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Abstract
The similarity join has become an important database primitive
to support similarity search and data mining. A similarity join
combines two sets of complex objects such that the result con-
tains all pairs of similar objects. Well-known are two types of the
similarity join, the distance range join where the user defines a
distance threshold for the join, and the closest point query or
k-distance join which retrieves the k most similar pairs. In this
paper, we investigate an important, third similarity join opera-
tion called k-nearest neighbor join which combines each point of
one point set with its k nearest neighbors in the other set. It has
been shown that many standard algorithms of Knowledge Dis-
covery in Databases (KDD) such as k-means and k-medoid clus-
tering, nearest neighbor classification, data cleansing, postpro-
cessing of sampling-based data mining etc. can be implemented
on top of the k-nn join operation to achieve performance im-
provements without affecting the quality of the result of these al-
gorithms. We propose a new algorithm to compute the k-nearest
neighbor join using the multipage index (MuX), a specialized in-
dex structure for the similarity join. To reduce both CPU and I/O
cost, we develop optimal loading and processing strategies.

1. Introduction

KDD algorithms in multidimensional databases are often based on
similarity queries which are performed for a high number of ob-
jects. Recently, it has been recognized that many algorithms of sim-
ilarity search [2] and data mining [3] can be based on top of a single
join query instead of many similarity queries. Thus, a high number
of single similarity queries is replaced by a single run of a similarity
join. The most well-known form of the similarity join is the dis-
tance range join R S which is defined for two finite sets of vec-
tors, R = {r1,...,rn} and S = {s1,...,sm}, as the set of all pairs from
R × S having a distance of no more than ε:

R S := {(ri,sj) ∈ R × S | || pi −qj || ≤ ε}

E.g. in [3], it has been shown that density based clustering algo-
rithms such as DBSCAN [25] or the hierarchical cluster analysis
method OPTICS [1] can be accelerated by high factors of typically
one or two orders of magnitude by the range distance join. Due to
its importance, a large number of algorithms to compute the range
distance join of two sets have been proposed, e.g. [27, 19, 5]

Another important similarity join operation which has been re-
cently proposed is the incremental distance join [16]. This join op-
eration orders the pairs from R × S by increasing distance and re-
turns them to the user either on a give-me-more basis, or based on
a user specified cardinality of k best pairs (which corresponds to a
k-closest pair operation in computational geometry, cf. [23]). This
operation can be successfully applied to implement data analysis
tasks such as noise-robust catalogue matching and noise-robust du-
plicate detection [11].

In this paper, we investigate a third kind of similarity join, the
k-nearest neighbor similarity join, short k-nn join. This operation is
motivated by the observation that many data analysis and data min-
ing algorithms is based on k-nearest neighbor queries which are is-
sued separately for a large set of query points R = {r1,...,rn} against
another large set of data points S = {s1,...,sm}. In contrast to the in-
cremental distance join and the k-distance join which choose the
best pairs from the complete pool of pairs R × S, the k-nn join com-
bines each of the points of R with its k nearest neighbors in S. The
differences between the three kinds of similarity join operations are
depicted in figure 1.

Applications of the k-nn join include but are not limited to the
following list: k-nearest neighbor classification, k-means and
k-medoid clustering, sample assessment and sample postprocess-
ing, missing value imputation, k-distance diagrams, etc. In [8] we
have shown that k-means clustering, nearest neighbor classifica-
tion, and various other algorithms can be transformed such that
they operate exclusively on top of the k-nearest neighbor join. This
transformation typically leads to performance gains up to a factor
of 8.5.

Our list of applications covers all stages of the KDD process. In
the preprocessing step, data cleansing algorithms are typically
based on k-nearest neighbor queries for each of the points with
NULL values against the set of complete vectors. The missing val-
ues can be computed e.g. as the weighted means of the values of
the k nearest neighbors. A k-distance diagram can be used to deter-
mine suitable parameters for data mining. Additionally, in the core
step, i.e. data mining, many algorithms such as clustering and clas-
sification are based on k-nn queries. As such algorithms are often
time consuming and have at least a linear, often n log n or even qua-
dratic complexity they typically run on a sample set rather than the
complete data set. The k-nn-queries are used to assess the quality
of the sample set (preprocessing). After the run of the data mining
algorithm, it is necessary to relate the result to the complete set of
database points [10]. The typical method for doing that is again a
k-nn-query for each of the database points with respect to the set of
classified sample points. In all these algorithms, it is possible to re-
place a large number of k-nn queries which are originally issued
separately, by a single run of a k-nn join. Therefore, the k-nn join
gives powerful support for all stages of the KDD process.

The remainder of the paper is organized as follows: In section
2, we give a classification of the well-known similarity join opera-
tions and review the related work. In section 3, we define the new
operation, the k-nearest neighbor join. In section 4, we develop an
algorithm for the k-nn join which applies matching loading and
processing strategies on top of the multipage index [7], an index
structure which is particularly suited for high-dimensional similar-
ity joins, in order to reduce both CPU and I/O cost and efficiently
compute the k-nn join. The experimental evaluation of our ap-
proach is presented in section 5 and section 6 concludes the paper.
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2. Related work
In the relational data model a join means to combine the tuples of
two relations R and S into pairs if a join predicate is fulfilled. In
multidimensional databases, R and S contain points (feature vec-
tors) rather than ordinary tuples. In a similarity join, the join pred-
icate is similarity, e.g. the Euclidean distance between two feature
vectors.

2.1 Distance range based similarity join
The most prominent and most evaluated similarity join operation
is the distance range join. Therefore, the notions similarity join and
distance range join are often used interchangeably. Unless other-
wise specified, when speaking of the similarity join, often the dis-
tance range join is meant by default. For clarity in this paper, we
will not follow this convention and always use the more specific
notions. As depicted in figure 1a, the distance range join R S
of two multidimensional or metric sets R and S is the set of pairs
where the distance of the objects does not exceed the given param-
eter ε:

Definition 1 Distance Range Join (ε-Join)
The distance range join R S of two finite multidimen-
sional or metric sets R and S is the set

R S := {(ri,sj) ∈ R × S: ||ri − sj|| ≤ ε}

The distance range join can also be expressed in a SQL like fashion:
SELECT * FROM R, S WHERE ||R.obj − S.obj|| ≤ ε

In both cases, ||·|| denotes the distance metric which is assigned to
the multimedia objects. For multidimensional vector spaces, ||·||
usually corresponds to the Euclidean distance. The distance range
join can be applied in density based clustering algorithms which of-
ten define the local data density as the number of objects in the
ε-neighborhood of some data object. This essentially corresponds
to a self-join using the distance range paradigm. 

Like for plain range queries in multimedia databases, a general
problem of distance range joins from the users’ point of view is that
it is difficult to control the result cardinality of this operation. If ε is
chosen too small, no pairs are reported in the result set (or in case
of a self join: each point is only combined with itself). In contrast,
if ε is chosen too large, each point of R is combined with every point
in S which leads to a quadratic result size and thus to a time com-
plexity of any join algorithm which is at least quadratic; more ex-
actly o (|R|·|S| ). The range of possible ε-values where the result set
is non-trivial and the result set size is sensible is often quite narrow,
which is a consequence of the curse of dimensionality. Provided
that the parameter ε is chosen in a suitable range and also adapted
with an increasing number of objects such that the result set size

remains approximately constant, the typical complexity of ad-
vanced join algorithms is better than quadratic.

Most related work on join processing using multidimensional
index structures is based on the spatial join. We adapt the relevant
algorithms to allow distance based predicates for multidimensional
point databases instead of the intersection of polygons. The most
common technique is the R-tree Spatial Join (RSJ) [9] which pro-
cesses R-tree like index structures built on both relations R and S.
RSJ is based on the lower bounding property which means that the
distance between two points is never smaller than the distance (the
so-called mindist, cf. figure 2) between the regions of the two pages
in which the points are stored. The RSJ algorithm traverses the in-
dexes of R and S synchronously. When a pair of directory pages
(PR, PS) is under consideration, the algorithm forms all pairs of the
child pages of PR and PS having distances of at most ε. For these
pairs of child pages, the algorithm is called recursively, i.e. the cor-
responding indexes are traversed in a depth-first order. Various op-
timizations of RSJ have been proposedsuch as the BFRJ-algorithm
[14] which traverses the indexes according to a breadth-first strat-
egy.

Recently, index based similarity join methods have been ana-
lyzed from a theoretical point of view. [7] proposes a cost model
based on the concept of the Minkowski sum [4] which can be used
for optimizations such as page size optimization. The analysis re-
veals a serious optimization conflict between CPU and I/O time.
While the CPU requires fine-grained partitioning with page capac-
ities of only a few points per page, large block sizes of up to 1 MB
are necessary for efficient I/O operations. Optimizing for CPU de-
teriorates the I/O performance and vice versa. The consequence is
that an index architecture is necessary which allows a separate op-
timization of CPU and I/O operations. Therefore, the authors pro-
pose the Multipage Index (MuX), a complex index structure with
large pages (optimized for I/O) which accommodate a secondary
search structure (optimized for maximum CPU efficiency). It is
shown that the resulting index yields an I/O performance which is
similar to the I/O optimized R-tree similarity join and a CPU per-
formance which is close to the CPU optimized R-tree similarity
join. 

If no multidimensional index is available, it is possible to con-
struct the index on the fly before starting the join algorithm. Several
techniques for bulk-loading multidimensional index structures

Figure 1. Difference between similarity join operations
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Figure 2. mindist for the similarity join on R-trees
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have been proposed [17, 12]. The seeded tree method [20] joins two
point sets provided that only one is supported by an R-tree. The par-
titioning of this R-tree is used for a fast construction of the second
index on the fly. The spatial hash-join [21, 22] decomposes the set
R into a number of partitions which is determined according to giv-
en system parameters.

A join algorithm particularly suited for similarity self joins is the
ε-kdB-tree [27]. The basic idea is to partition the data set perpen-
dicularly to one selected dimension into stripes of width ε to restrict
the join to pairs of subsequent stripes. To speed up the CPU opera-
tions, for each stripe a main memory data structure, the ε-kdB-tree
is constructed which also partitions the data set according to the
other dimensions until a defined node capacity is reached. For each
dimension, the data set is partitioned at most once into stripes of
width ε. Finally, a tree matching algorithm is applied which is re-
stricted to neighboring stripes. Koudas and Sevcik have proposed
the Size Separation Spatial Join [18] and the Multidimensional
Spatial Join [19] which make use of space filling curves to order
the points in a multidimensional space. An approach which explic-
itly deals with massive data sets and thereby avoids the scalability
problems of existing similarity join techniques is the Epsilon Grid
Order (EGO) [5]. It is based on a particular sort order of the data
points which is obtained by laying an equi-distant grid with cell
length ε over the data space and then compares the grid cells lexi-
cographically. 

2.2 Closest pair queries
It is possible to overcome the problems of controlling the selectiv-
ity by replacing the range query based join predicate using condi-
tions which specify the selectivity. In contrast to range queries
which retrieve potentially the whole database, the selectivity of a
(k-) closest pair query is (up to tie situations) clearly defined. This
operation retrieves the k pairs of R × S having minimum distance.
(cf. figure 1b) Closest pair queries do not only play an important
role in the database research but have also a long history in compu-
tational geometry [23]. In the database context, the operation has
been introduced by Hjaltason and Samet [16] using the term (k-)
distance join. The (k-)closest pair query can be formally defined as
follows:

Definition 2 (k-) Closest Pair Query R S
R S is the smallest subset of R × S that contains at least k
pairs of points and for which the following condition holds:

∀ (r,s) ∈ R S, ∀ (r’,s’) ∈ R × S \ R S: ||r−s|| < ||r’−s’|| (1)

This definition directly corresponds to the definition of (k-) nearest
neighbor queries, where the single data object o is replaced by the
pair (r,s). Here, tie situations are broken by enlargement of the re-
sult set. It is also possible to change definition 2 such that the tie is
broken non-deterministically by a random selection. [16] defines
the closest pair query (non-deterministically) by the following
SQL statement:

SELECT * FROM R, S
ORDER BY ||R.obj − S.obj||
STOP AFTER k

We give two more remarks regarding self joins. Obviously, the
closest pairs of the selfjoin R R are the n pairs (ri,ri) which have
trivially the distance 0 (for any distance metric), where n = |R| is the
cardinality of R. Usually, these trivial pairs are not needed, and,
therefore, they should be avoided in the WHERE clause. Like the

distance range selfjoin, the closest pair selfjoin is symmetric (un-
less nondeterminism applies). Applications of closest pair queries
(particularly self joins) include similarity queries like 
  • find all stock quota in a database that are similar to each other
  • find music scores which are similar to each other
  • noise-robust duplicate elimination in multimedia applications
  • match two collections of arbitrary multimedia objects
Hjaltason and Samet [16] also define the distance semijoin which
performs a GROUP BY operation on the result of the distance join.
All join operations, k-distance join, incremental distance join and
the distance semijoin are evaluated using a pqueue data structure
where node-pairs are ordered by increasing distance.

The most interesting challenge in algorithms for the distance
join is the strategy to access pages and to form page pairs. Analo-
gously to the various strategies for single nearest neighbor queries
such as [24] and [15], Corral et al. propose 5 different strategies in-
cluding recursive algorithms and an algorithm based on a pqueue
[13]. Shin et al. [26] proposed a plane sweep algorithm for the node
expansion for the above mentioned pqueue algorithm [16, 13]. In
the same paper [26], Shim et al. also propose the adaptive
multi-stage algorithm which employs aggressive pruning and
compensation methods based on statistical estimates of the expect-
ed distance values.

3. The k-nn-join
The range distance join has the disadvantage of a result set cardi-
nality which is difficult to control. This problem has been over-
come by the closest pair query where the result set size (up to the
rare tie effects) is given by the query parameter k. However, there
are only few applications which require the consideration of the k
best pairs of two sets. Much more prevalent are applications such
as classification or clustering where each point of one set must be
combined with its k closest partners in the other set, which is exact-
ly the operation that corresponds to our new k-nearest neighbor
similarity join (cf. figure 1c). Formally, we define the k-nn join as
follows:

Definition 3 k-nn Join R S
R S is the smallest subset of R × S that contains for each
point of R at least k points of S and for which the following
condition holds:

∀ (r,s) ∈ R S, ∀ (r,s’) ∈ R × S \ R S: ||r−s|| < ||r−s’|| (2)

In contrast to the closest pair query, here it is guaranteed that each
point of R appears in the result set exactly k times. Points of S may
appear once, more than once (if a point is among the k-nearest
neighbors of several points in R) or not at all (if a point does not
belong to the k-nearest neighbors of any point in R). Our k-nn join
can be expressed in an extended SQL notation:

SELECT * FROM R,
( SELECT * FROM S

ORDER BY ||R.obj − S.obj||
STOP AFTER k )

The closest pair query applies the principle of the nearest neighbor
search (finding k best things) on the basis of the pairs. Conceptual-
ly, first all pairs are formed, and then, the best k are selected. In con-
trast, the k-nn join applies this principle on a basis “per point of the
first set”. For each of the points of R, the k best join partners are
searched. This is an essential difference of concepts.
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Again, tie situations can be broken deterministically by enlarg-
ing the result set as in this definition or by random selection. For
the selfjoin, we have again the situation that each point is combined
with itself which can be avoided using the WHERE clause. Unlike
the ε-join and the k-closest pair query, the k-nn selfjoin is not sym-
metric as the nearest neighbor relation is not symmetric. Equiva-
lently, the join R S which retrieves the k nearest neighbors for
each point of R is essentially different from S R which retrieves
the nearest neighbors of each S-point. This is symbolized in our
symbolic notation which uses an asymmetric symbol for the k-nn
join in contrast to the other similarity join operations.

4. Fast index scans for the k-nn join

In this section we develop an algorithm for the k-nn join which ap-
plies suitable loading and processing strategies on top of a multidi-
mensional index structure, the multipage index [7], to efficiently
compute the k-nn join. In [7] we have shown for the distance range
join that it is necessary to optimize index parameters such as the
page capacity separately for CPU and I/O performance. We have
proposed a new index architecture (Multipage Index, MuX) depict-
ed in figure 3 which allows such a separate optimization. The index
consists of large pages which are optimized for I/O efficiency.
These pages accommodate a secondary R-tree like main memory
search structure with a page directory (storing pairs of MBR and a
corresponding pointer) and data buckets which are containers for
the actual data points. The capacity of the accommodated buckets
is much smaller than the capacity of the hosting page. It is opti-
mized for CPU performance. We have shown that the distance
range join on the Multipage Index has an I/O performance similar
to an R-tree which is purely I/O optimized and has a CPU perfor-
mance like an R-tree which is purely CPU optimized. Although
this issue is up to future work, we assume that also the k-nn join
clearly benefits from the separate optimization (because optimiza-
tion trade-offs are very similar).

In the following description, we assume for simplicity that the
hosting pages of our Multipage Index only consist of one directory
level and one data level. If there are more directory levels, these lev-
els are processed in a breadth first approach according to some sim-
ple strategy, because most cost arise in the data level. Therefore, our
strategies focus on the last level.

4.1 The fast index scan
In our previous work [6] we have already investigated fast index
scans, however not in the context of a join operation but in the con-
text of single similarity queries (range queries and nearest neighbor
queries) which are evaluated on top of an R-tree like index struc-
ture, our IQ tree. The idea is to chain I/O operations for subsequent
pages on disk. This is relatively simple for range queries: If the in-
dex is traversed breadth-first, then the complete set of required pag-
es at the next level is exactly known in advance. Therefore, pages
which have adjacent positions on disk can be immediately grouped
together into a single I/O request (cf. figure 4, left side). But also
pages which are not direct neighbors but only close together can be
read without disk head movement. So the only task is to sort the
page requests by (ascending) disk addresses before actually per-
forming them. For nearest neighbor queries the trade-off is more
complex: These are usually evaluated by the HS-algorithm [15]
which has been proven to be optimal, w.r.t. the number of accessed
pages. Although the algorithm loses its optimality by I/O chaining
of page requests, it pays off to chain pages together which have a
low probability of being pruned before their actual request is due.
We have proposed a stochastical model to estimate the probability
of a page to be required for a given nearest neighbor query. Based
on this model we can estimate the cost for various chained and un-
chained I/O requests and thus optimize the I/O operations (cf. fig-
ure 4, right side). 

Take a closer look at the trade-off which is exploited in our op-
timization: If we apply no I/O chaining or too careful chaining, then
the number of processed pages is optimal or close to optimal but
due to heavy disk head movements these accesses are very expen-
sive. If considerable parts of the data set are needed to answer the
query, the index can be outperformed by the sequential scan. In
contrast, if too many pages are chained together, many pages are
processed unnecessarily before the nearest neighbor is found. If
only a few pages are needed to answer a query, I/O chaining should
be carefully applied, and the index should be traversed in the clas-
sical way of the HS algorithm. Our probability estimation grasps
this rule of thumb with many gradations between the two extremes.

4.2 Optimization goals of the nearest neighbor join
Shortly speaking, the trade-off of the nearest neighbor search is be-
tween (1) getting the nearest neighbor early and (2) limiting the
cost for the single I/O operations. In this section, we will describe
a similar trade-off in the k-nearest neighbor join. One important
goal of the algorithm is to get a good approximation of the nearest
neighbor (i.e. a point which is not necessarily the nearest neighbor
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but a point which is not much worse than the nearest neighbor) for
each of these active queries as early as possible. With a good con-
servative approximation of the nearest neighbor distance, we can
even abstain from our probability model of the previous paragraph
and handle nearest neighbor queries furtheron like range queries.
Only few pages are processed too much.

In contrast to single similarity queries, the seek cost do not play
an important role in our join algorithm because our special index
structure, MuX, is optimized for disk I/O. Our second aspect, how-
ever, is the CPU performance which is negligible for single simi-
larity queries but not for join queries. From the CPU point of view,
it is not a good strategy to load a page and immediately process it
(i.e. join it with all pages which are already in main memory, which
is usually done for join queries with a range query predicate). In-
stead, the page should be paired only with those pages for which
one of the following conditions holds:
  • It is probable that this pair leads to a considerable reduction

of some nearest neighbor distance
  • It is improbable that the corresponding mate page will receive

any improvements of its nearest neighbor distance in future
While the first condition seems to be obvious, the second condition
is also important because it ensures that unavoidable workloads are
done before other workloads which are avoidable. The cache is pri-
marily loaded with those pages of which it is most unclear whether
or not they will be needed in future.

4.3 Basic algorithm
For the k-nn join R S, we denote the data set R for each point of
which the nearest neighbors are searched as the outer point set.
Consequently, S is the inner point set. As in [7] we process the host-
ing pages of R and S in two nested loops (obviously, this is not a
nested loop join). Each hosting page of the outer set R is accessed
exactly once. The principle of the nearest neighbor join is illustrat-
ed in figure 5. A hosting page PR1 of the outer set with 4 accom-
modated buckets is depicted in the middle. For each point stored in
this page, a data structure for the k nearest neighbors is allocated.
Candidate points are maintained in these data structures until they
are either discarded and replaced by new (better) candidate points
or until they are confirmed to be the actual nearest neighbors of the
corresponding point. When a candidate is confirmed, it is guaran-
teed that the database cannot contain any closer points, and the pair
can be written to the output. The distance of the last (i.e. k-th or
worst) candidate point of each R-point is the pruning distance:
Points, accommodated buckets and hosting pages beyond that
pruning distance need not to be considered. The pruning distance
of a bucket is the maximum pruning distance of all points stored in
this bucket, i.e. all S-buckets which have a distance from a given
R-bucket that exceeds the pruning distance of the R-bucket, can be
safely neglected as join-partners of that R-bucket. Similarly, the
pruning distance of a page is the maximum pruning distance of all
accommodated buckets.

In contrast to conventional join methods we reserve only one
cache page for the outer set R which is read exactly once. The re-
maining cache pages are used for the inner set S. For other join
predicates (e.g. relational predicates or a distance range predicate),
a strategy which caches more pages of the outer set is beneficial for
I/O processing (the inner set is scanned fewer times) while the CPU
performance is not affected by the caching strategy. For the k-nn
join predicate, the cache strategy affects both I/O and CPU perfor-
mance. It is important that for each considered point of R good can-

didates (i.e. near neighbors, not necessarily the nearest neighbors)
are found as early as possible. This is more likely when reserving
more cache for the inner set S. The basic algorithm for the k-nn join
is given below.
1 foreach PR of R do
2 cand : PQUEUE [|PR|, k] of point := {⊥,⊥,...,⊥} ;
3 foreach PS of S do PS.done := false ;
4 while ∃ i such that cand [i] is not confirmed do
5 while ∃ empty cache frame ∧ 
6 ∃ PS with (¬PS.done ∧ ¬ IsPruned(PS)) do
7 apply loading strategy if more than 1 PS exist
8 load PS to cache ;
9 PS.done := true ;
10 apply processing strategy to select a bucket pair ;
11 process bucket pair ;
A short explanation: (1) Iterates over all hosting pages PR of the
outer point set R which are accessed in an arbitrary order. For each
point in PR, an array for the k nearest neighbors (and the corre-
sponding candidates) is allocated and initialized with empty point-
ers in line (2). In this array, the algorithm stores candidates which
may be replaced by other candidates until the candidates are con-
firmed. A candidate is confirmed if no unprocessed hosting page or
accommodated bucket exists which is closer to the corresponding
R-point than the candidate. Consequently, the loop (4) iterates until
all candidates are confirmed. In lines 5-9, empty cache pages are
filled with hosting pages from S whenever this is possible. This
happens at the beginning of processing and whenever pages are
discarded because they are either processed or pruned for all
R-points. The decision which hosting page to load next is imple-
mented in the so-called loading strategy which is described in sec-
tion 4.4. Note that the actual page access can also be done asynchro-
nously in a multithreaded environment. After that, we have the
accommodated buckets of one hosting R-page and of several host-
ing S-pages in the main memory. In lines 10-11, one pair of such
buckets is chosen and processed. For choosing, our algorithm ap-
plies a so-called processing strategy which is described in
section 4.5. During processing, the algorithm tests whether points
of the current S-bucket are closer to any point of the current R-buck-
et than the corresponding candidates are. If so, the candidate array
is updated (not depicted in our algorithm) and the pruning distances
are also changed. Therefore, the current R-bucket can safely prune
some of the S-buckets that formerly were considered join partners.
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4.4 Loading strategy
In conventional similarity search where the nearest neighbor is
searched only for one query point, it can be proven that the optimal
strategy is to access the pages in the order of increasing distance
from the query point [4]. For our k-nn join, we are simultaneously
processing nearest neighbor queries for all points stored in a host-
ing page. To exclude as many hosting pages and accommodated
buckets of S from being join partners of one of these simultaneous
queries, it is necessary to decrease all pruning distances as early as
possible. The problem we are addressing now is, what page should
be accessed next in lines 5-9 to achieve this goal.

Obviously, if we consider the complete set of points in the cur-
rent hosting page PR to assess the quality of an unloaded hosting
page PS, the effort for the optimization of the loading strategy
would be too high. Therefore, we do not use the complete set of
points but rather the accommodated buckets: the pruning distances
of the accommodated buckets have to decrease as fast as possible.

In order for a page PS to be good, this page must have the power
of considerably improving the pruning distance of at least one of
the buckets BR of the current page PR. Basically there can be two
obstacles that can prevent a pair of such a page PS and a bucket BR
from having a high improvement power: (1) the distance (mindist)
between this page-bucket pair is large, and (2) the bucket BR has
already a small pruning distance. Condition (1) corresponds to the
well-known strategy of accessing pages in the order of increasing
distance to the query point. Condition (2), however, intends to
avoid that the same bucket BR is repeatedly processed before an-
other bucket BR’ has reached a reasonable pruning distance (hav-
ing such buckets BR’ in the system causes much avoidable effort).

Therefore, the quality Q(PS) of a hosting page PS of the inner
set S is not only measured in terms of the distance to the current
buckets but the distances are also related to the current pruning dis-
tance of the buckets:

Q(PS) = (3)

Our loading strategy applied in line (7) is to access the hosting pag-
es PS in the order of decreasing quality Q(PS), i.e. we always ac-
cess the unprocessed page with the highest quality.

4.5 Processing strategy
The processing strategy is applied in line (10). It addresses the
question in what order the accommodated buckets of R and S that
have been loaded into the cache should be processed (joined by an
in-memory join algorithm). The typical situation found at line (10)
is that we have the accommodated buckets of one hosting page of
R and the accommodated buckets of several hosting pages of S in
the cache. Our algorithm has to select a pair of such buckets
(BR,BS) which has a high quality, i.e. a high potential of improving
the pruning distance of BR. Similarly to the quality Q(PS) of a page
developed in section 4.4, the quality Q(BR,BS) of a bucket pair re-
wards a small distance and punishes a small pruning distance:

Q(BR ,BS) = (4)

We process the bucket pairs in the order of decreasing quality. Note
that we do not have to redetermine the quality of every bucket pair
each time our algorithm runs into line (10) which would be prohib-
itively costly. To avoid this problem, we organize our current buck-

et pairs in a tailor-made data structure, a fractionated pqueue (half
sorted tree). By fractionated we mean a pqueue of pqueues, as de-
picted in figure 6. Note that this tailor-cut structure allows efficient-
ly (1) to determine the pair with maximum quality, (2) to insert a
new pair, and in particular (3) to update the prunedist of BRi which
affects the quality of a large number of pairs.

Processing bucket pairs with a high quality is highly important
at an early stage of processing until all R-buckets have a sufficient
pruning distance. Later, the improvement power of the pairs does
not differ very much and a new aspect comes into operation: The
pairs should be processed such that one of the hosting S pages in
the cache can be replaced as soon as possible by a new page. There-
fore, our processing strategy switches into a new mode if the last c
(given parameter) processing steps did not lead to a considerable
improvement of any pruning distance. The new mode is to select
one hosting S-page PS in the cache and to process all pairs where
one of the buckets BS accommodated by PS appears. We select that
hosting page PS with the fewest active pairs (i.e. the hosting page
that causes least effort).

5. Experimental evaluation
We implemented the k-nearest neighbor join algorithm, as de-
scribed in the previous section, based on the original source code
of the Multipage Index Join [7] and performed an experimental
evaluation using artificial and real data sets of varying size and di-

max
BR∈PR

prunedist BR( )
mindist PS BR,( )
---------------------------------------

 
 
 

prunedist BR( )
mindist BS BR,( )
---------------------------------------

pqueue to organize pairs
(BR0 , BS0 < j ≤ n)

by increasing mindist

pqueue to organize pairs
(BRi , BS0 < j ≤ n)

by increasing mindist

pqueue to organize pairs
(BRm , BS0 < j ≤ n)

by increasing mindist

. .
 .

. .
 .

min0

mini

minm

pqueue to organize

mini
0 < i ≤ m decreasing

prunedist (BRi)

max

Figure 6. Structure of a fractionated pqueue
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mension. We compared the performance of our technique with the
nested block loop join (which basically is a sequential scan opti-
mized for the k-nn case) and the k-nn algorithm by Hjaltason and
Samet [15] as a conventional, non-join technique.

All our experiments were carried out under Windows NT4.0
SP6 on Fujitsu-Siemens Celsius 400 machines equipped with a
Pentium III 700 MHz processor and at least 128 MB main mem-
ory. The installed disk device was a Seagate ST310212A with a
sustained transfer rate of about 9 MB/s and an average read ac-
cess time of 8.9 ms with an average latency time of 5.6 ms.

We used synthetic as well as real data. The synthetic data sets
consisted of 4, 6 and 8 dimensions and contained from 10,000
to 160,000 uniformly distributed points in the unit hypercube.
Our real-world data sets are a CAD database with 16-dimen-
sional feature vectors extracted from CAD parts and a 9-dimen-
sional set of weather data. We allowed about 20% of the data-
base size as cache resp. buffer for either technique and included
the index creation time for our k-nn join and the hs-algorithm,
while the nested block loop join (nblj) does not need any pre-
constructed index.

The Euclidean distance was used to determine the k-nearest
neighbor distance. In order to show the effects of varying the
neighboring parameter k we include figure 7 with varying k
(from 4-nn to 10-nn) while all other charts show results for the
case of the 4-nearest neighbors. In figure 7 we can see, that ex-
cept for the nested block loop join all techniques perform better
for a smaller number of nearest neighbors and the hs-algorithm
starts to perform worse than the nblj if more than 4 nearest
neighbors are requested. This is a well known fact for high di-
mensional data as the pruning power of the directory pages de-
teriotates quickly with increasing dimension and parameter k.
This is also true, but far less dramatic for the k-nn join because
of the use of much smaller buckets which still perserve pruning
power for higher dimensions and parameters k. The size of the
database used for these experiments was 80,000 points.

The three charts in figure 8 show the results (from left to
right) for the hs-algorithm, our k-nn join and the nblj for the
8-dimensional uniform data set for varying size of the database.
The total elapsed time consists of the CPU-time and the
I/O-time. We can observe that the hs-algorithm (despite using
large block sizes for optimization) is clearly I/O bound while the
nested block loop join is clearly CPU bound. Our k-nn join has a
somewhat higher CPU cost than the hs-algorithm, but significantly
less than the nblj while it produces almost as little I/O as nblj and
as a result clearly outperforms both, the hs-algorithm and the nblj.

This balance between CPU and I/O cost follows the idea of MuX
to optimize CPU and I/O cost independently. For our artificial data
the speed-up factor of the k-nn join over the hs-algorithm is 37.5
for the small point set (10,000 points) and 9.8 for the large point set
(160,000 points), while compared to the nblj the speed-up factor in-
creases from 7.1 to 19.4. We can also see, that the simple, but opti-
mized nested block loop join outperforms the hs-algorithm for
smaller database sizes because of its high I/O cost.

One interesting effect is, that our MUX-algorithm for k-nn joins
is able to prune more and more bucket pairs with increasing size of
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the database i.e. the percentage of bucket pairs that can be excluded
during processing increases with increasing database size.We can
see this effect in figure 9. Obviously, the k-nn join scales much bet-
ter with increasing size of the database than the other two tech-
niques.

Figure 10 shows the results for the 9-dimensional weather data.
The maximum speed-up of the k-nn join compared to the hs-algo-
rithm is 28 and the maximum speed-up compared to the nested
block loop join is 17. For small database sizes, the nested block
loop join outperforms the hs-algorithm which might be due to the
cache/buffer and I/O configuration used. Again, as with the artifi-
cial data, the k-nn join clearly outperforms the other techniques and
scales well with the size of the database.

Figure 11 shows the results for the 16-dimensional CAD data.
Even for this high dimension of the data space and the poor clus-
tering property of the CAD data set, the k-nn join still reaches a
speed-up factor of 1.3 for the 80,000 point set (with increasing ten-
dency for growing database sizes) compared to the nested block
loop join (which basically is a sequential scan optimized for the
k-nn case). The speed-up factor of the k-nn join over the hs-algo-
rithm is greater than 3.

6. Conclusions

In this paper, we have proposed an algorithm to efficiently compute
the k-nearest neighbor join, a new kind of similarity join. In contrast
to other types of similarity joins such as the distance range join, the
k-distance join (k-closest pair query) and the incremental distance
join, our new k-nn join combines each point of a point set R with its
k nearest neighbors in another point set S. We have seen that the
k-nn join can be a powerful database primitive which allows the ef-
ficient implementation of numerous methods of knowledge dis-
covery and data mining such as classification, clustering, data
cleansing, and postprocessing. Our algorithm for the efficient com-
putation of the k-nn join uses the Multipage Index (MuX), a spe-
cialized index structure for similarity join processing and applies
matching loading and processing strategies in order to reduce both
CPU and I/O cost. Our experimental evaluation proves high per-
formance gains compared to conventional methods.
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Figure 11. Results for 16-dimensional CAD data


