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• Background
– Uncertain Data Model
– Similarity Queries

• Probabilistic Pruning
– Obtaining probability bounds
– Using probability bounds for pruning

• Evaluation
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Uncertain Data Model
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• Uncertain attribute 
An attribute x is uncertain if its value is given by a probabilistic density 
function (PDF), which describes all possible values v of x, associated 
with probability P(x = v).
− Discrete PDF (e.g. derived from missing data – See Julia’s talk,

derived from time series data – See Saket’s talk)

− Continuous PDF (e.g., sensor measurement error)
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Uncertain Data Model
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• Uncertain Object X
− Has at least d ≥ 1 uncertain attributes. 
− X is a random variable, where the set of attribute values of X is 

described by a multi-dimensional probability distribution.
− X has a spatial region URX (Uncertain Region), where PDFX (t) > 0 if 

t URX and PDFX (t) = 0 otherwise.

• Uncertain Object Database
− Contains N uncertain objects
− Object Independence Assumption
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Probabilistic Similarity Queries
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• Probabilistic k-Nearest Neighbor query
− What are the k objects closest to Q?

• Probabilistic Similarity Ranking
− Return all objects sorted by their distance to Q.

• Probabilistic Reverse k-Nearest Neighbor queries
• … 

Note: The query
object may now be
uncertain.as well!
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Similarity Queries: Example
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• Probabilistic Nearest Neighbor query
• Which object is the nearest neighbor of Q?



DATABASE
SYSTEMS
GROUP

QA

B
C

7A Novel Probabilistic Pruning Approach to Speed Up Similarity Queries in Uncertain Databases

In some possible worlds A is the nearest neighbor of Q, …

• Probabilistic Nearest Neighbor queries
• Which object is the nearest neighbor of Q?

Similarity Queries: Example
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…in other possible worlds, A is not the nearest neighbor of Q.

• Probabilistic Nearest Neighbor queries
• Which object is the nearest neighbor of Q?

Similarity Queries: Example
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• Efficient probabilistic similarity search:
– Approximation (Index)

• Simplification of spatial-probabilistic keys

– Spatial Filter
• Filter objects according to simple spatial keys 

– Probabilistic Filter
• Derive lower/upper bounds of qualification probability (by means 

of simple spatial-probabilistic keys)
• Filter objects according to lower/upper probability bounds 

– Verification
• Computation of the exact probability (very expensive)
• Monte-Carlo Sampling (many samples required)

General Framework
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Pruning based on rectangular approximations only [1].

[1] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Andreas Züfle: Boosting Spatial Pruning: On Optimal
Pruning of MBRs. SIGMOD Conference 2010: 39-50 

Spatial Filter
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For any Q in this
region, A is closer
to Q than B.For any Q in this

region, A is not 
closer to Q than B.

For any Q in this
region, A may possibly
be closer to Q than B.
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Probabilistic Pruning
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Lower Probability Bound
“B1 is closer to Q than A with a 

Probability of at least x%”
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How many objects are closer to Q than A?

Upper Probability Bound
“B2 is closer to Q than A with a 

Probability of at most x%”
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Uncertain Generating Functions
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• What we have now is:
− B1 is closer to Q than A with a probability of at least p1

lb

and at most p1
ub

− B2 is closer to Q than A with a probability of at least p2
lb

and at most p2
ub

− ...

• How can we derive the probability that at least (at most, 
exactly) k objects are closer to Q than A?
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Uncertain Generating Functions
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• Let φ be a predicate and let X1, …, Xn be uncertain objects. 
Let pi

lb and pi
ub be lower and upper bounds of the 

probability that Xi satisfies φ.

• How many objects satisfy φ?

• We consider the following generating function:
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Example
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• Assume the following probability bounds have been 
derived:
− X1 satisfies φ with a probability of at least 0.2 and at most 0.5
− X2 satisfies φ with a probability of at least 0.6 and at most 0.8

• What is the probability that the number #X of objects that 
satisfy φ is at least (at most, exactly) k?

− Consider the following Generating Function:
(0.2x + 0.3y + 0.5) * (0.6x + 0.2y + 0.2)

− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²
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Uncertain Generating Functions
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− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²
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Uncertain Generating Functions
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− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²
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Uncertain Generating Functions
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− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²

A Novel Probabilistic Pruning Approach to Speed Up Similarity Queries in Uncertain Databases

0 1 2

20 %

40 %

60 %

80 %

P(#X=k)

k



DATABASE
SYSTEMS
GROUP

Uncertain Generating Functions
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− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²
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Uncertain Generating Functions
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− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²
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Uncertain Generating Functions
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− Expansion yields:
0.12x² + 0.34x + 0.1 + 0.22xy + 0.16y + 0.06y²
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Approximated PDF
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The result is an approximated PDF of #X. 
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Uncertain Generating Functions
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Now let #X denote the number of objects that are closer to Q than A.
The pdf of #X corresponds directly of the similarity rank of A to Q.
Example Query: Return all objects that are the nearest neighbor of Q

with a probability of at least 50%.
A can be pruned.
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Uncertain Generating Functions
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Now let #X denote the number of objects that are closer to Q than A.
The pdf of #X corresponds directly of the similarity rank of A to Q.
Example Query: Return the most likely rank of each object.

For A, Rank 1 can be pruned.
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Evaluation
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Summary
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• Algorithm to handle probabilistic similarity queries
with an uncertain query object

• Use of spatial pruning technique to obtain probability
bounds

• Efficient and correct accumulation of bounds using
uncertain generation functions
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