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High Performance Data Mining
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= Marketing

= Fraud Detection
= CRM

= Online Scoring
= OLAP

Fast decisions require knowledge just in time

Previous Approaches to Fast Data Mining

= Sampling
= Approximations (grid) ; Loss of quality

= Dimensionality reduct.
= Parallelism Expensive & complex

All approaches combinable with DB primitives

KDD appl. get parallelism for free




Christian Bohm

120

Feature Based Similarity
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Complex Objects Feature Vectors €-/NN-Search
Feature- Insert,
Transform. Query .
dimens.
Index
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Simple Similarity Queries

- Specify query object and
- Find similar objects — range query
- Find the k& most similar objects — nearest neighbor q.
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Multidimensional Index Structure (R-Tree)

o o Directory Page:
5 Ej j Rectangle,, Address,
Rectangle,, Address,
E Rectangle,, Address,
Rectangle,, Address,
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Similarity — Range Queries

- Given: Query point g
Maximum distance ¢

- Formal definition:
sim(g) = {0 € DB |d(g,0) <g}

- Cardinality of the result set is
difficult to control:
€ too small =» no results
g too large =» complete DB
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Index Based Processing of Range Queries
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Similarity — Nearest Neighbor Queries

- Given:
Query point g

- Formal definition:
NN, ={o € DB|Vo’ e DB d(g,0) <d(q,0)}

- Ties must be handled:

- Result set enlargement
10 - Non-determinism (don’t care)
120
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Index Based Processing of NN Queries
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k-Nearest Neighbor Search and Ranking

- k-nearest neighbor query:
- Do not only search only for one nearest neighbor but &
- Stop distance is the distance of the &, (last) candidate point

- kNNq 1s the smallest subset of DB that contains > & elements with
VoekNN,, Vo e DBVENN, [lo—q| <|o’—4ll

Ranking-query:
- Incremental version of k-nearest neighbor search
- First call of FetchNext() returns first neighbor
12 - Second call of FetchNext() returns second neighbor...
120 - Typically only few results are fetched = Don‘t generate all!
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Advanced Applications: Duplicates

- Duplicate detection
- E.g. Astronomical catalogue matching
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13 | . Similarity queries for large number of query obj
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Advanced Applications: Data Mining

- Density based clustering (DBSCAN)
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What is a Similarity Join?

- Given two sets R, S of points
- Find all pairs of points according to similarity
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15 |« Various exact definitions for the similarity join
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Organization of the Tutorial

- Motivation

- Defining the Similarity Join

- Applications of the Similarity Join
- Similarity Join Algorithms

- Conclusion & Future Potential
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Defining the Similarity Join

What Is a Similarity Join?

Intuitive notion: 3 properties of the similarity join

—  The similarity join is a join in the relational sense
Two sets R and S are combined into one such that
the new set contains pairs of points that fulfill a
join condition
R % S < RxS

-~ Vector or metric objects
rather than ordinary tuples of any type

18 —  The join condition involves similarity
120
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What Is a Similarity Join?

Similarity Join

VAR

Distance Range Join| |NN-based Approaches
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Closest Pair Query k-NN Join

Distance Range Join (e-Join)

- Intuitition: Given parameter ¢
All pairs of points where distance < ¢

- Formal Definition:

R DA S={(rys) e RxS:|r,—s]l <&}

- In SQL-like notation:
SELECT * FROM R, S WHERE ||R.obj — S.obj|| < ¢




Distance Range Join (g-Join)

- Most widespread and best evaluated join
- Often also called the similarity join

x Points of R
¢ Points of .§
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Distance Range Join (e-Join)

- The distance range self join

R PR
is of particular importance for data mining
(clustering) and robust similarity search
- Change definition to exclude trivial results
- Lemma 1. the distance range se/fjoin is symmetric 1.¢.

22 (rr) e RDA RS (1) e R DA R
120
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Distance Range Join (g-Join)

- Disadvantage for the user:
Result cardinality difficult to control:
- gtoosmall = no result pairs are produced
- gtoolarge > all pairs from R x § are produced

- Worst case complexity is at least o(|R|-|S])

- For reasonable result set size, advanced join
algorithms yield asymptotic behavior which is

23 better than O(|R|-|S])
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k-Closest Pair Query

- Intuition:
Find those £ pairs that yield least distance

- The principle of nearest neighbor search is
applied on a basis per pair

- Classical problem of Computational Geometry

- In the database context introduced by
[Hjaltason & Samet, Incremental Distance Join Algorithms, SIGMOD Conf. 1998]

24 |+ There called distance join
120
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k-Closest Pair Query

- Formal Definition:

R % S'1s the smallest subset of R x S that contains at least
k pairs of points and for which the following condition holds:

V (1s) e RPIS V (#,5°) € R x S\RPLS: |r=s]| < [l =5’

- Ties solved by result set enlargement

- Other possibility: Non-determinism
(don’t care which of the tie tuples are reported)

k-Closest Pair Query

In SQL notation: SELECT * FROMR, §
ORDER BY ||R.obj — S.obj||

STOP AFTER &k
®
®
X ® 3 ¢
‘ . =x x Points of R
¢ 4p * Points of §

2
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k-Closest Pair Query
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- Self-join:
- Exclude |R| trivial pairs (7, 7;) with distance 0
- Result is symmetric
- Applications:
- Find all pairs of stock quota in a database that are
most similar to each other
- Find music scores which are similar to each other

- Noise robust duplicate elimination

k-Closest Pair Query

- Incremental ranking instead of exact
specification of k
- No STOP AFTER clause:

SELECT * FROMR, S
ORDER BY ||R.obj — S.obj||

« Open cursor and fetch results one-by-one

- Important: Only few results typically fetched
—> Don’t determine the complete ranking



k-Nearest Neighbor Join

- Intuition:
Combine each point with its £ nearest neighbors

- The principle of nearest neighbor search is
applied for each point of R
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k-Nearest Neighbor Join

- Formal Definition:

R PX, 8 is the smallest subset of R x S that contains for each point
of R at least & points of .S and for which the following condition

holds:
V(1) e RPSS, ¥V (187) € Rx S\RPS S r=s]| <=

- Ties solved by result set enlargement

- Other possibility: Non-determinism
30 (don’t care which of the tie tuples are reported)
120
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k-Nearest Neighbor Join
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In SQL notation: SELECT * FROMR, S
(limited to k/=1) GROUP BY R.obj
ORDER BY ||R.obj — S.obj||

2
2 :
- .Tx/ x Points of R
* '2 ° . * Points of S
® ._XP .
&
k-Nearest Neighbor Join

 The £~-NN-join is inherently asymmetric:
R PSS and S PSS R have completely different meaning;
R PSS retrieves k|R| pairs
S PSS R retrieves k|S| pairs

1
; 1

. \ * Points of R
1



k-Nearest Neighbor Join

- Applications of the £~-NN-join:
- k-means and k-medoid clustering
- Simultaneous nearest neighbor classification:
A large set of new objects without class label are
assigned according to the majority of k nearest
neighbors of each of the new objects
- Astronomical observation
+ Online customer scoring

5 | . Ranking on the &-NN-join is difficult to define

120
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Density Based Data Mining
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Schema for Data Mining Algorithms

Algorithmic Schema A,
foreach Pointp € D
PointSet S := SimilarityQuery (p, ¢);
foreach Pointg € S
DoSomething (p,q) ;
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Iterative similarity queries and cache

a*;

= Due to curse of dimensionality:
No sufficient inter-query locality of the pages
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120 Dimension (d)

Iterative similarity queries and cache
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Idea: Query Order Transformation

a*;

[Bohm, Braunmiiller, Breunig, Kriegel: High Perf. Clustering based on the Sim. Join, CIKM 2000]

A
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Schema Transformation

a*z

foreach DataPage P
LoadAndPinPage (P) ;
foreach DataPage Q
if (mindist (P,Q) < ¢)
CachedAccess (Q) ;
foreach Pointp € P
foreach Pointqg € Q
if (distance (p,q) <¢)
DoSomething’ (p,q) ;

Christian Bohm
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120 UnFixPage (P) ;




Similarity Join
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A, 1s a Similarity-Join-Algorithm:

foreach PointPair (p,q) € R D] R
DoSomething’ (p,q) ;

Where R D<] R denotes the Similarity-Join:

SELECT *FROM R, R,
WHERE distance (r,.object, r,.object) <¢

Implementation Variants

- Change of the order in which points are
combined must partially be considered

Implementation
Semantic Materialization
Change algorithm to take Materialize join result j and
unknown order into account answer original queries by j



Example Clustering Algorithms

= DBSCAN = OPTICS
[Ester, Kriegel, Sander, Xu: A Density Based [Ankerst, Breunig, Kriegel, Sander: OPTICS:
Algorithm for Discovering Clusters in Large Ordering Points To Identify the Clustering
Spatial Databases with Noise’, KDD 1996] Structure, SIGMOD Conf. 1999]
= Flat clustering = Hierachical
(non hierarchical) cluster-structure
£
%
a3
120 Semantic Rewriting Materialization
Transformation by Semantic Rewriting
- Rewrite the algorithm to take the changed order
of pairs into account
- Don’t assume any specific order in which pairs
are generated
£ —> Arbitrary similarity join algorithm possible
m
el
120
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Example: DBSCAN
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= p core object in D wrt. &, MinPts: | N.(p) | =2 MinPts

p directly density-reachable from g in D wrt. & MinPts:

1)p € N(g) and
2) q is a core object wrt. & MinPts

= density-reachable: transitive closure.

= cluster:
- maximal wrt. density reachability

- any two points are density-reachable from
a third object

Implementation of DBSCAN on Join

= Core point property:
DoSomething() increments a counter attribute

= Determination of maximal density-reachable clusters:
DoSomething():

- Assign ID of known cluster point to unknown cluster points

- Unify two known clusters
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Implementation of DBSCAN on Join

Py CORE POINT NON-CORE POINT
P, D NULL 1D NULL
D merge if P,.ID= P,ID=
P, ID==P, ID P..ID P, ID
CORE e} 2) (3 4
POINT
N P, ID= P, ID= P.ID=
U P,.ID P, ID = P,ID=
L new [D new ID
L ()] (&) () €]
D (3) (6) ) (&
NON-
CORE | N Pp.ID = P ID =
POINT u PLID P;ID=
L new D
L “) ()] ®) (8

Implementation of DBSCAN on Join

page; . O
FEIGEE ol 1

point X point ¥
Ta % wl

page,
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Implementing OPTICS (Materialization)
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- The join result is predetermined before starting
the actual OPTICS algorithm

« The result 1s materialized in some table with
GROUP-BY on the first point of the pair

- The OPTICS algorithm runs unchanged

- Similarity queries are answered from the join
materialization table (much faster)

- Disadvantage: High memory requirements

Experimental Results: Page Capacity
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Experimental Results: Scalability

Color image data Meteorology data
150000 f 150000 +
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51 —¢ J-DBSCAN (X-tree) — J-OPTICS (X-tree)
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Robust Similarity Search

[Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]
- Usual similarity search with feature vectors:
Not robust with respect to

- Noise:

Euclidean distance sensitive to mismatch in single dimension
- Partial similarity:

Not complete objects are similar, but parts thereof

Christian Bohm

- Concept to achieve robustness:
52 Decompose each data object and query object into sub-objects
120 and search for a maximum number of similar subobjects
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Robust Similarity Search
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- Prominent concept borrowed from IR research:
String decomposition: Search for similar words
by indexing of character triplets (n-lets)

« Query transformed to set of similarity queries
—> similarity join between query set and data set

- Robustness achieved in result recombination:

- Noise robustness: Ignore missing matches
- Partial search: Dont enforce complete recombination

Robust Similarity Search

Applications:

- Robust search for sequences:
[Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]

- Principle can be generalized for objects like

Raster images
CAD objects
3D molecules

- eftc.



Astronomical Catalogue Matching
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- Relative position of catalogues approx. known:
- Position and intensity parameters in different bands
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- Determine € according to device tolerance

Astronomical Catalogue Matching

- Relative position unknown:
- Match according to triangles and intensity
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- Search triangles and store parameters (height,..

- triangles (C,) <] triangles (C,)

)



k-Nearest Neighbor Classification

- Simultaneous classification of many objects

[Braunmiiller, Ester, Kriegel, Sander: Efficiently Supporting Multiple Similarity
Queries for Mining in Metric Databases, ICDE 2000]

- Astronomy

+ Some 10,000 new objects collected per night
- Classify according to some millions of known objects

- Online customer scoring
« Some 1,000 customers online
- Rate them according to some millions of known patterns

Christian Bohm
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k-Nearest Neighbor Classification

- Example:
k=3
0% 0%, ® - Objects with known class
e ®® oo o
s ® °0 o N biect
i ° \ ew objects
z oo %6° !
2 ° o '@
5

ss |+ New objects L>N<N Known objects
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k-Means and k-Medoid Clustering

- k Points initially randomly selected (,,centers*)
- Each database point assigned to nearest center

- Centers are re-determined
- k-means: Means of all assigned points (artificial p.)
- k-medoid: One central database point of the cluster

- Assignment and center determination are
repeated until convergence

Christian Bohm
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k-Means and k-Medoid Clustering

- Example: (k-means with k£ = 3)

o o ©
o @° o o
e) O o ©O
o
=) O |
2 0@ Convergence!
Q

60 |+ Each assignment phase: DB-Points Centers




Similarity Join Algorithms

Algorithms” Overview

Similarity join

= Range dist. join

Index based

on-the-fly index
Hashing based >

Optimization

Cost modeling

Sorting based

Christian Bohm

Closest pair qu.

CPU optimizing

62
120 = k-NN join )




Nested Loop Join

- Simple nested loop join:
- Iterate over R-points R

- Nested iteration over S-points
—> S is scanned |R| times, high I/O cost

- Nested block loop join:

- First iterate over blocks

Christian Bohm

- Nested iterate over tuples
—> S scanned |R|/|B| times

5
@ —tuples
~

R-blocks
S-blocks

63
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Indexed Nested Loop Join

- Iterate over every point of R

. |
- Determine matches in S by ﬁ

similarity queries on the index

- Due to the curse of dimensionality:
—> Performance deterioration of the similarity q.

—> Then not competitive with nested loop join
(Depends on dimensionality and selectivity determined by €)

Christian Bohm
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Spatial Join < Similarity Join

- 2D polygon databases - High-D point databases

- Join-predicate: Overlap - Join-predicate: Distance

- Conserv. approximation: - Map &-join to spatial join
MBR (ax-par. rectangle) Cube with edge-length ¢

El o
ol
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T2 |+ Some strategies can be borrowed from the spatial join

R-tree Spatial Join (RSJ)

[Brinkhoff, Kriegel, Seeger: Efficient Process. of Spatial Joins Using R-trees, SIGMOD Conf. 1993]

- Originally: Spatial join for 2D rect. intersection
- Depth-first search in R-trees and similar indexes
- Assumption: Index preconstructed on R and S

- Simple recursion scheme (equal tree height):
procedure r_tree join (R, S: page)
foreach » € R.children do
foreach s € S.children do

66 iy ..
20 if intersect (7,s) then r_tree join (7,s) ;

Christian Bohm




R-tree Spatial Join (RSJ)

- Adaptation for the similarity join:
Distance predicate rather than intersection
- For pair (R,S) of pages: mindist (R,S)
—> Least possible distance of two points in (R,S)

Christian Bohm

t — Rb,~ S.ub, if Rlb, > S.ub,
~ | mindist = Z 0 otherwise

e
-

67 . 0si<d| SIb,—R.ub, if SIb,> R.ub,
120

R-tree Spatial Join (RSJ)

procedure r tree sim join (R, S, €)
if IsDirpg (R) A IsDirpg (S) then
foreach » € R.children do
foreach s € S.children do
if mindist (7,s) < € then
CacheLoad(r); CacheLoad(s);
r_tree sim_join (7,s,€) ;
else (* assume R,S both DataPg *)
foreach p € R.points do
foreach g € S.points do

68 if [p — g| < & then report (p,q);
120
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R-tree Spatial Join (RSJ)

Christian Bohm
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Extension to different tree heights straightforw.
Several additional optimizations possible
CPU-bound

- Cost dominated by point-distance calculations

Disadvantages
- No clear strategies for page access priorization

- Single page accesses
—> Can be outperformed by nested block loop join

Parallel RSJ

[Brinkhoff, Kriegel, Seeger: Parallel Processing of Spatial Joins Using R-trees, ICDE 1996]

- A task corresponds to a pair of subtrees
- At high tree level (e.g. root or second level)

[CPUy [CPU [CPUY

Various Strategies:

‘/ « Static Range Assignment
5 4 ; « Static Round Robin
K / * Dynamic Task Assignment
|
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Breadth-First R-tree Join (BFRJ)
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[Huang, Jing, Rundensteiner: Spatial Joins Using R-trees: Breadth-First Traversal..., VLDB 1997]

- Again spatial join for 2D rectangle intersection

« Shortcoming of RSJ:
- No strategy in outer loop improving locality in inner

- Depth-first traversal not flexible, because a pair of
tree branches must be ended before next pair started

—> unnecessary page accesses

Breadth-First R-tree Join (BFRJ)

- Solution:
- Proceed level by level (breadth-first traversal)
- Determine all relevant pairs for the next level
—> intermediate join index (1JI)
- Sort the 1JT according to suitable order before

accessing the next level
—> global optimization strategy



Breadth-First R-tree Join (BFRJ)
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Approaches without Preconstructed Index

- Indexes can be constructed temporarily for join

- R-tree construction by INSERT too expensive
—> Use cheap bottom-up-construction
- Hilbert R-trees: O (n log n)

[Kamel, Faloutsos: Hilbert R-trees: An Improved R-tree using Fractals, VLDB 1994]

Sort points by SF'C and pack adjacent points to page

- Buffer trees
[van den Bercken, Seeger, Widmayer: 4 Generic Approach to Bulk Loading.., VLDB 1997]

- Repeated partitioning

[Berchtold, Bohm, Kriegel: Improving the Query Performance ..., EDBT 1998]

Christian Bohm
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Seeded Trees

[Lo, Ravishankar: Spatial Joins Using Seeded Trees, SIGMOD Conf. 1994]
- Again spatial join for 2D rectangle intersection

- Assumption:

Only one data set (R) 1s supported by index
- Typical application:

Set S is subquery result

- Idea:
Use partitioning of R as a template for S

Seeded Trees

- Motivation
- Early inserts to R-trees decide initial organization
- We know that S will be matched with R

- Start with small template tree instead of empty root
- seed levels

BR2 p—— _BR2
BR1 Egl|m BR1 "
1 Bs1i|l8s2 |
anm " on il [ Bounding box in tree 1
i__J Bounding box in tree 2
[ ] -~ [
l- L BSSJ h.ﬁi‘l m Data object in tree 2
——
BR3 BR4 BRS BR4
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The g-kdB-tree

[Shim, Srikant, Agrawal:
High-dimensional Similarity Joins, ICDE 1997]

Algorithm for the

range distance self join

- General idea:

Grid approximation where

grid line distance = ¢

- Not all dimensions used for decomposition:
As many dimensions as needed to achieve a defined

node capacity

The e-kdB-tree

|

-

L —— — — 4
r—— ==

" leafl

leaves



The g-kdB-tree

. Node fanout: [ 1/¢ | (assuming data space [0..1]9)

- Tree structure is specific to given parameter €
—> must be constructed for each join

« The e-kdB-trees of two adjacent stripes are
assumed to fit into main memory

Christian Bohm
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The e-kdB-tree

procedure t match (R, S: node)
if is_leaf (R) v is_leaf (S) then

else
for i:=1to| 1/e|~ 1 do
t match(R.child[{], S.child [7]) ;
t match (R.child[{], S.child [i+1]) ;
“ t match (R.child[i+1], S.child[{]) ;
e t match (R.child[[ 1/£1], S.child[ 1/¢1]) ;

120
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The g-kdB-tree

- Limitation:
For large € values not really scalable

- In high-dimensional cases, €=0.3 can be typical
= 60% of data must be held in main memory

£ | - Aslong as data fit into main memory:
£ g-kdB-tree is one of the best similarity join
g algorithms
1
120
The e-kdB-tree
Uniform Distribution Gaussian Distribution
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10000 e~K-D-I§ :;:: e 10000 | e K»D-E res .
i H T
E 1000 E 1000 / """" o e
g é 100 i§ 100 / ,,,,,,, o 1
S B =
E 10 10£ //// e
S e T we e s o e T
Number of Paints ('000s) Number of Points ('000s)
82
120




The Parallel e-kdB-tree

[Shafer, Agrawal: Parallel Algorithms for High-dimensional Similarity Joins, VLDB 1997]
- Parallel construction of the e-kdB-tree:
- Each processor has random subset of the data (1/N)
- Each processor constructs e-kdB-tree of its own set
- Identical structure is enforced e.g. by split broadcast

Christian Bohm
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The Parallel ¢-kdB-tree

- Workload distribution:
Global determination of the cumulated node sizes

A unit workload is a pair (r,s) of leaf nodes

The cost of a workload is

|7|-|s| for different leaves

and |7|-(|r]+1)/2 for a single leaf (self join)

- Data is redistributed: Each processor gets 1/N work
- join units are clustered to preserve locality

84 C e e e . .
20 - minimize redistribution (communication) and replication
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The Parallel e-kdB-tree

« Workload execution:
- delete internal structure

- cum. node size too large
—> second growth phase

- data redistribution per-
formed asynchronously:
Data sent in depth-first
order of tree traversal to
avoid network flooding

The Parallel e-kdB-tree

Array of leaf pointers:

Deleted internal structure -+
Original eKDB leaves

Peaponts Gme (84¢.)

Uniform Distribution

Apace paioning -+

Gaussian Distribution

Rasporss ime fsoc.]

space-paniloneg +




Plug & Join

[van den Bercken, Schneider, Seeger: Plug&Join: An Easy-to-Use Generic Algorithm, EDBT 2000]
Generic technique for several kinds of join

- Main-memory R-tree constructed from R-sample

- Partition R and S acc. to R-tree (buffers at leaves)

£
%
87,
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Partition Based Spatial Merge Join
- Spatial join method using replication
[Patel, DeWitt: Partition Based Spatial-Merge Join, SIGMOD Conf. 1997]
- Both sets R and S are partitioned with replication
- Space iS regularly tﬂed Tile 0/Part0  !Tile 1/Partt ;TileZ/Part2 :Tile 3/Part 0
g | !
. - Partitions either corre- L 4: ,,,,,,, J:r ,,,,,,
% spond to tiles or are | Tile 4/Part 1 | ) Tle SMart 2 if_"‘-’_f’fi"_c'_iﬂez’iﬂ_ﬂ‘__
£ determined from them ! al |
5 U.Sing hashing TiegPart2 | ITie o/parto | lTile 10Part 1 e 11/Part2
. . . . MBR Polygon Attribute Universe
88 | . Similar: Spatial Hash Join
120 [Lo, Ravishankar: Spatial Hash Joins, SIGMOD Conf. 1996]
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Approaches Using Space Filling Curves

- Space filling curves recur-
sively decompose the data
space in uniform pieces

- Various different orders:
Z- Order Gray Code Hilbert

223 el
A T

120
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/001070010
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/1000 / 1001

1100\ 1101\

/1010 /1011

1110\ 111\

Approaches Using Space Filling Curves

- Efficient filter for the join:

Objects in different cells cannot

intersect each other

—> Sort-merge-join e.g. on Z-order

- Problem:

Object may cross grid lines

- either decompose object (redundant)

- or assign to containing cell

00 (-]




Approaches Using Space Filling Curves

- If all cells have uniform size:
—> Equi-join on grid cell numbers (bit strings)

- If cells have varying size:
= Bit strings of varying length |55 [

bod

- Objects may intersect ...
- if bitstr () is prefix of bitstr (s)
- or bitstr (s) is prefix of bitstr ()

Christian Bohm

120

Orenstein‘s Spatial Join

[Orenstein: An Algorithm for Computing the Overlay of k-Dim. Spaces, SSD 1991]
- Allows (limited) redundancy, object decompos.

- Algorithm:
- Objects are decomposed

- Partial objects are ordered according to the
lexicographical order of the bit strings

- Objects are accessed in sort-merge like fashion

- Two stacks are maintained to keep track of the
prefix objects of R and S.

Christian Bohm
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Orenstein‘s Spatial Join

Christian Bohm
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- Stacks for prefix objects:

Stack: Linked list: Stack: Linked list:
001110k 715 o[ #16 | 0011105 [ 53 Fm{ 59 |
| 0011 [{ 77 | Ty | 7 | | 0011 jrie{ 54 |

00 fr{ 75 |

O 7 {1 O S S5 ]
File R: File S

100111000: 1,7 00111001 Fg)...

[001111:534[01: 59 ...

Multidimensional Spatial Join

[Koudas, Sevcik: High-Dimensional Similarity Joins, ICDE 1997, Best Paper Award]

- No redundancy allowed at all

- Instead of stacks:

Separate level files for different bitstring length

- Problems with no redundancy:
- With increasing dimension: increasing €

- Increasing chance that object intersects one of the
primary decomposition lines = approx. by <>



Multidimensional Spatial Join
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(a) Increasing dimension for epsilon=0.003 (b) Increasing epsilon for d=4
95 Figure 8: Performance of joins between stock market data
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Epsilon Grid Order
[B6hm, Braunmiiller, Krebs, Kriegel:
Epsilon Grid Order, SIGMOD Conf. 2001]
- Motivation like e-kdB-tree:
Based on grid with grid
line distance ¢ °
3 - Possible join mates A
g restricted to 3¢ cells v
&)
- Here no tree structure but sort order of points based on
96 . . .
0 lexicographical order of the grid cells




Epsilon Grid Order

Definition 1 Epsilon Grid Order (- 5, *)

For two vectors p, ¢ the predicate p 5 ¢ is rrue if (and only
if) there exists a dimension d,; such that the following condi-

tions hold:
£ Pi q;
o2 S
- ) Fj ZV_‘JIJ Vj<i
97 g | € w
120

Epsilon Grid Order

- A simple exclusion test (used for 1/0):
A point g with
e P~ [e,e,...€]' or p+ [8,8,...,8]Te§0 q
cannot be join mate of point p or any point
beyond p (with respect to epsilon grid order)

Christian Bohm

- The interval between p—[e,...,€]" and pt[e,....]"

98 1s called e-interval
120




Epsilon Grid Order

a*;

- Sort file and decompose it into I/O units

1 out of
) e-interval
3
£ 4
E 5
2 6
“ 7
1/O Unit 8 3
99
120 Unit y @ Disk Access
Epsilon Grid Order
8 910111213 9 10 11 12 13 14 9 10111213 14
4
5
65
70 o=
8/ | ef=p»
9
E 10 o=
. 11 «—p |}
2 12 3
g 13
14
100

(a) gallop mode  (b) I/O thrashing (c) crabstep




Epsilon Grid Order

1.0E+09 X 1.E+05
1.0E+08 - >
'S LOE+07 x FREAL I S e o
2 omras | : L i
EE L0E+05 | % /‘ é LE03 — A MuX-Join
g | B o
% 1.0E+02 T T 1.E+01 - T T 1
'g 10 100 1000 10000 0.10 0.20 0.30 0.40
é Database Size [MByte] Epsilon
101
120
Closest Pair Queries
[Hjaltason, Samet: Incremental Distance Join Algorithms for Spatial DB, SIGMOD Conf. 1998]
- For both point objects and spatial objects
- Find k objects with least distance
£ | - Basis algorithm™ for nearest neighbor search
as] .
E extended to take point pairs into account
é’: * [Hjaltason, Samet: Ranking in Spatial Databases, SSD 1995]
102
120




Basis Algorithm for NN Search

lﬁ s Active Page List:
(@)

|P14|P4|P24|P3 | P12l Pl P13 |P21|P22|

Christian B6hm

120
Hjaltason/Samet: Closest Pair Queries
- Nearest Neighbor - Closest Pair Query
« k result points —> k point pairs
- active page list —> list of active page pairs
- initialization root = pair (rooty, rooty)
f - distance point/query = distance of point pair
é - mindist page/query -2 mindist betw. page pair
104
120




Hjaltason/Samet: Closest Pair Queries

L — Active Page List:
(@) 0O O
—Oj | (root,p,)|(root,p,)|(root,py)l(ro0t,p,) |

@) o 9

O o
. o%o o o ©
2 = o L1or ¢
8 = (@] o
E ®
: s JBR | e

(@]

105 L |
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Hjaltason/Samet: Closest Pair Queries

- Unidirectional node expansion:
Given a pair (7,s;) only one node is expanded
- Closest pair ranking:
Incremental version of k-closest pair queries
—> stop criterion is validation of next pair

- k-nearest neighbor join:
Runs a closest pair ranking and filters out the
106 (k+1), occurrence (and more) of each point of R

Christian Bohm
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Hjaltason/Samet: Closest Pair Queries

Christian Bohm

- Two strategies for tie breaks (same distance):
- Depth-first
- Breadth first
- Three policies for tree traversal
- Basic (one tree determines priority)
- Even (priority to node with shallower depth)

- Simultaneous (all possible pairs are candidates for
traversal)

Alternative Approaches

[Shin, Moon, Lee: Adaptive Multi-Stage Distance Join Processing, SIGMOD Conf. 2000]

- Various improvements and optimizations

- Bidirectional node expansion

| (root,ro0t) —>{ (2,0) | (92, £2) | (02 ) | (01, P | (3, ) | (015 1) |

- Plane sweep technique for bidirectional node exp.

- Adaptive multi-stage algorithm
- Aggressive pruning using estimated distances
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Alternative Approaches

[Corral, Manolopoulos, Theodoridis,
Vassilakopoulos: Closest Pair Queries in
Spatial Databases, SIGMOD Conf. 2000]

%,
bt?
,7}.
V/ .

mindist

> InaXd]lg "

- 5 different algorithms for closest point queries

- Naive: Depth-first traversal of the two R-trees
~ recursive call for each child pair (r;s;) of (r,s)

- Exhaustive: like naive but prune page pairs the
mindist of which exceeds the current k-CP-dist

- Simple recursive: addit. prune using minmaxdist

Alternative Approaches

- 5 different algorithms (...)

- Sorted distances recursive:
Before descending sort child
pairs acc. to their mindist

%,

2
.

mindist

> n]a«\'djSt

—> fast get good distance for pruning. Analogous to
[Roussopoulos, Kelley, Vincent: Nearest Neighbor Queries. SIGMOD Conf. 1995]

- Heap algorithm:

Similar to the algorithm by Hjaltason & Samet

with some minor differences

- New strategies for ties and different tree height
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Modeling and Optimization

Christian Bohm

[Bohm, Kriegel: 4 Cost Model and Index Architecture for the Similarity Join, ICDE 2001]
= Mating probability of index pages:
= Probability that distance between two pages < €
= Two-fold application of Minkowski sum

mating .
area where . marked area:

distance < &:

page
region:

P m—
(Cof|R)

marked pos

Modeling and Optimization

- I/O cost: hesting

directory page

accommodated
directory buckets

- High const. cost per page
- Large capacity optimum

® CPU COSt: ‘ page directory | | page directory | hosting
data page
- Low const. cost per page ‘ 1 1 accommmodated
% data buckets
- Low capacity optimum ]

— CPU-performance like CPU optimized index
— I/O- performance like I/O optimized index
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Conclusions

Summary

- Similarity join is a powerful database primitive
- Supports many new applications of

- Data mining

- Data analysis
- Considerable performance improvements
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Summary

Christian Bohm

- Many different algorithms for the similarity join

- Most for the distance range join (¢ join)
- Some approaches for closest pair queries

- Important operation of nearest neighbor join has
almost not been considered yet

- All 3 types of join have different applications

- Comparison of different ¢ join algorithms:
- Mostly a competition for speed

Summary

- Only few other advantages/disadvantages:

- Scalability:
- MSJ and e-kdB-tree have high main memory
requirements in high-dimensional spaces
- Existence of an index:

- Actually no matter because R-trees can be fast
constructed bottom-up. Construction time often
much less than join time

- Even if preconstructed indexes exist:
Approaches based on sorting often better

- No good criteria known for algorithm selection
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Future Research Directions

Christian Bohm

- Applications:
- Many standard data mining methods accelerable:

« Outlier detection
- Various clustering algorithms (e.g. obstacle clustering)
- Hough transformation and similar analysis methods

- New data mining methods will become feasable:

- Subspace clustering & correlation detection
- Methods may become interactive

Future Research Directions

- Algorithms
- Sufficient research for ¢ join and closest pair query
- Almost no convincing approaches for the &~-NN-join
Important database primitive for many applications
Parallel Algorithms
Non-vector metric data (e.g. text mining)

Approximative join algorithms
- Similarity search: Approximative search often sufficient
- Join performance could be considerably improved



Future Research Directions

- Optimization of various critical parameters

Dimension

Replication
Index scan strategies

Christian Bohm
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Questions



