

A Novel Probabilistic Pruning Approach to Speed Up Similarity Queries in Uncertain Databases

T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, A. Züfle

Uncertain Data Model:

 Uncertain attribute x: the value of x is given by a probabilistic density function (PDF), which describes all possible values v of x, associated with probability P(x = v)

- An uncertain object X has at least d ≥ 1 uncertain attributes
- Each uncertain attribute value of X is a random variable

 X is a random variable, where the set of attribute values of X is described by a multi-dimensional probability distribution

 X has a spatial region UR_X (Uncertain Region) where
 (1) PDF_X(t) ≥ 0 if t ∈ UR_X and
 (2) PDF_X(t) = 0 otherwise

Uncertain object database: contains
 N uncertain objects

Problem Definition:

 Probabilistic k-nearest neighbor (PkNN) query: What are the k-nearest neighbors of the uncertain query object Q?

..., while in other possible worlds, that might not be the case.

General Framework:

- 1. Approximation (Index): Simplification of spatial-probabilistic keys
- 2. Spatial Filter: Filter objects according to simple spatial keys

3. Probabilistic Filter:

- Derive lower/upper bounds of qualification probability (by means of simple spatial-probabilistic keys
- Filter objects according to lower/upper probability bounds
- 4. Verification:
 - Computation of the exact probability (very expensive)
 - Monte-Carlo Sampling (in general many samples needed)

Spatial Filter:

Pruning based on the spatial approximations only [1]:

 Certain Pruning Region of A w.r.t. B

Uncertain Pruning Region of A w.r.t. B

Uncertain Pruning Region of A w.r.t. B

Probabilistic Filter:

• Intuition for deriving pruning probability bounds:

Lower Pruning Bound

" B_1 is closer to Q than A with a Probability of at least x %"

Upper Pruning Bound " B_2 is closer to Q than A with a Probability of at most x %"

Uncertain Generating Functions:

- Assume the following pruning bounds have been derived:
 (1) B₁ prunes A with a probability of at least 0.2 and at most 0.7
 (2) B₂ prunes A with a probability of at least 0.6 and at most 0.8
- What is the probability that at least (at most, exactly) **k** objects prune A?

- Formally let $X_1, ..., X_n$ be random predicates and let p_i^{lb} and p_i^{ub} be the respective lower and upper bounds of the probability that $X_i = true$
- Consider the expansion of the Uncertain Generating Function:

$$\prod_{i=1}^{n} p_i^{lb} x + (p_i^{ub} - p_i^{lb}) y + (1 - p_i^{ub})$$

- A lower bound of the probability that exactly k predicates are true is given by the coefficient of the term x^k
- An upper bound is given by the sum of all coefficients of the term $x^m y^n$ where $m \le k$ and $m + n \ge k$

Problem of Dependencies:

 Approximate the probability that A is the NN of Q (assuming uniform distribution in Q):

P("B₁ is closer to Q than A") = 0.5 P("B₂ is closer to Q than A") = 0.5 \Rightarrow P("A is NN of Q") = 0.5 * 0.5 = 0.25 is WRONG! \Rightarrow P_{Ib}= 0 and P_{ub}= 0.5 is CORRECT!

Evaluation:

• Comparison with Monte-Carlo-based approach:

References:

 [1] T. Emrich, H-P. Kriegel, P. Kröger, M. Renz, A. Züfle: Boosting Spatial Pruning: On Optimal Pruning of MBRs. SIGMOD Conference 2010, pp. 39-50.

