-
set Mining Algorithm

In our incremental algorithm (Algorithm 1), we keep an
Active Itemsets Queue (AIQ) that is initialized with all one-
item sets. The AIQ is sorted by frequentness probability
in descending order. Without loss of generality, itemsets
are represented in lexiographical order to avoid generating
them more than once. In each iteration of the algorithm,
i.e. each call of the getNext()-function, the first itemset X
in the queue is removed. X is the next most probable fre-
quent itemset because all other itemsets in the AIQ have
a lower frequentness probability due to the order on AIQ,
and all of X’s supersets (which have not yet been gener-
ated) cannot have a higher frequentness probability due to
Lemma 17. Before X is returned to the user, it is refined
in a candidate generation step. In this step, we create all
supersets of X obtained by adding single items x to the end
of X, in such a way that the lexiographical order of X ∪ x
is maintained. These are then added to the AIQ after their
respective frequentness probabilities are computed (Section
4). The user can continue calling the getNext()-function un-
til he has all required results. Note that during each call
of the getNext()-function, the size of the AIQ increases by

at most |I|. The maximum size of the AIQ is 2|I|, which
is no worse than the space required to sort the output of a
non-incremental algorithm.

6.2 Top-k Probabilistic Frequent Itemsets Query
In many applications however, relatively few top prob-

abilistic frequent itemsets are required. For instance, the
store in Example 1 may want to know the top k = 100. Top-
k highest frequentness probability queries can be efficiently
computed by using Algorithm 1 and constraining the length

Algorithm 1 Incremental Algorithm

//initialise
AIQ = new PriorityQueue
FOR EACH x ∈ I

AIQ.add([x,P≥minSup(x)])
//return the next probabilistic frequent itemset
getNext() RETURNS X
X = AIQ.removeFirst()
FOR EACH (x ∈ I \X : x = lastInLexOrder(X ∪ x))

AIQ.add([X ∪ x,P≥minSup(X ∪ x)])

of the AIQ to k−m, where m is the number of highest fre-
quentness probability items already returned. Any itemsets
that “fall off” the end can safely be ignored. The rational
behind this approach is that for an itemset X at position p
in the AIQ, p − 1 itemsets with a higher frequentness than
X exist in the AIQ by construction. Additionally, any of
the m itemsets that have already been returned must have
a higher frequentness probability. Consequently, our top-k
algorithm contrains the size of the initial AIQ to k and re-
duces its size by one each time a result is reported. The
algorithm terminates once the size of the AIQ reaches zero.

7. EXPERIMENTAL EVALUATION
In this Section we present efficiency and efficacy experi-

ments. First, we give efficiency results obtained utilizing the
different methods of computing the probabilistic support (cf.
Sections 3 and 4). Then, we discuss the performance and
utility of the proposed probabilistic frequent itemset mining
algorithms (cf. Sections 5 and 6). In all experiments, the
runtime was measured in milliseconds (ms).

7.1 Evaluation of the Frequentness Probabil-
ity Calculations

We evaluated our frequentness probability calculation meth-
ods on several artificial datasets with varying database sizes
|T | and densities. The density of an item denotes the ex-
pected number of transactions in which an item may be
present (i.e. where its existence probability is in (0, 1]).
The probabilities themselves were drawn from a uniform
distribution. Note that the density is directly related to
the degree of uncertainty. If not stated otherwise, we used a
database consisting of 10, 000 to 10, 000, 000 uncertain trans-
actions and a density of 0.5. The frequentness probability
threshold τ of was set to 0.9.

We use the following notations for our frequentness prob-
ability algorithms: Basic: basic probability computation
(Section 3.2), Dynamic: dynamic probability computation
(Section 4.1), Dynamic+P: dynamic probability compu-
tation with pruning (Section 4.2), DynamicOpt: dynamic
probability computation utilizing 0-1-optimization (Section
4.1) and DynamicOpt+P: 0-1-optimized dynamic proba-
bility computation method with pruning.

7.1.1 Scalability
Figure 7 shows the scalability of the probability calcula-

tion approaches when we vary the number of transactions,
|T |. The runtime of the Basic approach increases exponen-
tially in minSup as explained in Section 3.2, and is therefore
not applicable for a |T | > 50 as can be seen in Figure 7(a).
Our approaches Dynamic+P and DynamicOpt+P scale
linearly as expected when using a constant minSup value.
The 0-1-optimization has an impact on the runtime when-
ever there is some certainty in the database. The perfor-
mance gain of our pruning strategies depends on the used
minSup value. In Figures 7(b), 7(c) and 7(d) the scala-
bility of Dynamic and Dynamic+P is shown for differ-
ent minSup values expressed as percentages of |T |. It is
notable that the time complexity of O(|T | ∗ minSup) be-
comes O(|T |2) if minSup is chosen relative to the database
size. Also, it can be observed that the higher minSup, the
higher the difference between Dynamic and Dynamic+P;
a higher minSup causes the frequentness probability to fall
overall, thus allowing earlier pruning.
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Figure 7: Runtime evaluation w.r.t. |T |.

7.1.2 Effect of the Density
We now evaluate the effectiveness of our pruning strat-

egy w.r.t. the density. minSup is important here too, so we
report results for different values in Figure 8. The pruning
works well for datasets with low density and has no effect on
the runtime for higher densities. The reason is straightfor-
ward; the higher the density, the higher the probability that
a given itemset is frequent and, thus, cannot be pruned. Re-
garding the effect of minSup; a larger minSup value decreases
the probability that itemsets are frequent and therefore in-
creases the number of computations that can be pruned.
The break-even point between pruning and non-pruning in
our experiments is when the density is approximately twice
the minSup value, since, due to the method of creating our
datasets, this corresponds to the expected support. At this
value, all itemsets are expected to be frequent.

Overall, with reasonable parameter settings our pruning
strategies achieve a significant speed-up for the identification
of probabilistic frequent itemsets.

7.1.3 Effect of minSup

Figure 9 shows the influence of minSup on the runtime
when using different densities. The runtime of Dynamic
directly correlates with the size of the dynamic computation
matrix (Figure 5). A low minSup value leads to few matrix
rows which need to be computed, while a high minSup value
leads to a slim row width (see Figure 5). The total number of
matrix cells to be computed is minSup∗(|T |−minSup+1),

with a maximum atminSup = |T |+1
2

. As long as the minSup
value is below the expected support value, the approach with
pruning shows similar characteristics; in this case, almost all
item(sets) are expected to be frequent. However, the speed-
up due to the pruning rapidly increases for minSup above
this break-even point.
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Figure 8: Runtime evaluation w.r.t. the density.

7.2 Evaluation of the Probabilistic Frequent
Itemset Mining Algorithms

Experiments for the probabilistic frequent itemset mining
algorithms were run on a subset of the real-world dataset
accidents4, denoted by ACC. It consists of 340, 184 transac-
tions and 572 items whose occurrences in transactions were
randomized; with a probability of 0.5, each item appearing
for certain in a transaction was assigned a value drawn from
a uniform distribution in (0, 1]. Here we use AP to denote
the Apriori-based and IP for the incremental probabilistic
itemset mining algorithms.

We performed Top-k queries on the first 10, 000 transac-
tions of ACC using a minSup = 500 and τ = 0.1. Figure
10(a) shows the result of IP. Note that the frequentness
probability of the resulting itemsets is monotonically de-

4The accidents dataset [8] was derived from
the Frequent Itemset Mining Dataset Repository
(http://fimi.cs.helsinki.fi/data/)
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Figure 9: Runtime evaluation w.r.t. minSup.



1 61 12
1

18
1

24
1

30
1

36
1

IP AP

Number of results

0

0.2

0.4

0.6

0.8

1

1.2
1 61 12
1

18
1

24
1

30
1

36
1

Fr
eq

ue
nt
ne

ss
 p
ro
ba

bi
lit
y

(a) Output: AP vs. IP

1

10

100

1000

10000

1 2 3

ra
nk

in
g 
po

si
ti
on

 o
f r
es
ul
t

Itemset size

Best‐
First
Breadth
‐First

>> 10000

IP

2 3 4

AP

(b) Effectiveness of rank-
ing queries

Figure 10: Effectiveness of AP vs IP.

creasing. In contrast, AP returns probabilistic frequent
itemsets in the classic way; in descending order of their size,
i.e. all itemsets of size one are returned first, etc. While
both approaches return probabilistic frequent itemsets, AP
returns an arbitrary frequentness probability order, while
IP returns the most relevant itemsets first.

Next we performed ranking queries on the first 100, 000
itemsets (Figure 10(b)). In this experiment, our aim was to
find the m-itemset X with the highest frequency probabil-
ity of all m-itemsets, where m ∈ {2, 3, 4}. We measured the
number of itemsets returned before X. It can be seen that
the speed up factor for ranking (and thus top-k queries) is
several orders of magnitude and increases exponentially in
the length of requested itemset length. The reason is that
AP must return all frequent itemsets of length m − 1 be-
fore processing itemsets of length m, while IP is able to
quickly rank itemsets in order of their frequentness proba-
bility, therefore leading to better quality results delivered to
the user much earlier.

8. CONCLUSION
The Probabilistic Frequent Itemset Mining (PFIM) prob-

lem is to find itemsets in an uncertain transaction database
that are (highly) likely to be frequent. To the best of our
knowledge, this is the first paper addressing this problem
under possible worlds semantics. We presented a framework
for efficient probabilistic frequent itemset mining. We theo-
retically and experimentally showed that our proposed dy-
namic computation technique is able to compute the exact
support probability distribution of an itemset in linear time
w.r.t. the number of transactions instead of the exponential
runtime of a non-dynamic computation. Furthermore, we
demonstrated that our probabilistic pruning strategy allows
us to prune non-frequent itemsets early leading to a large
performance gain. In addition, we introduced an iterative
itemset mining framework which reports the most likely fre-
quent itemsets first.
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