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Abstract

In molecular databases, structural classification is a basic task
that can be successfully approached by nearest neighbor
methods. The underlying similarity models consider spatial
properties such as shape and extension as well as thematic
attributes. We introduce 3D shape histograms as an intuitive
and powerful approach to model similarity for solid objects
such as molecules. Errors of measurement, sampling, and nu-
merical rounding may result in small displacements of atomic
coordinates. These effects may be handled by using quadratic
form distance functions. An efficient processing of similarity
queries based on quadratic forms is supported by a filter-re-
finement architecture. Experiments on our 3D protein data-
base demonstrate the high classification accuracy of more
than 90% and the good performance of the technique.
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1  Introduction
One important task for modern database applications in the
areas molecular biology, astronomy, mechanical engineer-
ing, medical imaging, and meteorology is efficient and accu-
rate classification. In protein databases, each year a high
number of new 3D structures of molecules is determined ei-
ther by crystallography or by NMR techniques or by auto-
mated structure prediction. A basic question is to which class
the new objects belong. The classes represent collections of
objects that have characteristic properties in common and
thus are similar, whereas different classes contain objects
that have more or less strong dissimilarities. After classifica-
tion, subsequent investigations may be guided by the class
information: predictions of primary and secondary effects of
drugs, docking prediction in general etc.

Typically, the classes are obtained from class information
about objects that are already classified by exploiting do-
main and expert knowledge. Nearest neighbor classifiers, as
a common approach, assign the class label of the most simi-
lar object in the previously classified database to the new ob-
ject. As a basis for nearest neighbor classification, an appro-
priate similarity model has to be provided. In all of the
mentioned applications, the geometric shape of the objects is

an important similarity criterion. Along with the geometry,
also thematic attributes such as physical and chemical prop-
erties have an influence on the similarity of objects.

As for most real-world applications, the available data
about 3D protein structures inherently suffer from errors, in-
cluding errors of measurement, calibration, sampling errors,
numerical rounding errors, displacements of reference
frames, and small shifts as well as rotations of the entire ob-
ject or of local details of the shapes. Although no full invari-
ance against rotations is required if the objects are already
provided in a standardized orientation, these errors have to
be taken into account. In this paper, we introduce a flexible
similarity model that considers these problems of local inac-
curacies and may be adapted by the users to their specific re-
quirements or individual preferences.

The remainder of this introduction surveys related work
from molecular biology, machine learning, and geometric
similarity search. In Section 2, we introduce the components
of our similarity model: 3D shape histograms for object rep-
resentation, and a flexible similarity distance function. Due
to the large and increasing size of current databases, the per-
formance of query processing is an important task and,
therefore, we present an efficient multistep system architec-
ture in Section 3. The experimental results concerning the
effectiveness and efficiency of our technique are presented
in Section 4, and Section 5 concludes the paper.

1.1  Classification in Protein Databases

Structural classification schemata for protein databases are
already available. In many systems, classifying new objects
when inserting them into the database requires supervision
by experts that are very experienced and have a deep knowl-
edge of the domain of molecular biology. What is desired, is
an efficient classification algorithm that may act as a fast fil-
ter for further investigation and that may be restricted e.g. to
geometric aspects.

A sophisticated classification is available from the FSSP
database (Families of Structurally Similar Proteins) generat-
ed by the DALI system (Holm and Sander 1994) (Holm and
Sander 1998). The similarity of two proteins is based on their
secondary structure. The evaluation of a pair of proteins is
very expensive, and query processing for a single molecule
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against the entire database currently takes an overnight run
on a workstation. In (Holm and Sander 1995), one day of
computer time for an all-against-all comparison of 385 rep-
resentative proteins is reported.

Another classification schema is provided by CATH
(Orengo et al. 1997), a hierarchical classification of protein
domain structures which clusters proteins at four major lev-
els, class (C), architecture (A), topology (T) and homolo-
gous superfamily (H). There are four class labels that are de-
rived from secondary structure content: (1) Mainly Alpha,
(2) Mainly Beta, (3) Alpha Beta, and (4) Few Secondary
Structures. These four class labels are assigned for more than
90% of the protein structures automatically. The architecture
label which describes the gross orientation of secondary
structures, independent of connectivities, is currently as-
signed manually. The assignments of structures to topologi-
cal families and homologous superfamilies are made by se-
quence and structure comparisons.

The superposition algorithm LOCK (Singh and Brutlag
1997) is also based on a hierarchy of structural representa-
tions, from the secondary structure level to the atomic level.
For the method, a set of seven scoring functions is used to
compare pairs of vectors from different proteins. The algo-
rithm includes three steps, a local secondary structure super-
position, an atomic superposition, and a core superposition.
The system is able to detect structural similarities at the same
level as the FSSP/DALI approach. It takes approximately 18
minutes to compare myoglobin to a representative set of 796
proteins from the PDB on an SGI workstation. Approxi-
mately 62% of the execution time was spent on the second-
ary and atomic superposition stages.

The VAST algorithm (Vector Alignment Search Tool)
(Madej, Gibrat, and Bryant 1995) places great emphasis on
the definition of the threshold of significant structural simi-
larity. By a threading method, similarity to known domain
folds is recognized. Ten proteins were selected for a blind
prediction.

The SCOP system (Structural Classification of Proteins)
(Murzin et al. 1995) is another structural classification that
includes geometric features. It is unique in distinguishing
between evolutionary relationships and those that arise from
the physics and chemistry of proteins.

(Nakashima et al. 1986) analyzed the folding types of an
entirety of 135 proteins in terms of the amino acid composi-
tion. The classification into five classes representing the
folding types alpha, beta, alpha/beta, alpha+beta and irregu-
lar types gave an accuracy of 70%.

(Zhang et al. 1998) proposed a classification criterion re-
lying on statistical analysis of the secondary structure con-
tents of proteins. Each protein of a set of 200 proteins ran-
domly selected from SCOP was assigned to one of three
folding classes (mainly-alpha, mainly-beta, alpha-beta). A
classification accuracy of 94% could be reached by this
method using the three class labels.

In (Preißner, Goeda, and Frömmel 1998), an approach to
model structural similarity of proteins using a concept of
Dictionary of Interfaces in Proteins (DIP) is introduced.
Equivalent molecular contact surfaces (patches) between
neighboring secondary structures are compared, and the au-
thors found that nearly all equivalent patches larger than 10
atoms have an identical geometry. Thus, geometry is of high
significance for similarity search in protein databases, and it
seems to be promising to focus on geometry primarily.

The problem we address in this paper includes the fast se-
lection of candidate structures from a large database. The ob-
tained set of candidates may be used as an input for more so-
phisticated methods of detecting structural similarity
including dynamic programming algorithms or iterative
RMSD minimization techniques.

1.2  Nearest-Neighbor Classification

A lot of research has been performed in the area of classifica-
tion algorithms; surveys are presented in (Weiss and Ku-
likowski 1991), (Michie, Spiegelhalter, and Taylor 1994), and
(Mitchell 1997). All the methods require that a training set of
objects is given for which both the attribute values and the cor-
rect classes are known a priori. Based on this knowledge of
previously classified objects, a classifier predicts the unknown
class of a new object. The quality of a classifier is typically
measured by the classification accuracy, i.e. by the percentage
of objects for which the class label is correctly predicted.

Many methods of classification generate a description for
the members of each class, for example by using bounding
boxes, and assign a class to an object if the object matches
the description of the class. Nearest neighbor classifiers, on
the other hand, refrain from discovering a possibly complex
description of the classes. As their name indicates, they re-
trieve the nearest neighbor p of a query object q and return
the class label of p in order to predict the class label ofq. Ob-
viously, the definition of an appropriate distance function is
crucial for the effectiveness of nearest neighbor classifica-
tion. In a more general form, called k-nearest neighbor clas-
sification, k nearest neighbors of the query object q are used
to determine the class of q. Thus, the effectiveness depends
on the number k as well as on the weighting of the k neigh-
bors. Both, appropriate similarity models as well as efficient
algorithms for similarity search are required for successful
nearest neighbor classification.

1.3  Geometric Similarity Search

Considerable work on shape similarity search in spatial data-
base systems has been performed in recent years. As a com-
mon technique, the spatial objects are transformed into high-
dimensional feature vectors, and similarity is measured in
terms of vicinity in the feature space. The points in the fea-
ture space are managed by a multidimensional index. Many
of the approaches only deal with two-dimensional objects



such as digital images or polygonal data and do not support
3D shapes.

Let us first survey previous 2D approaches from the liter-
ature. In (Gary and Mehrotra 1993), a shape is represented
by an ordered set of surface points, and fixed-sized subsets
of this representation are extracted as shape features. This
approach supports invariance with respect to translation, ro-
tation and scaling, and is able to deal with partially occluded
objects. The method includes a linearization of polygon
boundaries and, therefore, are hard to extend to 3D objects.
In (Jagadish 1991), shapes are approximated by rectangular
coverings. The rectangles of a single object are sorted by
size, and the largest ones are used for the similarity retrieval.
The method of (Korn et al. 1996) is based on mathematical
morphology and uses the max morphological distance and
max granulometric distance of shapes. It has been applied to
2D tumor shapes in medical image databases. A 2D tech-
nique that is related to our 3D shape histograms is the Sec-
tion Coding technique (Berchtold, Keim, and Kriegel 1997).
For each polygon, the circumscribing circle is decomposed
into a given number of sectors, and for each sector, the area
of the polygon inside of this sector divided by the total area
of the polygon is determined. Similarity is defined in terms
of the Euclidean distance of the resulting feature vectors.
The similarity model in (Ankerst, Kriegel, and Seidl 1998)
handles 2D shapes in pixel images and provides a solution
for the problem of small displacements.

The QBIC (Querying By Image Content) system (Falout-
sos et al. 1994) (Hafner et al. 1995) contains a component for
2D shape retrieval where shapes are given as sets of points.
The method is based on algebraic moment invariants and is
also applicable to 3D objects (Taubin and Cooper 1991). As
an important advantage, the invariance of the feature vectors
with respect to rigid transformations (translations and rota-
tions) is inherently given. However, the adjustability of the
method to specific applications is restricted. From the avail-
able moment invariants, appropriate ones have to be select-
ed, and their weighting factors may be modified. Whereas
the moment invariants are abstract quantities, the shape his-
tograms presented in this paper are more intuitive and may
be graphically visualized, thus providing an impression of
the exact geometry. The approximation-based similarity
model presented in (Kriegel and Seidl 1998) handles surface
segments of 3D objects as required for docking prediction
but does not include the global shape of 3D solids.

1.4  Invariance Properties of Similarity Models

All the mentioned similarity models incorporate invariance
against translation of the objects, some of them also include
invariance against scaling which is not desired in the context
of molecular databases. With respect to invariance against
rotations, two approaches can be observed. Some of the sim-
ilarity models inherently support rotational invariance, e.g.

by means of the Fourier transform or the algebraic moment
invariants. Most of the techniques, however, include a pre-
processing step that rotates the objects to a normalized orien-
tation, e.g. by a Principal Axis Transform. For some applica-
tions, rotational invariance may be not required, e.g. if the
objects are already stored in a standardized orientation.

An important kind of invariance has not been considered
in previous work, the robustness of similarity models against
errors of measurement, calibration, sampling errors, errors
of classification of object components, numerical rounding
errors, and small displacements such as shifts or slight rota-
tions of geometric details. In our model, these problems are
addressed and may be considered by the user by specifying
and adapting a similarity matrix for histogram bins. A pre-
liminary version of the histogram model was sketched in
(Kastenmüller, Kriegel, and Seidl 1998).

2  A 3D Shape Similarity Model

In this section, we introduce our 3D shape similarity model
by defining the two major ingredients: First, the shape histo-
grams as an intuitive and discrete representation of complex
spatial objects. Second, an adaptable similarity distance
function for the shape histograms that may take small shifts
and rotations into account by using quadratic forms.

2.1  Shape Histograms

The definition of an appropriate distance function is crucial
for the effectiveness of any nearest neighbor classifier. A
common approach for similarity models is based on the par-
adigm of feature vectors. A feature transform maps a com-
plex object onto a feature vector in a multidimensional
space. The similarity of two objects is then defined as the vi-
cinity of their feature vectors in the feature space.

We follow this approach by introducing 3D shape histo-
grams as intuitive feature vectors. In general, histograms are
based on a partitioning of the space in which the objects re-
side, i.e. a complete and disjoint decomposition into cells
which correspond to the bins of the histograms. The space
may be geometric (2D, 3D), thematic (e.g. physical or chem-
ical properties), or temporal (modeling the behavior of ob-
jects).

We suggest three techniques for decomposing the 3D
space: A shell model, a sector model, and a spiderweb model
as the combination of the former two. In a preprocessing
step, a 3D solid is moved to the origin. Thus, the models are
aligned to the center of mass of the solid.

Shell Model. The 3D is decomposed into concentric shells
around the center point. This representation is particularly
independent from rotations of the objects, i.e. any rotation of
an object around the center point of the model results in the
same histogram. The radii of the shells are determined from
the extensions of the objects in the database. The outermost



shell is left unbound in order to cover objects that exceed the
size of the largest known object.

Sector Model. The 3D is decomposed into sectors that
emerge from the center point of the model. This approach is
closely related to the 2D Section Coding method (Berchtold,
Keim, and Kriegel 1997). However, the definition and com-
putation of 3D sector histograms is more sophisticated, and
we define the sectors as follows: Distribute the desired num-
ber of points uniformly on the surface of a sphere. For this
purpose, we use the vertices of regular polyhedrons and their
recursive refinements. Once the points are distributed, the
Voronoi diagram of the points immediately defines an appro-
priate decomposition of the space. Since the points are regu-
larly distributed on the sphere, the Voronoi cells meet at the
center point of the model. For the computation of sector-
based shape histograms, we need not to materialize the com-
plex Voronoi diagram but simply apply a nearest neighbor
search in 3D since typical number of sectors are not very
large.

Combined Model. The combined model represents more
detailed information than models purely based on shells or
sectors. A combination of two fine-grained 3D decomposi-
tions may result in a high dimensionality. However, the res-
olution of the space decomposition is a parameter of the
model, and the number of dimensions is easily adapted to the
particular application.

In Figure 1, we illustrate various shape histograms for an
example protein, the seryl-tRNA synthetase 1SER-B. The
various space decompositions are indicated schematically,
and the corresponding shape histograms are depicted. The
top histogram is purely based on shell bins, the middle histo-
gram is a combination of shell bins and sector bins, and the
bottom histogram consists of sector bins only. In the exam-
ple, the histograms are defined in a way that they all have the
same dimension of approximately 120. Note that the histo-
grams are not built from volume elements but from uniform-
ly distributed surface points taken from the molecular sur-
faces. 

2.2  Similarity Distance Function

Although the Euclidean distance is a very common distance
function for high-dimensional feature vectors such as shape
histograms, it exhibits severe limitations with respect to sim-
ilarity measurement. In particular, the individual compo-
nents of the feature vectors which correspond to the dimen-
sions of the feature space are assumed to be independent
from each other, and no relationships of the components
such as substitutability and compensability may be regarded.

An approach to overcome these limitations has been in-
vestigated for color histograms in the QBIC project (Query
by Image Content) at IBM Almaden (Faloutsos et al. 1994)
(Hafner et al. 1995). The authors suggest to use quadratic

form distance functions which have been successfully ap-
plied to several multimedia database applications (Seidl
1997) (Seidl and Kriegel 1997) (Ankerst, Kriegel, and Seidl
1998) (Kriegel and Seidl 1998). A quadratic form distance
function is defined in terms of a similarity matrix A where
the components aij represent the similarity of the compo-
nents i and j in the underlying vector space.

In our case, cross-dependencies of dimensions result from
the consideration of the neighborhood of cells. These depen-
dencies are represented by similarity weights in the similari-
ty matrix A. Following the approach of (Hafner et al. 1995),
we compute the similarity weights by the formula

 where d(i, j) denotes the distance of the
cells that corresponds to the bins i and j. The cell distance is
calculated from the difference of the shell radii and the angle
between the sectors. The parameter σ controls the global
shape of the similarity matrix. We observed good results for
σ between 1.0 and 10. The classic Euclidean distance is a
special case of the quadratic form distance which is achieved
by using the identity matrix Id as similarity matrix.

2.3  Invariance Properties of the Models

From structure determination by crystallographic or NMR
methods, the geometric structure of a proteins can be located
anywhere in the 3D, and the orientation may vary arbitrarily.
For defining meaningful and applicable similarity models,
invariance against translation and rotation has to be provided.

Figure 1: Several 3-D shape histograms of the example
protein 1SER-B. From top to bottom, the number of
shells decreases and the number of sectors increases.
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In our system, we perform a preprocessed normalization
step and, thereby, achieve invariance against translation and
rotation. For each object, we map the center of mass onto the
origin and perform a Principal Axis Transform. As a result,
all the covariances of the transformed coordinates vanish.
Although this method in general leads to a unique orientation
of the objects, this does not hold for the exceptional case of
an object with at least two variances having the same value.
In order to overcome this problem, the objects may be rotat-
ed artificially by certain angles as suggested in (Berchtold,
Keim, and Kriegel 1997). We almost never observed such
cases in our experiments and, therefore, assume a unique ori-
entation of the objects.

The similarity models themselves have inherent invari-
ance properties. Obviously, the sector model is invariant
against scaling, whereas the shell model trivially has rota-
tional invariance. Often, no full invariance is desired, instead
just small displacement, shifts or rotations of geometric de-
tails occur in the data, for example caused by errors of mea-
surement, sampling or numerical rounding errors. This vari-
ation of invariance precision which is highly application-
and user-dependent is supported by the user-defined similar-
ity matrix modeling the appropriate similarity weight for
each pair of bins.

2.4  Extensibility of Histogram Models
What we have discussed so far is a very flexible similarity
model for 3D objects. However, the distance function of the
similarity model is based just on the spatial attributes of the
objects. Frequently on top of the geometric information, a lot
of thematic information is used to describe spatial objects.
Particularly in protein databases, the chemical structure and
physical properties are important. Examples include atom
types, residue types, partial charge, hydrophobicity, electro-
static potential among others. A general approach to manage

thematic information along with spatial properties is provid-
ed by combined histograms. Figure 2 demonstrates the basic
principle. Given a spatial histogram structure as presented
above, and an additional thematic histogram structure, a
combined histogram structure is immediately obtained as the
Cartesian product of the original structures. 

Having integrated thematic information into the object rep-
resentation e.g. by the Cartesian product approach, the ques-
tion remains how to combine the distance functions dshape and
dthem to an overall distance function doverall. A straightforward
way is to use the standard Euclidean distance

where ps, qs denote the projection of p, q to their shape com-
ponents, and pt, qt denote the projection of p, q to the thematic
components.

Again, an even more powerful model is provided by qua-
dratic forms. They support to consider cross-dependencies
of thematic attributes such as the similar hydrophobicity of
different residue types and, in case of the combined histo-
grams, they are able to handle relationships between themat-
ic attributes and spatial attributes by using appropriate simi-
larity matrices.

As an example, the hydrophobic effect is reflected by
combined histogram structures (Kastenmüller 1998). This
phenomenon means that in a polar environment, hydropho-
bic residues tend to be located in the core of a protein where-
as hydrophilic residues often are found at the surface of the
molecules. This effect can be observed from a representation
combining shells and residue types. The abscissa axis in
Figure 3 indicates the shells from the center with increasing
radii, and the residue types are colored by their hydrophobic-
ity. In order to reveal the hydrophobic effect, we distinguish
only between three classes of amino acids: hydrophobic res-
idues (dark gray), neutral residues (white), and hydrophilic
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Figure 2: Example for a combined thematic and shape histogram for a molecule
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residues (light gray). As expected, the inner shells (1 and 2)
are dominated by hydrophobic residues whereas the majori-
ty of the hydrophilic residues is located at the protein sur-
face, i.e. in the shells 4 to 7. 

3  Efficient Query Processing

Due to the enormous and still increasing size of modern da-
tabases that contain tens and hundreds of thousands of mole-
cules, mechanical parts or medical images, the task of effi-
cient query processing becomes more and more important.
In the case of quadratic form distance functions, the evalua-
tion time of a single database object increases quadratically
with the dimension. For calculating the distance for a single
pair of objects, we measured average CPU times of 0.23 mil-
liseconds for 21-D histograms, 1.1 milliseconds for 112-D
and 6.2 milliseconds in 256-D space (Seidl 1997). In such a
context, linearly scanning the entire database is prohibitive,
since the overall runtime results from this single evaluation
time multiplied with the number of objects in the database
plus the disk I/O time. Reading a 4K disk page takes approx-
imately 10 milliseconds and transfers at least 4 objects into
main memory (in case of 256-D histograms), i.e. the average
I/O time is 2.5 milliseconds per object. Thus, the overall
runtime is dominated by the CPU cost and even caching the
database in main memory would not help.

In order to achieve a good performance, our system archi-
tecture follows the paradigm of multi-step query processing:
An index-based filter step produces a set of candidates, and
a subsequent refinement step performs the expensive exact
evaluation of the candidates.

3.1  Optimal Multi-step k-Nearest Neighbor Search
Whereas the refinement step in a multi-step query processor
has to ensure the correctness, i.e. no false hits may be reported
as final answers, the filter step is primarily responsible for the
completeness, i.e. no actual result may be missing from the fi-
nal answers and, therefore, from the set of candidates.
Figure 4 illustrates the architecture of our multi-step similari-
ty query processor that fulfills this property (Seidl and Kriegel
1998). The algorithm is proven to be optimal, i.e. it produces
only the minimum number of candidates. Thus, expensive
evaluations of unnecessary candidates are avoided. 

Based on a multidimensional index structure, the filter
step performs an incremental ranking that reports the objects
ordered by their increasing filter distance to the query object
using an algorithm derived from (Hjaltason and Samet
1995). The number of accessed index pages is minimal and
the termination is controlled by the refinement step in order
to guarantee the minimum number of candidates (Seidl and
Kriegel 1998). Only for the exact evaluation in the refine-
ment step, the exact object representation is retrieved from
the object server. In order to guarantee no false dismissals
caused by the filter step, the filter distance function df has to
be a lower bound of the exact object distance function do that
is evaluated in the refinement step. That is, for all database
objects p and all query objects q, the inequality

 has to be fulfilled.

3.2  Reduction of Dimensionality for Quadratic Forms
A common approach to manage objects in high-dimensional
spaces is to apply techniques to reduce the dimensionality.
The objects in the reduced space are then typically managed
by any multidimensional index structure (Gaede and
Günther 1998). The typical use of common linear reduction

Figure 3: Hydrophobic effect for the yeast hydrolase
(carboxylic esterase) 1TCA. The hydrophobic residues
are marked by dark gray, the neutral residues by white,
and the hydrophilic residues by light gray according to
the ordering of (Wampler 1996).
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techniques such as the Principal Components Analysis
(PCA) or Karhunen-Loève Transform (KLT), the Discrete
Fourier or Cosine Transform (DFT, DCT), the Similarity
Matrix Decomposition (Hafner et al. 1995) or the Feature
Subselection (Faloutsos et al. 1994) includes a clipping of
the high-dimensional vectors such that the Euclidean dis-
tance in the reduced space is always a lower bound of the Eu-
clidean distance in the high-dimensional space.

The question arises whether these approved techniques
are applicable to general quadratic form distance functions.
Fortunately, the answer is positive; an algorithm to reduce
the similarity matrix from a high-dimensional space down to
a low-dimensional space according to a given reduction
technique was developed in the context of multimedia data-
bases for color histograms (Seidl and Kriegel 1997) and
shapes in 2D images (Ankerst, Kriegel, and Seidl 1998). The
method guarantees three important properties: First, the re-
duced distance function is a lower bound of the given high-
dimensional distance function. Obviously, this criterion is a
necessary design goal in order to meet the requirements of
multi-step similarity query processing. Second, the reduced
distance function again is a quadratic form and, therefore,
the complexity of the query model is not increased while de-
creasing the dimension of the space. Third, the reduced dis-
tance function is the greatest of all lower-bounding distance
functions in the reduced space. As an important implication
of this property, the selectivity in the filter step is optimal: In
the reduced space, no lower-bounding distance function is
able to produce a smaller set of candidates than the resulting
quadratic form.

3.3  Ellipsoid Queries on Multidimensional Index 
Structures

The task remains to efficiently support k-nearest neighbor
search and incremental ranking for quadratic form distance
functions in low-dimensional spaces. Due to the geometric
shape of the query range, a quadratic form-based similarity
query is called an ellipsoid query (Seidl 1997). An efficient
algorithm for ellipsoid query processing on multidimensional
index structures was developed in the context of approxima-
tion-based similarity search for 3-D surface segments (Krie-
gel and Seidl 1998). The method is designed for index struc-
tures that use a hierarchical directory based on rectilinear
bounding boxes such as the R-tree, R+-tree, R*-tree, X-tree,
and Quadtrees among others; surveys are provided e.g. in
(Samet 1990) or (Gaede and Günther 1998). The technique is
based on measuring the minimum quadratic form distance of
a query point to the hyperrectangles in the directory. A paral-
lel version of the X-tree is introduced in (Berchtold et al.
1997). Recently, an improvement by using conservative ap-
proximations has been suggested in (Ankerst et al. 1998).

An important property of the method is its flexibility with
respect to the similarity matrix. The matrix does not have to
be available at index creation time and, therefore, may be
considered as a query parameter. Thus, the users may specify
and adapt the similarity weights in the matrix even at query
time according to their individual preferences or to the spe-
cific requirements of the application. In any case, the same
precomputed index may be used. This property is the major
advantage compared to previous solutions that were devel-
oped in the context of color histogram indexing in the QBIC
project (Faloutsos et al. 1994) (Hafner et al. 1995) where the
index depends on a specific similarity matrix that has to be
given in advance.

4  Experimental Evaluation

We implemented the algorithms in C++ and ran the experi-
ments on our HP C160 workstations under HP-UX 10.20.
For single queries, we also implemented a HTML/Java inter-
face that supports query specification and visualization of
the results. The atomic coordinates of the 3D protein struc-
tures are taken from the Brookhaven Protein Data Bank
(PDB) (Abola et al. 1997). For the computation of shape his-
tograms, we use a representation of the molecules by surface
points as it is required for several interesting problems such
as the molecular docking prediction (Seidl and Kriegel
1995). The reduced feature vectors for the filter step are
managed by an X-tree (Berchtold, Keim, and Kriegel 1996). 

Figure 5: Similarity ranking for the seryl-tRNA
synthetase 1SER-B (top) and the yeast hydrolase 1TCA
(bottom) for histograms of 6 shells and 20 sectors. The
diagrams depict the top nearest neighbors and their
similarity distances to the query protein.
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4.1  Basic Similarity Search

In order to illustrate the applicability of the similarity model,
we first demonstrate the retrieval of the members of a known
family. As a typical example, we chose the seven seryl-
tRNA synthetase molecules from our database that are clas-
sified by CATH (Orengo et al. 1997) to the same family. The
diagrams in Figure 5 present the result using shape histo-
grams for 6 shells and 20 sectors. The seven members of the
seryl family rank on the top seven positions among the 5,000
molecules of the database. In particular, the similarity dis-
tance noticeable increases for 2PFK-A, the first non-seryl
protein in the ranking order. The same effect can be observed
for the hydrolase family 1TCA where a distance gap occurs
after the five members of the family.

4.2  Classification by Shape Similarity

For the classification experiments, we restricted our data-
base to the proteins (domains) that are also contained in the
FSSP database (Holm and Sander 1994) and took care that
for every class, at least two molecules are available. From
this preprocessing, we obtained 3,422 proteins assigned to
281 classes. The classes contain between 2 and 185 mole-
cules, and we grouped the proteins by the cardinality of their
class to provide more information than simply the average
accuracy. Table 1 shows the four groups and the number of
proteins that belong to the corresponding classes. 

In order to measure the classification accuracy, we per-
formed leave-one-out experiments for the various histogram
models. This means that for each molecule in the database,
the nearest neighbor classification was determined after re-
moving that element from the database. Technically, we al-
ways used the same database and selected the second nearest
neighbor since the query object itself is reported to be its
own nearest neighbor. The class label of the selected object
is assigned to the query object. The overall classification ac-
curacy is computed as the percentage of the correctly pre-
dicted class labels among all 3,422 database objects.

Figure 6 demonstrates the results for histograms based on
12 shells, 20 sectors, and the combination of them. Obvious-
ly, the more fine-grained spiderweb model yields the best
classification accuracy of 91.5 percent in the overall aver-
age, but even for the coarse sector histograms, a noticeable
accuracy of 87.3 percent is achieved. The average overall
runtime for a single nearest neighbor query (see Figure 7) re-
flects the larger dimension of the combined model. It ranges
from 0.05s for 12 shells over 0.2s for 20 sectors up to 1.42s
for the combination.   

Figure 8 illustrates the effect of simply increasing the di-
mension of the model without combining orthogonal space

cardinality of classes number of proteins

1 to 10 838

11 to 30 973

31 to 100 727

more than 100 884

Table 1: Number of proteins grouped by the 
cardinality of their classes
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Figure 6: Classification accuracy of various histogram models (12 shells, 20 sectors, and the combination) for 3,422 proteins.
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partitionings. Again, we observed the expected result that
more information yields better accuracy. For ten times high-
er histogram dimensions, the overall average accuracy in-
creases from 71.6 to 88.1 for the shell model, and from 87.3
to 91.6 for the sector model. Thus, we achieve the same ac-
curacy for a fine-grained 122D sector model as we obtained
from the 12 x 20 (240D) combined model. 

5  Conclusions

We presented a new intuitive and flexible model for classifi-
cation of 3D solids such as proteins based on shape similari-
ty. The geometry of 3D objects is mapped to shape histo-
grams, thus performing a specific feature transform. The
histogram model naturally is extensible to thematic at-
tributes such as physical and chemical properties. In order to
account for errors of measurement, sampling, numerical
rounding etc., quadratic form distance functions are used
that are able to cope with small displacements and rotations.
For efficient query processing, a filter-refinement architec-
ture is used that supports similarity query processing based
on high-dimensional feature vectors and quadratic form dis-
tance functions.

The experiments demonstrate the high classification accu-
racy of our shape histogram model. Automatic class label as-
signment is performed with an accuracy of 90% for a large

variety of 281 different class labels. This result competes
with CATH and other automatic classification techniques
that also yield accuracies of more than 90% but work with
significantly smaller numbers of some few class labels and
use more complex similarity models.

On top of the high accuracy, the experiments reveal the
good performance of the underlying query processor. The
high efficiency supports online query processing in contrast
to batch query processing of competing systems where the
query result is sent back by e-mail.

In our future work, we plan to optimize the space parti-
tioning and the geometry of the cells which form the histo-
gram bins. Both, the number as well as the geometry of the
cells affect the effectiveness and also the efficiency of simi-
larity search and classification. Furthermore, we plan to ex-
tend our classification system by a visualization tool for
shape histograms in order to provide an explanation compo-
nent for the user. This is an important issue since any notion
of similarity is subjective in a high degree, and the users
want to have as much feedback as possible concerning the
decision of the system depending on their queries and input
parameters. Furthermore, the confidence of the users in an
automatic classification increases with the reproducibility of
the decision by the user which can be enhanced by visualiza-
tion methods.
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