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Abstract

Organizing textual documents into a hierarchical taxon-
omy is a common practice in knowledge management. The
given class hierarchy does not only express thesimilarity
between the classes, but can also be interpreted as a model
of thespecificityof the classes. In this paper, we propose
a hierarchy-regularized framework, which encodes the hi-
erarchy into a similarity graph of documents and then for-
mulates an optimization problem mapping each node of the
graph into a low dimensional vector space. The new fea-
ture space preserves the intrinsic structure of the original
taxonomy and thus provides a meaningful basis for various
learning tasks like visualization, regression and classifica-
tion. Our approach employs the information about class
proximity and class specificity, and can naturally cope with
multi-labeled documents. Our empirical studies show very
encouraging results on two real-world data sets, the new
Reuters (RCV1) benchmark and the Swissprot protein data-
base.

1 Introduction

A characteristic of textual documents is the high dimen-
sionality (typically tens of thousands). Thus, dimensional-
ity reduction plays an important role for reducing computa-
tional costs and for improving the performance of the em-
ployed text mining algorithms. Another typical characteris-
tic of text applications is that often a document is allowed
to belong to more than one class, i.e. the documents are
multi-labeled. For example, a news article about a football
team could belong to both categories “sports” and “busi-
ness”. Large text databases usually contain large amounts
of classes. To allow easy navigation and express the inher-
itance relationships between these classes, the classes are
often organized in a class hierarchy or taxonomy.

The taxonomy is an intrinsic structure of categories and
documents. Each node in a class hierarchy represents a

subclass of the father node. The leaf nodes describe ba-
sic classes that are not distinguishable any further, while
the root corresponds to the most general class, comprising
all documents. An example is the large topic hierarchy of
a web directory service like Yahoo! that allows us to navi-
gate to any category among several thousands topics by just
a few clicks. Additional examples for large topic trees are
the library of congress catalogue or biological class systems
like Gene Ontology [5].

In this paper, we describe a novel approach to exploit
a given class hierarchy for text indexing. The idea is
to directly integrate the information that is contained in
the class hierarchy, into a new highly descriptive feature
space. We interpret the classes in the hierarchy as “bridges”
connecting the documents and introduce a new hierarchy-
regularized framework. Our method naturally incorporates
the similarity between the classes into feature transforma-
tion. Thus, large distances between the objects belonging
to very similar classes are penalized, while large distances
between the objects belonging to dissimilar classes are en-
couraged. Furthermore, the generated output space consid-
ers thespecificityof classes, i.e. very general classes are
considered to be less informative than very specific classes.
Thus, classes that are close to the leaf nodes and classes be-
ing characterized by a small number of documents play a
more important role. Our method employs both thesimilar-
ity and thespecificityof the classes, an aspect that has not
been sufficiently addressed by previous methods. Finally,
our method handles multi-labeled documents in a natural
way, while other approaches (e.g. see [14]) often need to
involve constraints having combinatoric complexity.

Our proposed hierarchy-regularized framework is used
to develop a novel textual feature reduction tech-
nique, called hierarchy-regularized latent semantic index-
ing (HLSI). The resulting feature space offers the possibil-
ity to integrate a class hierarchy into a variety of text min-
ing and retrieval tasks. Furthermore, it increases the effi-
ciency of these techniques due to the smaller dimensionality
of the output space. Our experimental evaluation demon-
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strates that the proposed framework is capable to derive low
dimensional and highly descriptive feature spaces that al-
low fast and accurate classification on two real-world data
sets. The first is the Reuters Corpus Volume 1 benchmark
(RCV1) and the second is the Swissprot [2] protein data-
base.

The rest of the paper is organized as follows: Section 2
describes our hierarchy-regularized framework. In section
3, we briefly survey related work in the area of feature re-
duction and hierarchical classification of multi-labeled ob-
jects. Section 4 presents our experimental results on two
real-world data sets and section 5 conclude the paper.

2 Hierarchy-Regularized Approach

2.1 Training Data

The usual setting of supervised algorithms in data min-
ing and machine learning is: Given a set of predefined
classesC = {c1, . . . , cl} and a set of observedlabeled
examples(e.g. documents){(xi, yi)}, wherexi ∈ X is
an n-dimensional feature vector andyi ∈ C the class la-
bel, we want to learn a function that can predict the la-
bels for new test examples. In hierarchical classification,
the training data does not simply consist of “feature-label”
pairs, but also a hierarchical structure of classes, which of-
fers some additional information about the characteristics of
data. Formally, we define the training data in the following
way.

Definition 2.1. A hierarchy structured training set
T (X, C, g, s) consists of (1) a set ofN labeled examples
X = [x1, . . . ,xN ]ᵀ, wherexi ∈ Rn; (2) a set ofclasses
C = {c1, . . . , cl}; (3) a functiong : X × C → {−1, 1} with
g(xi, ck) = 1 if xi belongs tock and -1 otherwise; (4) a
functions : C\{cr} → C, such thats(ck) gives the direct
father class ofck, wherecr is the root class.

Because the classes are organized in a tree structure, the
following condition should be fulfilled:ck 6= s(ck), and
g(xi, ck) = 1 ⇒ g(xi, s(ck)) = 1. Note that the defini-
tion allows the multi-label case where one document can be
assigned to multiple leaf classes.

In addition, we define some operators on the tree: (1)
h(xi) returns the corresponding classes as well as all of
their ancestors containingxi; (2) H(xi,xj) = h(xi) ∩
h(xj) returns the common classes ofxi andxj ; (3) |ck|
is the number of examples in classck.

2.2 Hierarchy-Induced Similarity Graph

A class hierarchy is not just a notion of class proximity,
but also a way to describe the similarity between the exam-
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Figure 1. A hierarchy structured training
set and the corresponding hierarchy-induced
similarity graph.

ples (e.g., a document). A class is like a “bridge” connect-
ing all the examples within this class. Therefore, we define
ahierarchy-induced similarity graphas follows:

Definition 2.2. A hierarchy-induced similarity graph
G|T (V, E) consists of (1) a setV of verticeswith a bijective
function toX; (2) a setE ⊆ V × C × V of edges, where
[i, k, j] = [j, k, i] ∈ E is the edge between examplesxi and
xj via classck ∈ H(xi,xj), i 6= j.

In this graph, each vertex corresponds to an examplexi.
For each classck ∈ H(xi,xj) two examplesxi,xj have
in common, the graph induces an edge[i, k, j]. Since every
example is part of the root class, there is at least one edge
connecting any pair of documents and thus the graph is fully
connected (cf. figure 1).

The hierarchy can be used to derive implications about
the connections between the examples. The similarity of
two examples naturally depends on the number of edges
connecting them. If two examples share a common leaf
class, the number of edges tends to be rather big because
each of the predecessor classes provides an additional edge
as well. Thus, examples sharing specific classes are con-
nected by more edges than examples that only share very
general common classes. However, the specificity of a class
is not exclusively dependent on its level in the hierarchy,
but also on the number of documents belonging to the class.
For example, if two documents are the only examples be-
longing to a particular class, then the class is very specific
and the connection between both documents is very strong.

In order to express the strength of these connections, we
define theedge weightw : E → R+ as follows:

w([i, k, j]) =
1
|ck| (1)

where the weights of edges fromxi via ck to xj evenly di-
vided by the size ofck. This is consistent with the intuition
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that more popular classes are less informative for indicat-
ing examples’ similarities. Accordingly, by summing over
all the shared classes, the induced connection strengths be-
tween two examples is computed as

w([i, j]) =
∑

ck∈H(xi,xj)

w([i, k, j]) (2)

Then thevertex degreed : V → R+ is defined as:

d(i) =
∑

j

w([i, j]) (3)

which is the total strength of all of edges connected with
xi. Our definition of edge weights and vertex degrees can
also be justified from arandom walkpoint of view. Suppose
a reader is browsing documents in a hierarchical directory.
The transition probability from documentxi to document
xj via categoryck should be

p(j, k|i) = p(j|i, k)p(k|i) =
w([i, k, j])

d(i)
(4)

Then theexpectedtransition probability fromxi to xj is

p(j|i) =
∑

ck∈H(xi,xj)

p(j, k|i) =
w([i, j])

d(i)
(5)

Eq. (5) indicates that the transition probability depends not
only on the number of classes shared byxi and xj , but
it is also dependent on the size of these classes. There-
fore, transitions across high-level branches are considered
to be rather unlikely while transitions within deep or small
branches occur with a rather high probability.

In our approach, multi-labeled documents are naturally
handled. More importantly, these multi-labeled documents
are connected to the documents from different branches and
somehow inform a closeness of these branches. Thus the
similarity of documents and the similarity of classes are fur-
ther informing to each other, which is similar to thehub-
authority idea in web search [11].

2.3 Regularization on the Similarity Graph

We seek for a mapping functionΦ : X → Rm,m ¿ n,
that maps feature vectorx into a newm-dimensional space.
It is desired to ensure the mapping functionsΦ(x) to be
consistentwith respect to the structure ofG|T (V,E). Let
the mapping functionΦ containm elementary functions,
and each of themφ : X → R map examples into a one-
dimensional space. Intuitively, a tight connection between
two examples should induce similar outputs in the new
space. Similar to the idea of spectral clustering [15], the

cost induced by an one-dimensional mapping function is
defined as:

Γ(φ) =
∑

i

∑

j

w([i, j])
[
φ(xi)− φ(xj)

]2
(6)

The cost function emphasizes the variations ofφ(x) be-
tween tightly connected examples. In the following, we
call Γ(φ) the smoothness functional, since it measures the
non-smoothness ofφ with respect to the hierarchy structure.
Furthermore, Eq. (6) can now be rewritten into the follow-
ing form:

Γ(φ) = φᵀ4φ (7)

whereφ = [φ(x1), . . . , φ(xN )]ᵀ and4 is anN×N matrix:

(4)[i,j] =

{
d(i), if i = j

−w([i, j]), otherwise
(8)

In this paper, we mainly consider linear functionsφ(x) =
wᵀx. Then we replaceΓ(φ) byΓ(w) and write the smooth-
ness functional as:

Γ(w) = wᵀXᵀ4Xw (9)

The cost can be easily plugged into a formalism of latent
semantic indexing (LSI), to ensure the derived features con-
sistent with the structure of hierarchies (see Sec.2.4).

2.4 Hierarchy-Regularized Latent Semantic In-
dexing

The high dimensionality (typically tens of thousands)
of text data always hampers the generalization of learn-
ing machines and seriously increases the computational
costs. However, in general, theeffective subspaceresponsi-
ble for the document labels has often a lower dimensional-
ity. Latent semantic indexing (LSI)[6] is a popular feature-
reduction technique for text data that identifies such a sub-
space. The method is however unsupervised and cannot in-
corporates additional information.

In this section, we employ the hierarchical structure to
identify the effective subspace of text data. Various algo-
rithms (e.g., clustering, classification and retrieval) can then
be efficiently and effectively based on the new low dimen-
sional feature space.

First, we derive a formalism of LSI such that the
hierarchy-induced cost Eq. (7) can be easily plugged in. Let
Φ : X → Rm be the feature mapping consisting ofm linear
functionsφj(x) = wᵀ

j x, j = 1, . . . ,m. LSI finds the pro-
jections of dataX = [x1, . . . ,xN ]ᵀ by applying singular
value decomposition (SVD):

X = UDVᵀ
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whereU = [u1, . . . ,uN ] is an N × N matrix, D is an
N × n diagonal matrix with diagonal entries sorted non-
increasingly, andV = [v1, . . . ,vn] ann× n matrix. Then
the results of mappingΦ on X are given by the firstm
columns ofU.

In the following theorem, we interpret SVD from a dif-
ferent point of view.

Theorem 2.3. Let X = UDVᵀ be the singular value de-
composition ofX. Thenuj = Xwj wherewj are the solu-
tions to

min
w∈Rn

‖w‖2

s.t. wᵀXᵀXw = 1,

Xw ⊥ Xw1, . . . ,Xwj−1

Proof. we give the sketch.U = XVD−1 apparently sug-
gestsuj = Xwj . Let K = XXᵀ, then it is known that
uj are the directions maximizinguᵀKu with constraints
uᵀu = 1 andu ⊥ u1, . . . ,uj−1. The objective can be
replace byminu uᵀK−1u. Insertinguj = Xwj to the op-
timization problem completes the proof.

Theorem 2.3 gives the formalism of LSI that enables us
to easily performhierarchy-regularized LSI(HLSI). Since
we wish to have the mapping functions to be consistent with
the class hierarchy, the optimization problem for HLSI is
denoted as follows:

min
w∈Rn

γ‖w‖2 + wᵀXᵀ4Xw (10)

s.t. wᵀXᵀXw = 1,

Xw ⊥ Xw1, . . . ,Xwj−1

whereγ ∈ R+, wᵀXᵀ4Xw is the cost induced by the hier-
archy structure, andγ determines how much the projections
should tend to follow the structure of input features. From
the regularization point view,γ prevents the mappings from
being over-fitted by the hierarchy structure. Whenγ →∞,
HLSI becomes identical to LSI.

By setting the derivatives of its Lagrange formalism to
be zero, it turns out that the linear weights are the solutions
to a generalized eigenvalue problem:

(γI + Xᵀ4X)w = λXᵀXw

Them generalized eigenvectors with the smallest eigenval-
ues are the linear weightswj , j = 1, . . . , m, of the feature
mapping functions.

Since text data is usually very high-dimensional, it is
very expensive to solve the large scale generalized eigen-
value problem. The following theorem enables the algo-
rithm to work in the dual space where the dimensionality
depends on the number of examples.

Theorem 2.4. The solutionswj , j = 1, . . . , m, to the HLSI
problem have the form

wj =
∑

i

(αj)ixi = Xᵀαj

Proof. Let S be the spacespan{x1, . . . ,xN} and P the
projection onto it. Thenw = Pw+(I−P )w = w‖+w⊥.
Sincew⊥ does not affectΓ(w) but only increases‖w‖2,
w⊥ must be zero at the optimum. Thereforew ∈ S which
completes the proof.

Then, the HLSI problem has the dual form,φj(x) =∑
i(αj)i〈xi,x〉, j = 1, . . . , m, whereαj are solved by

min
α∈RN

γαᵀKα + αᵀK4Kα

s.t. αᵀKKα = 1,

Kα ⊥ Kα1, . . . ,Kαj−1

whereK = XXᵀ. The problem is also equivalent to a
generalized eigenvalue problem:

(γK + K4K)α = λKKα

Finally, the learned mapping functions transform a high-
dimensional feature vectorx to am-dimensional space. In
the new space, data mining and retrieval tasks can be effi-
ciently done.

2.5 Hierarchy-Regularized Classifier

HLSI also suggests a direct optimization approach to
handle themulti-labelhierarchical categorization problem.
Clearly, the simplest solution is to train binary classifiers
for each leaf classck. Given the training examplesX =
[xi, . . . ,xN ]ᵀ with labels(yk)i ∈ {+1,−1} for classck, a
linear classifier1 φk(x) = wᵀ

kx can be learned by

wk = arg min
w

∑

i

`(wᵀxi, (yk)i) + β‖w‖2 (11)

where`(·, ·) is the loss function,β ∈ R+, and‖w‖2 is
the regularizer preventing overfitting. The optimization in
Eq. (11) treats all negative examples identically. There is
no bigger penalty if an example is miss-classified into a leaf
class which is faraway in the tree from the correct class.
Therefore, we insertΓ(w) = wᵀXᵀ4Xw into the opti-
mization problem Eq. (11) and get the following objective
function

Jk(w) =
∑

i

`(wᵀxi, (yk)i) + ξΓ(w) + β‖w‖2 (12)

1Linear support vector machine is the state of the art method for text
categorization (see [20, 17]).
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whereβ, ξ ∈ R+ andI ∈ RN×N is an identity matrix. In
Eq. (12) there are two parts of loss based on empirical data:
one is the conventional classification loss`(wᵀxi, (yk)i),
the other is the hierarchy-induced lossΓ(w).

The square error loss̀(wᵀxi, (yk)i) = (wᵀxi − yk)2

was often reported to achieve superior performance in text
categorization [20, 19]. For this case, the estimate ofwk

has closed form:

wk = (XᵀX + ξXᵀ4X + βI)−1yk. (13)

which is derived by setting∂Jk(w)
∂w = 0.

Let us note that the methods suggested in this section
have a close connection to HLSI as suggested in Sec. 2.4.
Here, the feature projection is implicitly done via the reg-
ularization. Despite its equivalence, explicit feature map-
pings enable learning methods to work on a low dimen-
sional feature space and greatly improve the efficiency. This
advantage is very important for real-world applications.

2.6 Generalization of the Approach

The basic idea of HLSI is to extract principal compo-
nents of the original input space while one defines a simi-
larity concept on the output space using class hierarchy and
encodes data set into a hierarchy-induced similarity graph.
The data points that are similar in the output space should
be also similar in the input space. This idea can be used not
only for a hierarchical structure of classes, but also for an
arbitrary intrinsic character of a data set. The main point is
the definition of similarity as inEq. (2). For complex data
sets with multiple characters one can define several similar-
ity concepts and combine them.

3 Related Work

Dimensionality reduction is a well established approach
in data mining and information retrieval. One sort of the
most well-known techniques is feature selection, like mu-
tual information, information gain andχ2 statistic [18]. In
general, established feature selection methods ignore the
co-occurrence between features, which exists obviously in
textual data sets. Furthermore it is difficult for feature se-
lection to deal with multi-label problems. Another sort of
dimensionality reduction techniques is feature transforma-
tion/mapping. A representative approach is latent seman-
tic indexing [6], which uses singular value decomposition
(SVD) to find the principal components of term-document
matrices. However, this method is unsupervised and thus
the found dimensions are not necessarily relevant when em-
ploying labels of data.

Our approach is a supervised feature mapping method.
Our framework considers the co-occurrence between fea-
tures and handles multi-labeled problems in a natural way.

Similar methods are the canonical correlation analysis
(CCA) [9], partial least square (PLS) and linear discrimi-
nant analysis (LDA) [16]. LDA aims to find transformation
directions that maximize distances between class means
and minimize variances within classes. However, LDA can
only handle the single-label problems. PLS and particularly
CCA are classical statistical methods and measure the linear
correlation between two multidimensional data sets (e.g. in-
puts and outputs). The difference of both methods is that
in CCA the correlation is normalized by variances within
two data sets. However, for these two methods the number
of transformation directions are limited to the smallest di-
mensionality of two data sets. This limitation is not in our
approach.

The resulting feature representations with our framework
are usable for any problem settings in data mining and in-
formation retrieval. In particular for hierarchical classifi-
cation one can add the information of the class taxonomy
to the loss function as suggested in Sec. 2.5. However,
none of the former hierarchical classification approaches
[12, 13, 8, 1, 14, 4, 7, 3] does directly influence the em-
ployed feature space using a class hierarchy like our new
framework. Another conceptual difference is that we use
the information about the specificity of the classes as well
as the information about the similarity between classes.

4 Empirical Study

4.1 Data Sets

In order to demonstrate the advantages of the introduced
framework, we evaluated our methods on two real-world
data sets. The first is the Reuters Corpus Volume 1 (RCV1)
which consists of 806,791 English news stories. We ran-
domly chose 10,000 documents from this data set having
31,613 class labels. These class labels refer to a class hi-
erarchy of 81 classes, 64 leaf classes and 17 inner classes.
The depth of the tree is 4 and each topic is represented by at
least 20 documents. In all 10,000 examples occur 9,705 dif-
ferent words. The second data set is derived from the Swiss-
Prot[2] protein database that contains textual annotations of
proteins. The entries in Swissprot provide links to the class
system of Gene Ontology (GO) [5] which is used as a class
hierarchy. We selected the subtree “Oxido-reductase” from
GO, which contains 125 categories. The corresponding en-
tries in Swissprot comprise 8,335 proteins having 18,955
labels. The class hierarchy has also a maximum depth of 4
and provides 94 leaf classes and 31 inner classes. For each
category, there are at least 10 entries available. This docu-
ment collection contains 10,404 different words. For both
data sets, we derived an original feature space of word vec-
tors by dropping the words being contained in less than 5
documents and afterwards applied TFIDF.
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Figure 2. Visualization of the RCV1 on two-dimensional space (left) LSI, (mittle) CCA and (right) HLSI

4.2 Data Visualization

One important application of feature reduction is to visu-
alize data patterns in a 2 or 3-dimensional space, providing
an impression about the quality of the underlying feature
space. Therefore, we used LSI, CCA and HLSI to project
the documents into a two-dimensional space and visualized
them. The results for RCV1 data are displayed in Fig. 2.
Let us note that we observed a similar visualization for the
Swissprot data, but we had to omit it due to the space limi-
tation. The mapping functions are computed based on 2000
documents and were afterwars applied to project another
set 1000 documents2. We visualized 3 top-level classes
and one second-level class C15 which is a subclass of the
class CCAT. In Fig. 2 different colors and marks are used
to distinguish the classes. The results of LSI and CCA do
not present a very meaningful data distribution because the
classes are not separated very well. On the other hand, us-
ing HLSI provided a visualization which is quite relevant
to the class memberships, in the sense that documents from
the same class often display a close distance. This result
indicates that the method employs the multi-label informa-
tion to represent the class similarities. Since class C15 is a
subclass of CCAT, HLSI mapped the members of C15 into
a concentrated subregion of area it mapped the members of
CCAT. Thus, the projection preserved the inheritance rela-
tionship within the data. The good performance of HLSI
on visualization demonstrates that the proposed algorithm
effectively detects the meaningful subspaces within hierar-
chical data. Thus, the resulting feature spaces should allow
fast and accurate solutions for various learning and retrieval
tasks.

4.3 Classification Performance

Our second set of experiments studied the quality of
HLSI in terms of dimensionality reduction for text clas-

2More data points make the figures difficult to render without color.

sifications. The experimental results are evaluated using
macro-averagedF1 and micro-averagedF1, which are suit-
able to measure the classification accuracy when the classes
are very unbalanced. In particular, micro-averagedF1 re-
flects the quality on the classes with a large number of posi-
tive examples, while macro-averagedF1 emphasizes on the
minor classes, which correspond to the leaf classes in the hi-
erarchical case. As a comparison, we investigate the quality
of 4 different feature spaces: The first was generated by LSI,
the second by HLSI, the third by CCA and the last was the
original feature space. For classification, we used a linear
support vector machines (SVMs) that was implemented in
theSV M light package [10]. For each run, we randomly se-
lected 2000 examples with the constraint that each leaf class
had at least 5 positive examples. Treating the selected data
as training set, we trained classifiers for all inner classes
and leaf classes. Then, the trained models were used to pre-
dict the class of the remaining 8000 examples. For LSI,
CCA and HLSI, the same set of 2000 examples were em-
ployed for learning the feature mapping. We changed the
dimensionality of projections and compared change of per-
formance. The experiment was randomized for 10 times
and the mean and error bar of the results were computed.

Finally the results are shown in Fig. 3. We can see that,
the full-feature case is always working very well. HLSI
gives the performance significantly better than LSI. In the
case of micro-averagedF1 for RCV1 data, the performance
of 50-dimensional HLSI features is almost as good as full
features, while the cases of more than 80-dimensional HLSI
features are even better than full features. In the meantime
LSI needs 200 dimensions to reach almost the same per-
formance. Similar observations can be made in the other
3 subplots. In general, 50-dimensional HLSI features for
RCV1 data and 80-dimensional features for Swissprot data
are sufficient to give comparable accuracy as the full-feature
case, however, the calculation for training the mapping
only needs to be done once, summing up over the train-
ing of all classifiers, the total cost is much smaller than
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SVMs using full features. In our experiments, we observed
on RCV1 data a 10 times improvement of efficiency with
20-dimensional HLSI, and a 4 times improvement for 50-
dimensional HLSI.

We also performed top-down classification on the class
hierarchy, as the method was mentioned in many papers
(e.g. [12]). However, we did not observe any big differ-
ences from the setting we just described. All the methods
including HLSI showed the same behaviors. Moreover, we
test the performance of the proposed hierarchy-regularized
classifier, however the method shows close predictive accu-
racy as SVMs using the full feature. The reason seems to be
that in the high-dimensional feature spaces, with 2000 train-
ing examples, the classifiers converges to almost the same
hyperplane anyway.

4.4 Sensibility ofγ

There is a parameterγ in HLSI algorithm. Here we ex-
amine how sensitive the performance of HLSI on the set-
ting of γ. Here we run the same setting of experiments de-
scribed in the last section, with onlyγ changed. All the
evaluations are averaged from 10 random repeats. We only
report the mean in Fig. 4, while omit the error bar since
some curves stay very close, like the cases ofγ = 0.01
or 0.001 in subplots (c) and (d), which are almost com-
pletely overlapped. From the figures, we can see for the
RCV1 data, the optimal choice ofγ is 0.01 or 0.1, while
for the Swissprot data, the optimal setting is 0.001 or 0.01.
In general, the methods using the hierarchy information is
always better than LSI without this information. However,
the setting for RCV1 data seems to be a little bit sensitive—
large values (e.g.γ → ∞ to become LSI) or small values
(e.g.γ = 0.001) both degrade the performance. In general,
the setting of parameterγ depends on the nature of data. In
practice, we need a valid set to guide the selection.

5 Conclusions

In this paper, we introduced a new method for using
class hierarchies in textual machine learning. Our method
is based on a hierarchy-regularized framework that incor-
porates the proximity of classes within the hierarchy which
implies a connection between the documents belonging the
same class. Additionally, the framework uses the speci-
ficity of classes which can be measured by the number of
documents belonging to each class. We use our frame-
work to derive a new hierarchy-regularized method for fea-
ture transformation that is based on latent semantic index-
ing called HLSI. HLSI enables us to integrate the informa-
tion within a class hierarchy into a variety of learning and
retrieval tasks. Additionally, our experiments on two real-
world text data sets demonstrate that the proposed meth-

ods are capable to derive low dimensional and highly de-
scriptive feature spaces that mirror the structure of the un-
derlying class hierarchy. Thus, they are well-suited for a
variety of learning tasks employing hierarchical class sys-
tems. For future work, an interesting direction is to develop
a global method for feature selection based on hierarchy in-
duced graphs. This is especially interesting for applications
demanding human understandable class models.
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(c) Micro F1 on Swissprot (d) MacroF1 on Swissprot

Figure 3. Classification of the RCV1 data set (a,b) and the Swissprot data set(c,d) with different
features
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Figure 4. Comparison different γ of the RCV1 data set (a,b) and the Swissprot data set(c,d) with
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