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Abstract

In their daily work, radiologists often need to
localize and align parts of CT volume scans
to perform among others di�erential diagno-
sis. In these cases, it is desired to load only
the relevant sub volume of the scan and to
align the sub volume automatically to the
correct position of the query scan. Com-
mon techniques employ landmark detectors
and interpolation to solve this problem. Yet,
these techniques are are not applicable in case
of very small volume scans where the query
scan comprises only a small amount of im-
ages. In this paper, we propose a method to
use small sub volumes in CT volume scans
for identifying and aligning CT Scans. Our
solution employs combinations of weighted
image descriptors and instance-based regres-
sion and thus demonstrates the need for ma-
chine learning techniques in the case of posi-
tion prediction. The experiments show that
the new method improves the mean error and
standard deviation by 6% and 10%, respec-
tively, compared to a state of the art method.

1. Introduction

Radiologists currently spend valuable time by manu-
ally localizing and aligning CT volume scans to each
other in order to create di�erential diagnosis or to com-
pare the temporal progress of a patient's status. Here,
a problem arises by the permanently growing resolu-
tion of CT scanners which also implies a growing size
of the recorded CT volume scans. Using current CT
scanners, full body CT scans can consume more than
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1GB disk space. Creating a di�erential diagnosis for
just a small part of the body currently requires to com-
pletely load the volume scan via the network from the
picture archive system. Afterwards, the clinician man-
ually navigates to the corresponding regions and aligns
the scans.

Even though this very common task consumes valuable
time of the physician and less important high network
resources, this domain has not received much attention
in the research community so far.

An approach proposed by Bürger (2008) is based on
using a topogram to predict the location of a body re-
gion. The method uses a set of invariant landmarks
and interpolation to create a relative coordinate sys-
tem. Similarly, Haas et al. (2008) propose an elastic
mapping of the slice positions to a reference scale by
detecting one of eight prede�ned anatomic points with
known position and interpolating the position of the
images between them. Seifert et al. (2009) propose a
Probabilistic Boosting Tree (PBT) and 2D Haar fea-
tures to train multiple landmark detectors that de-
tect up to 19 prede�ned landmarks. Subsequently,
the detectors are incorporated into a Markov Ran-
dom Field. The disadvantage of these approaches is
that they require large volume scans showing a large
enough amount of landmarks.

Criminisi et al. (2011) propose a method to detect and
localize a set of 10 di�erent organs in CT images. They
estimate both the location and the extent for each or-
gan by predicting the bounding box containing each
organ. They use a tree-based, non-linear regression ap-
proach based on multivariate regression forests. These
are similar to random forests but are able to predict
continuous values instead of discrete classes.

Feulner et al. (2009; 2011) propose a method that pre-
dicts the position of each slice in a normalized coor-
dinate system whose origin and unit length are deter-
mined by anatomical landmarks. Each slice is used to
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extract an intensity histogram and a descriptor con-
sisting of Speeded Up Robust Features (SURF) which
are then clustered into visual words. The histogram of
visual words is compared to a set of prototype volumes
where the body coordinates are known to obtain the
position of the slice. Nevertheless, the method is also
not applicable in the case of very small query scans.

A similar concept was proposed by Emrich et al. (2010)
which combined several feature representations. They
assume a standard scale from the sole of the foot to
the top of the head with a domain of [0; 1]. Feature ex-
traction is based on a modi�ed spatial pyramid kernel,
where Haralick-like texture features (Haralick et al.,
1973) are extracted together with histograms of ori-
ented gradients (HoGs) (Bosch et al., 2007). For lo-
calization, the feature vectors are compared to proto-
type volumes with the use of k-nearest neighbor search
and the Euclidean distance. Even though this method
requires only a single CT Slice as query object, accu-
racy and precision are comparable to approaches that
require larger volume scans.

In this paper, we propose a method to combine spa-
tially co-located images in CT volume scans to further
improve the quality of the localization in cases of very
small query volumes. Our solution employs combina-
tions of image descriptors and weighted combinations
of spatially neighboring images and instance-based re-
gression.

The rest of this paper is organized as follows: In sec-
tion 2, we brie�y describe the feature descriptor fol-
lowed by the prediction in section 3. The algorithm is
evaluated in section 4 followed by a conclusion and an
outlook in section 5.

2. Algorithm

2.1. 2D Features

In contrast to the method proposed by Emrich et al.
(2010), which relies on rectangular areas to extract
features, our method is based on a histogram in polar
space (Belongie et al., 2000) to provide an improved
adaption to the shape of the human body. The �-
nal descriptor is a combination of two complementary
histograms: one describing the bone structures and
the other one describing the distribution of soft tissue
inside the body. Due to their rather complementary
nature, the descriptors perform di�erently in di�erent
parts of the body so that all regions of the body are
covered by at least one descriptor that performs well
in this region.

The histograms are constructed as follows: First the

input CT slice I is cropped to the bounding box of
the patient's body, building the image Ic. Ic is then
divided into nx sectors and ny shells and the origin of
the coordinate system is positioned to the center of Ic.
The maximum distance rmax to the origin is de�ned
by half of the length of the diagonal of Ic. The angle φ
of a sector is de�ned as φ = 2π

nx
, the width of a shell as

rmax

ny
. Accordingly, the histogram consists of l = nx ·ny

bins. The value vi of bin i of a histogram is de�ned as

vi =

{
−0.25 if bin i ∈ Ic
pi

pi+ni
else,

(1)

with pi representing the amount of relevant pixels and
ni representing the amount of irrelevant pixels. A pixel
(x, y) is considered to be relevant if its pixel value is ≤
−500HU1 for the soft tissue descriptor and ≥ 300HU
in case of the bone descriptor. As Ic can have any
aspect ratio it may occur that some bins lie completely
outside of the image. This information is included into
the descriptor by setting a penalty value vi = −0.25 in
these cases in order to increase the di�erence between
images with di�erent aspect ratios.

Tests showed that the bone descriptor works best when
increasing the weight of the bins of the outer shells.
This can be explained by the fact that the most expres-
sive bone structures of the skeleton are located more
towards the outside of the body, such as the skull, the
chest or the spine. Furthermore, the method becomes
less a�ected by contrast media which are often found
in tissues inside the body towards the origin of the co-
ordinate system. As these contrast media show a very
large HU value, they also appear in the bone descrip-
tor and would cause severe distortions of the feature
vector without weighting.

Thus, we employ the quadratic weighting function (2)
on the values of the bins of the descriptor, with shell(i)
denoting the index of the according shell of bin i.

vi = vi · shell(i)2 (2)

After creating both histograms mentioned above, a sin-
gle feature vector is created for each image by concate-
nating both histograms. For the purpose of dimension-
ality reduction, a principal component analysis (PCA)
is applied to the resulting feature vector.

2.2. 3D Features

The descriptors above only use data of a single image
to extract the relevant features. If a volumetric scan is

1In computer tomography, the Houns�led unit (HU)
scale is used to describe the intensity of a pixel.
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already loaded, information from the CT slices neigh-
boring the query slice can be used to make the query
vector more robust to noise.

The approach proposed in this section addresses this
problem by consideringm preceding andm succeeding
CT slices when creating a feature vector. As it is used
as a post processing step after the creation of feature
vectors, it realizes an enrichment to the 2D method so
that the �exibility to use a single CT slice still persists.

A new feature vector FV 3D
i is formed by calculating

the weighted sum of the 2m+1 vectors. If the current
vector is not preceded or succeeded by m vectors, only
the existing vectors are used. Let FVi denote the i-th
feature vector in the sorted list of vectors for a single
CT volume consisting of n slices. Then the FV 3D

i is
calculated as follows:

FV 3D
i =

min(i+m,n)∑
k=max(0,i−m)

f(|k − i|) · FVk, (3)

where f(x) is one of the following weighting functions:

finverse(x) =
1

x+ 1
(4)

fsigmoid(x) =
2

1 + e0.3x
(5)

fpolynome(x) = −
x3

(m+ 0.1)3
+ 1 (6)

flinear(x) = −
x

m+ 0.5
+ 1 (7)

finverse-squared(x) =
1

x2
(8)

g(x) =
1

σ
√
2π

exp

(
−1

2

(
x− µ
σ

)2
)

fGaussian(x) =
g(x)

g(0)
;µ = 0;σ =

m

2

(9)

All these functions have in common that f(0) = 1 and
that the value of f(x) decreases with increasing x, so
that the weight decreases with increasing distance to
the source feature vector FVi.

3. Prediction

The task is to map the feature vector FVi of a CT
image with unknown position to a value in the stan-
dardized height model in the domain [0; 1].

The prediction is based on a two-stage k-nn search:
First, a k1-nn search is performed within each of the n
volumes of the database. The resulting n · k1 nearest
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Figure 1. Mean error and standard deviation of cross-
validation using 3D features (colored lines) compared to
the 2D features (black line) depending on the margin m
and the weighting function f(x).

neighbors are added to a single list of feature vectors
S1. In the second stage, the k2-nn of FVi in S1 are
computed. The �nal position is then predicted by tak-
ing the average position value of the features retuned
by the k2-nn search.

For distance computation, we employ the cosine dis-
tance measure (10) instead of the Euclidean distance
as it performs better on the high dimensional fea-
ture vectors than the Euclidean distance (Strehl et al.,
2000; Qian et al., 2004).

distcos(q, p) = 1−
∑d
j=1 qj · pj
‖q‖ · ‖p‖

(10)

4. Evaluation

To demonstrate the improvement, we compare our re-
sults to the current state of the art method proposed
by Emrich et al. (2010).

All experiments were conducted on a database of 59
CT scans of 44 di�erent patients (27 neck and 32 tho-
rax scans) covering the area between the top of the
head to the end of the coccyx. Each patient contribu-
ted only a single scan per body region to avoid over �t-
ting to a single patient. The data set comprises 25 965
DICOM images using more than 13GB disk space.

The results shown in Figure 1 show that considering
two adjacent slices already made a noticeable di�er-
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ence. The choice of f(x) also becomes more signi�-
cant with increasing value of m. It can be seen that
all functions except fGaussian outperform the 2D fea-
ture vector (black line) for all values of m in terms
of accuracy and precision. Nevertheless finverse-squared
converges to the performance of the 2D feature vec-
tor in case of m ≥ 5 in both accuracy and precision,
while fGaussian increases precision but looses accuracy
at m ≥ 8.

Considering both emean and the standard deviation
σ, the best results were achieved with flinear (ma-
genta line) and fpolynome (green line). Both achieved
emean = 16.5mm and σ ≤ 32.4mm compared to
emean = 17.6mm and σ = 35.9mm in the 2D case.
Thus achieving an improvement of 6% (mean error)
and 10% (standard deviation).

5. Conclusion

In this paper we demonstrated the need of machine
learning in the �eld of medical imaging by applying
weighted combinations of image features for the local-
ization of small sub volumes in CT scans. We applied
the method on a large real world data set and mea-
sured the impact by the decrease of the mean error
and standard deviation by 6% and 10%, respectively.

Besides enlarging the data set, we plan to evaluate
feature selection and boosting as well as more sophis-
ticated machine learning methods for combining the
feature vectors to make the localization more robust.
The main goal lies in the reduction of large errors. We
also plan to create a demo system that visualizes the
approach discussed in this paper.
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